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Abstract 

A similarity search in images has become a typical operation 

in many applications. A presence of noise in images greatly affects 

the correctness of detection of similar image blocks, resulting in a 

reduction of efficiency of image processing methods, e.g., non-local 

denoising. In this paper, we study noise immunity of various 

distance measures (similarity metrics). Taking into account a wide 

variety of information content in real life images and variations of 

noise type and intensity. We propose a set of test data and obtain 

preliminary results for several typical cases of image and noise 

properties. The recommendations for metrics’ and threshold 

selection are given. Fast implementation of the proposed benchmark 

is realized using CUDA technology. 

Introduction 
Noise that is practically always present in acquired images 

significantly decreases image visual quality and influences 

subsequent image processing in a negative way [1]. In recent 

decades, it has become popular to exploit image self-similarity [2] 

to denoise images more efficiently. The operation of similar block 

(patch) search and their joint use is in a base of nonlocal techniques 

of image denoising that gained high popularity [3-5]. Note that a 

similar block search is used in many other applications such as 

fractal image compression, content-based image retrieval,  

classification, clustering, and pattern recognition [3]. For most of 

them, a similarity search should be fast. In case of intensive, non-

Gaussian and/or spatially correlated noise, similar patch search 

should be also noise-immune and accurate [6, 7].  

Although many similarity metrics (distances) have been 

already proposed and used in different applications, it is still unclear 

how to choose a proper metric for a given type of images currupted 

by a given noise type [6-8]. There are several reasons behind this. 

Preliminary studies have shown that there is no universal similarity 

metric [6-8]. Metrics performance depend upon many factors such 

as image properties (image content), noise characteristics, domain 

where similarity is estimated, block size, reference block used, etc. 

Then, one needs a special tool or a benchmark for simulating and 

comparing performance of the candidate similarity metrics to 

choose the best (optimal) of them or, at least, a quasi-optimal one.  

Although a block size can be arbitrary, the commonly used size 

in practice is 8x8 pixels. This deals with a high computational 

efficiency if metric’s calculation is carried out in transform domain 

in sequential or parallel manner [9]. Usually one has a reference 

patch and looks for a certain number of similar patches. The 

similarity metrics are expressed as distances between blocks or 

vectors [10], where their smaller values for given two blocks mean 

higher similarity. Then, for a given reference patch, a search is done 

for an entire image or its part by calculating distances (and, possibly, 

creating a distance map). Often, a threshold is used to determine 

(decide) are the patches similar or not.  

A high level of noise in images may result in incorrect detection 

of similar patches due to the fact that noisy pattern in the reference 

patch can be matched to a similar noisy pattern in another patch, but 

a content of these two patches would be dissimilar (this often 

happens in highly textured images [11]). Thus, one needs an 

adequate performance criteria that allows assessing a correctness of 

a similar block search. It is also important how accurately is 

similarity threshold estimated. To solve these problems, it could be 

nice to have a tool for studying a wide set of images, noise models, 

similarity metrics implemented as a software benchmark. The 

purpose of this paper is to create and implement a benchmark for 

finding efficient similarity metrics and with detailed analysis 

corresponding to different practical cases. The final version of the 

benchmark is supposed to be extendable for adding more noise 

models and metrics. It is also assumed that the obtained data can 

assist similarity threshold setting. 

To speed-up computations of these metrics, their CUDA  

implementation has been made. The proposed benchmark consists 

of the following operations: noise modelling, similar blocks 

introduction, similar blocks search, and performance assessment. 

Similarity as a distance 
The tasks of similar patch search can be often reduced to a 

similarity assessment for data samples represented as blocks or 

vectors. The latter way is the most used one. To consider similar 

blocks search efficiency, we have chosen eight different similarity 

metrics and two domains of data representation: spatial and discrete 

cosine transform (DCT) domains. All considered metrics are able to 

work with the vectorized data. Note that metrics can be divided into 

two large “families”: metrics-distances and correlation metrics [12]. 

Distances between two blocks as well as similarity coefficients can 

also be considered as a similarity measure-like distance.  

In this paper we will consider the following eight similarity 

metrics. The first three are classical metrics commonly used in 

image processing and which are special cases of general Minkowski 

distance: Manhattan (l1 norm) (1), Euclidean (l2 norm) (2) and 

Chebyshev (l∞ norm) (3) distances. Some alternative metrics have 

appeared in other fields of multidimensional data processing. They 

are robust and have low computational complexity, and, are the 

modifications of of Minkowski distance. The Manhattan metric has 

efficient modifications: Canberra (4) and Bray-Curtis (5) distances 

which can deal with vectorized data samples. Other two 

modifications of Euclidean distance, Hellinger (6) and Mahalanobis 

(7) distances, are frequently used for data clustering and image 

processing. Finally, Pearson correlation can be easily transformed 

into a distance (8): 
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where d is the corresponding distance calculated by a given metric, 

x and y are vectors of image blocks, i is the element index in the 

vector, n is the number of elements in the vector, S defines mutual 

standard deviation of compared vectors. 

