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Abstract 
Image denoising is a classical preprocessing stage used to 

enhance images. However, it is well known that there are many 

practical cases where different image denoising methods produce 

images with inappropriate visual quality, which makes an 

application of image denoising useless. Because of this, it is 

desirable to detect such cases in advance and decide how expedient 

is image denoising (filtering). This problem for the case of well-

known BM3D denoiser is analyzed in this paper. We propose an 

algorithm of decision-making on image denoising expedience for 

images corrupted by additive white Gaussian noise (AWGN). An 

algorithm of prediction of subjective image visual quality scores for 

denoised images using a trained artificial neural network is 

proposed as well. It is shown that this prediction is fast and 

accurate. 

Introduction 
One of the main obstacles in image processing applications 

significantly affecting image perceptual quality is a presence of 

noise [1]. Due to this, image denoising is an important step in image 

preprocessing to suppress noise and improve image visual quality. 

However, the use of existing image denoising methods can often 

lead to a degradation of image visual quality resulting in loss of 

important details, edges and texture features [2-4]. Such distortions, 

appearing after applying denoising, influence efficiency of 

subsequent high-level image processing tasks, e.g. semantic 

segmentation [5]. Often consumers are unsatisfied by denoising 

results because of introduced visually annoying structural 

distortions. Hence, monitoring and predicting an appropriate 

perceptual quality of denoised images is extremely important to 

meet required quality of experience (QoE) for end-users [6]. 

Generally, image quality can be evaluated in two ways – 

objectively, by image quality measures, and subjectively, by 

involving humans to perform visual quality assessment [1, 3, 6]. 

Since large scale subjective evaluations are very complicated and 

cannot be used for real-time image quality assessment, image 

quality measures (metrics) are widely used to assess quality of 

denoised images. Image denoising efficiency is typically described 

by improvement of image quality measures, i.e. difference between 

the measure values after and before denoising [7]. At a first glance, 

it seems that a high value of improvement for a given measure 

always corresponds to an image enhancement. Nevertheless, there 

are situations where visual quality of denoised image has not been 

considerably improved compared to the input noisy image 

regardless a positive value of improvement of a given measure [4, 

7]. In that case, a positive effect of denoising is negligible and it is 

not worth applying denoising operation. According to this, it is 

highly desirable to detect such situations far in advance and to 

undertake a decision on image denoising expedience – is it worth 

applying denoising for a given image or it is better to skip it and thus 

save a processing time.  

Although many image visual quality measures taking into 

account peculiarities of human vision system have been developed, 

subjective evaluation is still the most adequate assessment of image 

visual quality [1, 6].  

Over the last years, several studies concerning subjective 

evaluation of visual quality of denoised images have been conducted 

[3, 8, 9]. In [8], subjective evaluations have been conducted to assess 

visual quality for images processed by BM3D with four different 

hard thresholding parameters for a single noise intensity. In [9], a 

special database SubjectiveIQA has been introduced and the 

subjective evaluation experiments for images denoised by different 

filters have been done. It has been shown that denoising is mostly 

reasonable to apply if images are corrupted by a moderate intensity 

noise and if images having simple content, whilst, for highly 

textured images, denoising often leads to visible degradation.  

In this study, we analyze denoising expedience for images 

corrupted by additive white Gaussian noise (AWGN) for the case of 

BM3D denoiser [10] using full-reference image quality measures. 

We conduct our analysis based on SubjectiveIQA database with the 

provided subjective visual quality scores. Finally, we propose an 

algorithm for decision-making on image denoising expedience.  

Analysis of denoised images using full-
reference image quality measures 

Before carrying out our detailed analysis of visual quality for 

denoised images, let us briefly describe the SubjectiveIQA database 

which was introduced in [9] for analysis of visual quality of 

denoised images.  

The SubjectiveIQA database consists of 16 reference grayscale 

images, 112 images corrupted by AWGN with seven noise levels 

(noise standard deviations used are equal to 3, 5, 10, 15, 20, 25 and 

30, respectively) and 224 denoised images, where each noisy image 

has been denoising by both DCT-filter and BM3D filter [9]. A 

methodology of subjective evaluation was the pairwise comparison. 

