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Abstract 
Accurate diagnosis of microcalcification (MC) lesions in 

mammograms as benign or malignant is a challenging clinical task. 

In this study we investigate the potential discriminative power of 

deep learning features in MC lesion diagnosis. We consider two 

types of deep learning networks, of which one is a convolutional 

neural network developed for MC detection and the other is a 

denoising autoencoder network. In the experiments, we evaluated 

both the separability between malignant and benign lesions and 

the classification performance of image features from these two 

networks using Fisher’s linear discriminant analysis on a set of 

mammographic images. The results demonstrate that the deep 

learning features from the MC detection network are most 

discriminative for classification of MC lesions when compared to 

both features from the autoencoder network and traditional 

handcrafted texture features. 

Introduction 
Breast cancer is the most frequently diagnosed non-skin 

cancer in women in the US [1]. The occurrence of clustered 

microcalcifications (MCs) can be an important early sign of breast 

cancer in mammograms. MCs are tiny calcium deposits that appear 

as small spots (typically 0.1–1 mm in diameter) in mammogram 

images (Fig. 1). They can be found in both malignant and benign 

cases in mammogram screening. Due to the subtlety of MCs in 

mammograms, accurate diagnosis of MC lesions as benign or 

malignant is a very challenging clinical task [2].  

Because of the difficulty in diagnosis of MC lesions, there 

have been great efforts in the literature in developing computer-

aided diagnosis (CAD) methods for discriminating between 

malignant and benign MC lesions [3-10]. One such effort is on 

development of various machine learning algorithms for MC lesion 

classification. For example, several pattern classifier models were 

studied in [3] for differentiating malignant from benign MC lesions. 

An adaptive Adaboost classifier was developed in [4] to improve 

the performance of MC lesion diagnosis by retrieving similar 

images from a library of known cases. A two-step classification 

approach was proposed in [5] based on view-level decisions for 

MC lesion diagnosis. A deep learning approach was developed in 

[6] to classify malignant and benign MC lesions.  

Parallel to the development of classifier algorithms in CAD, 

there are also great interests in development of discriminative 

image features for characterizing MC lesions. These features were 

typically handcrafted based on the image properties (e.g., size, 

shape, etc.) of the MC objects in a lesion. For example, in [7] a set 

of image features was developed based on radiologists’ 

interpretation of malignant and benign MC lesions. In [8], texture 

features were studied for MC lesion diagnosis. In [9], a set of 

quantitative features based on spatial modeling of clustered MCs 

was used to describe MC lesions. In [10], graph theoretical features 

were developed for MC lesion classification.  

In recent years, deep convolutional neural networks (CNNs) 

are demonstrated to yield image features that can be more 

discriminative than hand-crafted features in many pattern 

classification tasks in image processing [11, 12]. For the CAD task 

of MC lesion diagnosis, the extraction of hand-crafted image 

features from a given MC lesion typically requires the knowledge 

of the locations of the individual MCs, which itself is a challenging 

task that is either time consuming when marked manually or 

subject to false positives (or missed detections) when detected by a 

computerized algorithm. Therefore, as an alternative, using deep 

learning features in CAD can potentially avoid the above difficulty 

in characterizing MC lesions by using handcrafted features.  

In our recent study [13], we investigated the use of image 

features derived from deep learning models for modeling 

perceptually similar MC lesions, and found that they can yield a 

good agreement with the perpetual similarity between MC lesions 

as judged by radiologists. Encouraged by this result, in this study 

we further investigate whether deep learning features can also be 

discriminative for malignant and benign MC lesion classification. 

For this purpose, we consider two types of deep learning features, 

of which one is derived from a supervised-learning network for the 

task of MC detection, and the other is from an unsupervised-

learning autoencoder network. For the former, the global MC 

cluster detector network developed in [14] is used. For the latter, a 

denoising autoencoder network [15] is used. To quantify the 

discriminative power of the deep learning features, we applied 

Fisher’s linear discriminant analysis on a set of malignant and 

benign lesion images in the experiments. For comparison, we also 

considered a set of commonly used texture features for MC lesions 

[16]. 

Methods 

Motivation 
As noted in the introduction, the goal of this study is to 

investigate whether the image features obtained from deep learning 

networks trained for MC detection can be discriminative between 

malignant and benign MC lesions. For this purpose, we consider 

two deep learning networks, of which one is trained for the task of 

MC cluster detection and the other is an autoencoder network 

trained for image representation. Below we describe the details of 

these two networks. 