Time and memory complexities of these 8 similarity metrics 

are presented in Table 1, where N means the number of simple 

operations (addition, multiplication, exponentiation, modulo 

operation); M relates to the size of the covariation matrix for 

Mahalanobis distance. For further analysis and runtime tests, we 

have used only Canberra, Bray-Curtis, Euclidean, Hellinger, 

Chebyshev and Manhattan distances due to their low complexity 

(Pearson and Mahalanobis metrics are excluded from the further 

consideration due to high computational burden). To prove how fast 

the selected metrics can be calculated, we have run some tests. Table 

2 shows runtime in milliseconds for the considered distances’ 

calculation for the reference block and 1000 blocks of interest. 

Distances are implemented using C++ and C++ with CUDA. Note 

that all metrics except Chebyshev have smaller runtime for CUDA. 

The Chebyshev case can be explained by effective realization of 

max operation in C++. The distance calculation for the reference 

block and 100000 blocks of interest has a significant difference in 

the runtime. All these metrics have distinctly smaller runtime using 

CUDA. In addition, CUDA implementation demonstrates similar 

runtime even when the search has performed for much large number 

of blocks. 

As it has been mentioned in Introduction, similar block search 

can be performed with an priori known threshold. Figure 1 presents 

the algorithm of threshold estimation for the considered metrics for 

different noise intensities. After an initial image from the database 

is loaded, we have to perform test image generation with introduced 

blocks and to choose a reference block for a search. Similar block 

search is carried out in the following way: collect a map of 

calculated distances between reference blocks and other blocks of 

interest in image, aggregate similar block sets (distance to a 

reference block is less than a threshold), evaluate search efficiency 

and threshold value change until all introduced blocks have been 

found. Finally, obtain the threshold value and other search 

parameters. 

To perform all above listed procedures, we have used images 

from Tampere17 image database [13] as test images. Tampere17 has 

300 both color and grayscale high-quality and noise-free images. 

For experiments, we have chosen 10 images with different content 

like homogenous and heterogeneous regions, regular and non-

regular structures, textures. Additive white Gaussian noise (AWGN) 

with zero mean is used as a noise model. 

Table 1. Similarity metrics time and memory complexity 

Metric Time complexity Memory complexity 

Canberra O(5N) O(2N) 

Bray-Curtis O(3N) O(2N+N^2) 

Euclidean O(3N + 1) O(N^2) 

Hellinger O(4N + 1) O(2N) 

Mahalanobis O(3N+2(N*M)) O(4N + M) 

Pearson O(15N + 7) O(15N) 

Chebyshev O(N) O(2N) 

Manhattan O(2N) O(2N) 

Table 2. Runtime test for 1000 and 100000 iterations of metrics’ 

calculation 

Metric С++, ms CUDA, ms 

Iterations 1000 100000 1000 100000 

Canberra 0.064 64.13 0.775 0.882 

Bray-Curtis 0.638 63.405 0.547 0.783 

Euclidean 0.646 63.306 0.551 0.791 

Hellinger 1.169 114.9 0.907 0.987 

Chebyshev 0.01 0.942 0.425 0.546 

Manhattan 0.62 62.68 0.541 0.781 

 

To determine the threshold for the considered metrics, 50 

blocks were choosen in 10 test images. The selected group of blocks 

consists of the same block that is further used as the reference. After 

images are corrupted by the noise, all introduced blocks become 

different and any metric provides different distances. The reference 

block has been chosen in the following way. The entire image is 

divided into 8×8 pixel blocks with estimation of their local activity 

(characterized by local variance). After all estimates of local activity 

are collected together with the associated block coordinates, the 

histogram is obtained. Then, all blocks are divided into three 

categories: low, middle and high local activity blocks. An example 

of introducing a group of similar blocks with high local activity into 

one test image is given in Figure 2. 