Each participant had to choose an image with better perceptual 

quality – noisy image or a denoised one. Subjective scores in the 

database are presented as probabilities of voting for denoising 𝑃𝑣𝑜𝑡𝑒, 

meaning that the denoised image has a better perceptual quality than 

the corresponding noisy one. Thus, a probability 𝑃𝑣𝑜𝑡𝑒 tending to 

unity corresponds to the case when practically all participants prefer 

a denoised image over a noisy one. Probability 𝑃𝑣𝑜𝑡𝑒 greater than 

0.5 means that the use of denoising is, probably, expedient, while if 

𝑃𝑣𝑜𝑡𝑒 is less than 0.5 then it is not worth applying denoising for a 

given image [9].  

Fig. 1 shows an example of image fragment for which the use 

of denoising is obviously expedient, since the obtained probability 

of voting for denoising is about 0.9 in the case of noise standard 

deviation (STD) equal to 10. From the presented denoised fragment, 

it is well seen that BM3D demonstrates good noise suppression and 

edge preservation.  

IS&T International Symposium on Electronic Imaging 2021
Image Processing: Algorithms and Systems XIX 237-1

https://doi.org/10.2352/ISSN.2470-1173.2021.10.IPAS-237
© 2021, Society for Imaging Science and Technology



 

 

Fig. 2 shows an example of image fragment for which applying 

denoising is clearly useless. In this case, the obtained probability 

𝑃𝑣𝑜𝑡𝑒 is less than 0.4 for noise STD equal to 10. The fragment of 

denoised image looks very similar to the noisy one. In this example, 

noise is visually masked by a texture.  

 

   
Figure 1. Examples of image fragments (reference image – left, noisy image 
corrupted by AWGN with STD=10 – middle, denoised - right) 

       
Figure 2. Examples of texture image fragments (reference image – left, noisy 
image corrupted by AWGN with STD=10 – middle, denoised - right) 

Given that a huge number of image quality assessments have 

been proposed during the last decades, it is necessary to find out 

which of them are the most appropriate and adequate to characterize 

visual quality of denoised images. To meet this need, we have 

evaluated performance of more than 40 full-reference image quality 

measures. Performance evaluation has been carried out by 

calculating Spearman rank order correlation coefficient (SROCC) 

between the values of improvements of the considered image quality 

measures and subjective scores, i.e. probabilities of voting 𝑃𝑣𝑜𝑡𝑒 for 

denoised images from the SubjectiveIQA database. Results of the 

conducted evaluation are shown in Fig. 3.  

From the results presented in Fig. 3, it can be observed that 

none of the considered image quality measures provides SROCC 

value higher than 0.82. Most of the considered full-reference image 

quality measures demonstrate moderate correspondence to 

subjective visual quality scores. The commonly used peak-signal-

to-noise ratio (PSNR) measure has SROCC value about 0.6. Among 

the best performing image quality measures, there are the well-

known FSIM measure [11] and recently proposed image quality 

measures ADD-SSIM [12] and SSIM4 [13]. The best SROCC value 

is 0.81. 

Let us analyze best performing image quality measures in more 

details. Scatterplots of the probabilities of voting for denoising 𝑃𝑣𝑜𝑡𝑒 

and the values of improvements for image quality measures FSIM, 

SSIM4, ADD-SSIM and PSNR-HVS-M [14] are shown in Fig. 4 

and Fig. 5. In the presented scatterplots, an asterisk indicates images 

with rather simple structure, while a square represents data for 

highly textured images. Note that the improvements for most 

measures can be quite easily and accurately predicted [4, 7]. 

First, it is well seen that the obtained scatterplots for quality 

measures FSIM (see Fig.4), SSIM4 and ADD-SSIM (see Fig. 5) are 

almost identical. Therefore, we will further analyze the values of 

improvement for FSIM because it is widely used and well-studied.  