Supervised deep learning features 
We first consider a CNN network previously developed for 

detecting the presence of MC clusters in mammograms [14]. This 

network was trained to discriminate image regions containing 

clustered MCs from those without any MCs. Thus, the feature 

maps generated from this network are expected to capture the 
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important image features relevant to MC lesions, as previously 

illustrated in [14].  

The MC detector network in [14] consisted of five 

convolutional (Conv), ReLU and local response normalization 

(LRN) layers, four max-pooling layers (denoted as p1-p4), and two 

fully-connected layers. For this study, this detector model is 

retrained with the following minor modifications: 1) the LRN 

layers are removed, and 2) the combination of Conv and ReLU 

layers is replaced by a combination of Conv, batch normalization 

(BN) and ReLU layers. Such modifications are to avoid the need 

for tuning the hyper-parameters associated with the LRN layers.  

To extract the CNN features for an MC lesion, the image 

region of the lesion is first fed to the network. Afterward, the 

feature maps are obtained from the different layers of the network. 

In this study, the feature maps from the four max-pooling layers 

p1-p4 are used, which represent features extracted at different 

scales. In order to reduce the number of features, a global max-

pooling is applied to each feature map as in [17]. In the end, this 

yields 32, 64, 128, 128 features for layers p1-p4, respectively. 

These features are used to form a vector x (i.e., feature vector) for 

representing the lesion region. 

Unsupervised deep learning features 
We next consider a denoising autoencoder network, which is 

commonly used for efficient data representation [15]. Conceptually, 

an autoencoder network is trained to reproduce an input signal at 

the output with a representation (i.e., feature maps) of a much 

lower dimension. Hence, it is selected for study here on whether it 

can effectively capture the important diagnostic image features of 

MC lesions. 

Specifically, the autoencoder network used in this study is 

formed by three Conv+BN+ReLU blocks and three max-pooling 

layers (denoted as p1-p3) in the encoder; correspondingly, the 

decoder is formed by two Conv+BN+ReLU blocks, one 

Conv+BN+Sigmoid block, and three up-sampling layers. Here 

Sigmoid denotes a sigmoid activation layer, which produces output 

within [0, 1]. In the Conv layers, the kernel size and number of 

kernels are all set as 3×3 and 64, respectively. In the max-pooling 

layers, the stride and pooling size are all set as 2 and 2×2, 

respectively.  

To extract the encoder features, as in the MC detector network 

above, the feature maps from the three max-pooling layers p1-p3 

are used. Also, a global average-pooling is applied to each feature 

map to reduce the number of features, yielding a total of 64 

features for each layer.  

Handcrafted texture features 
For comparison, we also consider a set of textural measures 

which have been widely used for characterizing MC lesion regions 

in mammograms [16]. These features are derived from the spatial 

gray level dependence (SGLD) matrices of a lesion region, and do 

not need the locations of individual MCs. Specifically, the 

following 12 features are extracted for each lesion [16]: energy, 

entropy, difference average, difference variance, difference 

entropy, sum average, sum variance, sum entropy, inverse 

difference moment, correlation, and two information measures of 

correlation. 

Fisher’s linear discriminant analysis 
To examine the potential discriminative power of deep 

learning features in MC lesion diagnosis, we apply Fisher’s linear 

discriminant analysis on separating between malignant and benign 

MC lesions. We first assess the separability between the two 

classes by the deep learning features, then quantify the 

classification performance of the features by using the Fisher linear 

discriminant on a set of MC lesions.  

Fisher’s linear discriminant is a linear classifier which projects 

a high-dimensional feature vector x onto a hyperplane that 

separates the feature space into two half-spaces (corresponding to 

two classes). The classifier function is given by 

   𝑦 = 𝐰𝑇𝐱 + 𝑏       (1) 

where 𝐰 is the Fisher discriminant vector, and b is the decision 

bias. Mathematically, the discriminate vector 𝐰  is obtained by 

maximizing the Fisher separation criterion [9], which is given by 

the ratio of between-class variance to within-class variance as 

   𝐽 =
𝐰𝑇𝑆𝑏𝐰

𝐰𝑇𝑆𝑤𝐰
       (2) 

where 𝑆𝑏 and 𝑆𝑤 denote the between-class and within-class scatter 

matrices, respectively, of the two classes. The resulting Fisher 

discriminant vector is  

   𝐰 = 𝑆𝑤
−1(𝒎1 − 𝒎0)      (3) 

where 𝒎1 and 𝒎0 are the respective mean feature vectors of the 

two classes.  