The threshold is established taking into account the efficiency 

of introduced similar blocks search. The example of calculated 

distances under noisy conditions (orange) and noise-free distances 
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is shown in Figure 3. Estimated thresholds are given below in 

absolute values for 8-bit grayscale images: Canberra – STD*0.18, 

Bray-Curtis – 0.25, Euclidean STD*10, Hellinger – 44, Chebyshev 

– 220, Manhattan – 9200. Note that Canberra and Euclidean 

distances have noise level dependent thresholds unlike other 

metrics. When the noise STD is not known apriori, the use of these 

metrics can be problematic and a preliminary estimation of noise 

STD is desired. Otherwise, other metrics are more convenient to use. 

 

 

Figure 1. Algorithm scheme of optimal threshold estimation 

a  b 

Figure 2. Example of group of introduced similar blocks in test image (a) and 
noisy image (b) 

 

Figure 3. Calculated and predicted thresholds for Hellinger distance and 50 
introduced blocks, the test image is corrupted by AWGN with STD = 15 

Proposed benchmark for similarity metrics’ 
analysis 

Tests with synthetic images 
The first experiment for similarity metrics’ analysis has been 

carried out using generated synthetic images. The block diagram of 

a search for similar blocks in synthetic images using earlier obtained 

thresholds is presented in Figure 4. To analyze the efficiency of 

similarity metrics for blocks of regular structures, the following 

experiment has been performed. We have generated four test 

synthetic images: “Cells”, “Steps”, “Gradient” and “Points” 

presented in Figure 5. All the obtained images have been distorted 

by AWGN with the noise STDs equal to 3, 5, 10, 15, 20, 25 and 30.  

Due to that fact that the generated images have predictable and 

regular structure, any reference block has a certain number of similar 

(exactly the same) blocks. Hence, we already know where the 

similar blocks are and can easily distinguish with other blocks. All 

metrics have been applied for aforementioned noisy conditions. 

Experiment for each generated test image and noise STD have been 

repeated 50 times. They included arbitrary choice of the reference 

block, distances map collection and the search efficiency estimation. 

An example of generated test images fragments and the calculated 

distance map is given in Figure 6. The reference block contains the 

intersection of two lines. 

 

 

Figure 4. Algorithm of similar blocks search in synthetic images 

 a  b 

 c  d 
Figure 5. Generated noise-free test images: “Cells” (a), “Steps” (b), “Gradient” 
(c), “Points” (d) 
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Figure 6. Fragments of distances map and corresponding image fragment for 
Euclidean distance in test image “Cells” corrupted by AWGN with STD = 10 

 
Figure 7. Sorted distances values and ranks for Canberra metric with marked 
ones which belong to introduced blocks 

To assess a search efficiency, we propose to use two criteria: E 

is search efficiency – the ratio between the numbers of found 

introduced blocks and their whole number (9) and R is a rank 

estimate – the ratio between ranks of found introduced blocks in the 

sorted set and their whole number (10).  

E = ∑ mn
j=0 ∑ jn

j=0⁄  (9) 

R = ∑ rj
n
j=0 ∑ jn

j=0⁄  (10) 

where j is the index of block in the sorted set, n is the number of 

blocks, rj is the rank of introduced block in the set. 

Experiments have been carried out for four test images and 

distance calculation in spatial domain, the search for every case has 

been performed for an entire image. The obtained results have been 

averaged for E and R criteria. The obtained results are presented in 

Figures 8 and 9. Similar experiment for generated images has been 

performed in DCT domain. The reference and considered blocks 

during the search have been transformed using DCT to check 

metrics’ efficiency (see the results in Figures 10 and 11). 

 

 

Figure 7. Averaged E estimates for similarity metrics and four synthetic 
images (metric calculation in spatial domain) 

 

Figure 8. Averaged R estimates for similarity metrics and four synthetic test 
images (metric calculation in spatial domain) 

 

Figure 10. Averaged E estimates for similarity metrics and four synthetic 
images (metric calculation in DCT domain) 

 

Figure 11. Averaged R estimates for similarity metrics and four synthetic test 
images (metric calculation in DCT domain) 

According to the presented results, the Canberra metric has the 

worst efficiency in search of regular structures in spatial domain, the 

Hellinger distance shows the best efficiency according to both E and 

R criteria. In opposite to spatial domain, the Canberra and Bray-

Curtis distances have the best efficiency of search in regular 

structures in DCT domain. The Hellinger and Manhattan distances 

show the worst results. The Euclidean and Chebyshev distances 

demonstrate low efficiency when noise STD exceeds 20. 

Tests with real images 
The second experiment for similarity metrics analysis has been 

carried out using real-life images from Tampere17 database. The 

algorithm of similar blocks search in real images using the earlier 

obtained thresholds under noisy conditions with arbitrary 

introduction of identical block group is illustrated in Figure 12. The 

presented scheme is a quite similar to the algorithm for a threshold 

estimation in Figure 1. To analyze the efficiency of the similarity 
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metrics for blocks of features in real-world images, the following 

experiment has been carried out. We have used ten test images from 

Tampere17 image database. As previously, all obtained images have 

been distorted by AWGN with the following noise STDs: 3, 5, 10, 

15, 20, 25, and 30. Figure 13 presents an example of similar blocks 

introduction into real-life image. The dark points in distance maps 

mean small distances that correspond to similarity to the reference 

block. On the contrary, light color pixels correspond to other 

(dissimilar) blocks with large distances. 

 

 
Figure 12. Algorithm of similar blocks search in real images 

 
Figure 13. Fragments of distance map and the corresponding image fragment 
for Manhattan distance in real test image corrupted by AWGN with STD = 10 

Figures 14 and 15 present averaged results for ten test images 

and metric calculation in the spatial domain. The results for DCT 

domain are shown in Figures 16 and 17. It should be noted that all 

metrics do not provide 100% result even for low noise intensity in 

real life images. The best results are demonstrated by Manhattan and 

Bray-Curtis distances for spatial domain. The Euclidean metric 

shows low efficiency according to E criteria. The Canberra, 

Hellinger and Chebyshev metrics have low search efficiency when 

noise STD exceeds 15 according to both E and R criteria. The 

Euclidean distance finds the group of similar blocks with higher 

ranks in the sorted set but the total number of blocks is smaller than 

for Manhattan and Bray-Curtis metrics. 

 

 

Figure 14. Averaged E estimates for similarity metrics and ten real life test 
images (metric calculation in spatial domain) 

 

Figure 15. Averaged R estimates for similarity metrics and ten real life test 
images (metric calculation in spatial domain) 

 

Figure 16. Averaged E estimates for similarity metrics and ten real life test 
images (metric calculation in DCT domain) 

 

Figure 17. Averaged R estimates for similarity metrics and ten real life test 
images (metric calculation in DCT domain) 

In DCT domain, we have similar results. The Euclidean, 

Hellinger and Chebyshev distances have low efficiency expressed 
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in terms of E criterion. That means that the total number of found 

introduced blocks is unsatisfactory. The best results are shown by 

the Manhattan and Bray-Curtis metrics. R and E criteria complement 

each other and show, for instance, that Euclidean metric finds only 

a part of introduced blocks with high ranks. 

Finally, let us summarize the obtained results. Due to the higher 

computational burden, we have excluded Mahalanobis and Pearson 

similarity metrics. This characteristic is crucial for real-time 

applications that often exploits similar blocks search. Other metrics 

have appropriate results in runtime tests and can be easily used in 

practice with different implementations like C++ realization or 

CUDA-based calculation. Thresholds estimations for metrics have 

also demonstrated interesting results. Euclidean and Canberra 

distances need a priori known or pre-estimated blindly STD of the 

noise. The first test with generated synthetic images shows that 

Hellinger distance is the best choice for spatial domain according to 

both E and R criteria while Bray-Curtis and Canberra distances work 

better in the DCT domain. However, synthetic images are well 

structured and we also had to check metrics’ efficiency in real-life 

images. The second experiment has demonstrated that Bray-Curtis 

and Manhattan distances found more introduced similar blocks 

according to both E and R criteria (for the case of metric calculation 

in spatial domain). In DCT domain, the Bray-Curtis and Manhattan 

metrics show higher search performance than other metrics. It is 

well seen that the Euclidean distance which is the most used metric 

in image processing does not provide the best efficiency. 

Conclusions 
Two experiments with the generated synthetic and real images 

have been performed for similar blocks search. Spatial and DCT 

domains have been exploited to represent image blocks and 

calculate distances using the considered similarity metrics. Two 

criteria have been used to estimate similar blocks search efficiency 

under noisy conditions for AWGN model. 

All metrics have been analyzed for their time and memory 

complexity. Two fast implementations using C++ and C++ with 

CUDA have been realized with the runtime estimation results. The 

obtained results can be used, e.g., in non-local denoising methods 

like BM3D, various methods of image and video compression, etc. 

The proposed benchmark can be easily extended to other noise 

models, similarity metrics, test images and testing strategies, search 

efficiency criteria. It should be mentioned that the benchmark is 

extendable and can be used by the research community. The novelty 

consists in the following: we conduct analysis of similar blocks 

search for various noise models and scenarios; we have analysed 

similarity metrics in different cases; the fast parallel implementation 

of the proposed benchmark has been developed. 
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