Note that a larger value in the Fisher separation criterion J 

corresponds to a better separation by the classifier between the data 

samples from the two classes, and vice versa. Thus, in the 

preliminary study below, the class separation criterion J is used to 

quantify the potential discriminative power of the image features 

derived from the deep learning networks.  

Furthermore, to evaluate the classification performance of the 

deep learning features in MC lesion diagnosis, we apply the 

Fisher’s linear classifier using a 5-fold cross validation procedure 

on a set of MC lesions. In the experiments, the set of cases was 

randomly divided into five equally-sized subsets, then the classifier 

was trained and tested by using each of the five subsets in turn as 

test set while the rest as training set. To quantify the classification 

performance, we conduct a receiver-operating characteristic (ROC) 

analysis, which is now routinely used for performance evaluation 

in a binary classification task. An ROC curve is a plot of the true-

positive rate versus the false-positive rate when the operating 

threshold is varied continuously. The area under the ROC curve, 

denoted by AUC, is used to summarize the diagnostic performance. 

A larger AUC value means better classification performance. 

Given the high dimension of the deep learning features in the 

two networks, in our experiments a principle component analysis 

(PCA) was first applied to the deep learning features in which the 

first 12 most dominant components were used in Fisher’s linear 

discriminant analysis. This preprocessing step was to 

accommodate the limited number of data samples and for fair 

comparison with the texture features. 

Experiments 

Dataset for performance evaluation 
To evaluate the discriminative performance of the deep 

learning features in MC lesion diagnosis, we made use of a dataset 

collected by the Department of Radiology at the University of 

Chicago. It consists of 408 mammogram images, all containing 
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lesions with MCs, from 238 cases (118 malignant cases and 120 

benign cases). All of these cases had been pathologically proven 

by biopsy, which are used as ground truth in our performance 

evaluation. For each mammogram, regions of interest (ROIs) were 

cropped in size of 512×512 or 1,024×1,024 pixels with a spatial 

resolution of 0.1 mm/pixel based on the size of the lesions.  

MC detector and autoencoder network training 
For training the MC detector and autoencoder, we made use 

of an independent set of mammogram images (no overlapping 

cases with the evaluation dataset above). It consisted of 113 

screen-film and 188 full-field digital mammogram images, all with 

spatial resolution of 0.1 mm/pixel, collected by the Department of 

Radiology at the University of Chicago. Each image had at least 

one cluster of MCs. All the images were pre-processed for tissue 

background suppression [14]. These images were partitioned 

randomly into two non-overlapping subsets as follows: 1) a subset 

with 241 images for network training, and 2) a subset with 60 

images for model validation.  

For training the MC detector network, image patches of 95×95 

were extracted from the training set of mammogram images as in 

[14], and used as training samples (with or without MCs). Each 

image patch was normalized to have zero mean and unit standard 

deviation for input to the network.  

For training the denoising autoencoder network, image patches 

of 96×96 pixels were extracted from the MC regions of the training 

mammograms. Each image patch was scaled within the range of [0, 

1]; afterward, Gaussian noise (mean 0 and standard deviation 0.1) 

was added. The resulting noisy image patch was then clipped in 

value within [0, 1], and was applied as input to the network. The 

network was trained to reproduce the image patch without any 

added noise. 

For both networks, a binary cross-entropy loss was used during 

training. The adaptive moment estimation (Adam) method was 

used for optimization. Our implementation was based on the Keras 

package with Tensorflow backend. 

Results and Discussions 

Class separability by deep learning features 
To demonstrate the class separability in MC lesion diagnosis 

by deep learning features, we show in Table 1 the Fisher separation 

criterion results for the features extracted at different scale levels 

of the two deep learning networks using all the cases in the 

evaluation dataset. Specifically, for the MC detector network, the 

Fisher separation criterion is given for each of the four max-

pooling layers p1-p4 of the network. Similarly, for the denoising 

autoencoder network, the Fisher separation criterion results are 

given for the three max-pooling layers p1-p3 of the network. In 

addition, for comparison, the Fisher separation criterion was also 

computed for the texture features to be 0.308. 

As can be seen, for the MC detector network the features from 

the third pooling layer p3 achieved the best separation value of 

0.355. Interestingly, it is observed in Table 1 that the Fisher 

separation criterion value shows an increasing trend for the first 

three pooling layers p1-p3 in the MC detector network. These 

results show that the intermediate level features from the MC 

detector network are most discriminative for MC lesion diagnosis. 

This may indicate that these features can better characterize the 

image properties of individual MCs and their spatial clustering 

properties.  

For the autoencoder network, the features from the second 

pooling layer p2 achieved the best correlation value 0.195, which 

is notably lower than that from the texture features. 

Classification performance by deep learning 
features 

To demonstrate the performance of deep learning features in 

classification of malignant and benign MC lesion, we show in 

Table 2 the AUC values obtained by the Fisher linear classifier 

using the deep learning features extracted at different scale levels 

for both the MC detector network and denoising autoencoder 

network. For comparison, the AUC value was also obtained for the 

texture features as 0.648. 

As can be seen, for the MC detector network the features from 

the third pooling layer p3 achieved the highest AUC value of 0.669. 

Moreover, similar to the results earlier in Table 2, the AUC value 

also shows an increasing trend for features among the first three 

pooling layers in the MC detector network.  

For the autoencoder network, the features from the second 

pooling layer p2 achieved the highest AUC value of 0.561, which 

is lower than that from the texture features. 

Discussions 
It is noted from the results in Tables 1 and 2 that, while the 

deep learning features from the MC detector network are 

demonstrated to have discriminative power for MC lesion 

diagnosis, the achieved AUC values are relatively low. We believe 

that this underlines the difficulty of the cases under consideration. 

Indeed, these low AUC values were consistent with several 

observer studies reported on MC lesion diagnosis in the literature. 

For example, an average AUC value of 0.61 was obtained in an 

observer study conducted with 10 radiologists in [2], and AUC 

values in the range of 0.61 to 0.79 were reported in an observer 

study for a group of 12 breast radiologists in [18].  

It is also noted in Tables 1 and 2 that the discriminative power 

can vary greatly for different deep learning features. The features 

from the denoising autoencoder network are found to be far less 

discriminative than those from the MC detector network. We 

believe that a possible reason for this difference is the following: 

Because MCs are tiny objects in mammograms (Fig. 1), they 

cannot be well represented by a general-purpose denoising 

autoencoder network; in contrast, the MC detector network was 

trained to identify the presence of MC clusters in a mammogram 

image, thus better able to capture the image characteristics of 

individual MCs and MC clusters.  

As a feasibility study, we considered only the Fisher linear 

classifier for MC lesion diagnosis in the experiments. In the future, 

it would be interesting to further investigate the use of nonlinear 

classifiers, which are expected to yield improved classification 

performance. In addition, the MC detector network was trained for 

the relevant task of MC detection on a set of MC lesions (in which 

there are many individual MCs); it would also be interesting to 

directly train a deep learning network for MC lesion diagnosis, 

though such an approach would require a much larger number of 

available cases (with known diagnosis) in order to achieve optimal 

generalizability. 
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Conclusion 
We investigated the potential discriminative power of deep 

learning features in MC lesion diagnosis. Two types of deep neural 

networks were considered in the experiments, of which one is a 

CNN detector trained for MC detection, and the other is a 

denoising autoencoder network for image representation. The 

features extracted from the MC detector network were found to be 

more powerful than those extracted from the denoising 

autoencoder network. The features from the MC detector network 

are also more discriminative than the handcrafted texture features 

between malignant and benign MC lesions. In the future, it would 

be interesting to investigate whether using nonlinear classifiers on 

deep learning features can further improve the classification 

performance of malignant and benign MC lesions. 
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Table 1. Fisher’s seperation criterion for different features 

in discriminating between malignant and benign MC lesions. 

Network p1 p2 p3 p4 

MC detector 0.277 0.299 0.355 0.267 

Autoencoder 0.149 0.195 0.066 - 

 

Table 2. AUC values of different features in discriminating 

between malignant and benign MC lesions. 

Network p1 p2 p3 p4 

MC detector 0.658 0.652 0.669 0.646 

Autoencoder 0.520 0.561 0.520 - 

 

 
(a)             (b) 

Figure 1. Examples of mammogram ROIs containing clustered 

MCs: (a) a malignant lesion, and (b) a benign lesion. The MCs 

are tiny calcium deposits which appear as small white spots. The 

image contrast has been adjusted in these ROIs in order to 

enhance the visibility of the MCs. 
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