 

 
Figure 3. SROCC values between improvements of the considered image 
quality measure and subjective scores 

 
Figure 4. Scatterplot of probabilities of voting for denoising 𝑃𝑣𝑜𝑡𝑒 and 

improvements of FSIM  

From the analysis of the scatterplot of values of FSIM 

improvement (denoted as I-FSIM) and the probabilities of voting for 

denoising 𝑃𝑣𝑜𝑡𝑒, it becomes clear that if the values of improvement 

I-FSIM are negative (i.e. the value of the measure FSIM after 

applying denoising has become less than for the original noisy 

image), then denoising is useless. In this case, the values of 𝑃𝑣𝑜𝑡𝑒 do 

not exceed 0.4. On the other hand, when the value of improvement 

I-FSIM is greater than 0.01, one can state that applying the 

denoising is expedient (almost for all such images the probabilities 

exceed 0.6). At the same time, there are many images for which the 

values of improvements do not exceed 0.01 and the probabilities of 

voting vary in a wide range.  

237-2
IS&T International Symposium on Electronic Imaging 2021

Image Processing: Algorithms and Systems XIX



 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Figure 5. Scatterplot of probabilities of voting for denoising 𝑃𝑣𝑜𝑡𝑒 and 

improvements of SSIM4 (a), ADD-SSIM (b) and PSNR-HVS-M (c)  

Considering that the range of possible values for FSIM, SSIM4 

and ADD-SSIM measures is from 0 to 1 (larger values correspond 

to better image quality), it would be helpful to analyze image quality 

measure with other properties. For this purpose, we have chosen 

PSNR-HVS-M measure (SROCC value in the performance 

evaluation is 0.72). Recall that PSNR-HVS-M is expressed in dB 

and higher values indicate better image visual quality [14]. 

Analysis of the scatterplot obtained for the improvement of 

PSNR-HVS-M (see Fig. 5c) shows that the values of improvement 

for this measure (denoted as I-PSNR-HVS-M) greater than 2dB 

practically guarantee that image denoising (applying BM3D) is 

expedient. However, there are still many images, mostly highly 

textured, for which the probability of voting for denoising greatly 

vary depending on noise intensity and texture characteristics. 

In order to understand when image denoising is expedient, it is 

also necessary to analyze the values of quality measures of the 

original noisy images. This is explained by the fact that noise in 

images may be not visually noticeable or practically invisible; and, 

therefore, it makes denoising useless [15]. To do this, we use PSNR-

HVS-M and FSIM measures. Examples of scatterplots of 

probabilities of voting and values for PSNR-HVS-M and FSIM 

measures calculated for original noisy images are shown in Fig. 6.  

 

 
(a) 

 

 
(b) 

Figure 6. Scatterplot of probabilities of voting for denoising 𝑃𝑣𝑜𝑡𝑒 and values of 

PSNR-HVS-M (a) and FSIM (b) measures calculated for noisy images 
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Various studies have shown that PSNR-HVS-M and FSIM 

measures adequately characterizes visual quality for noisy images 

[3]. From the obtained dependences (see Fig. 6), it is worth noting 

the following. First, for noisy images for which values of FSIM are 

about 0.97-0.99, denoising is not expedient. Second, for noisy 

images with FSIM values less than 0.95, except highly textured 

images, denoising results in image enhancement and it is expedient. 

For images with PSNR-HVS-M greater than 45 dB, a denoising is 

useless.  

Moreover, let us analyze dependences between values of 

improvements of PSNR-HVS-M and FSIM image quality measures 

and noise intensity (STD). Fig. 7 shows the scatterplots of values of 

improvement for different measures and noise intensities.  

 

 
(a) 

 

 
b) 

Figure 7. Scatterplot of improvements for PSNR-HVS-M (a) and FSIM(b) 
measures and AWGN standard deviations  

The scatterplot of values of improvement for PSNR-HVS-M 

measure is especially interesting (see Fig. 7a). In this case, one can 

clear identify images for which denoising is useless: the values of I-

PSNR-HVS-M do not exceed 2 dB and the probabilities of voting 

for denoising are mostly less than 0.5. Thus, it is possible to establish 

such a dependence, if I-PSNR-HVS-M > 0.08 ∙ 𝜎𝑛, then applying 

denoising is expedient, otherwise it is useless. 

Based on the aforementioned observation and remarks, we 

propose an algorithm on image denoising expedience, which is 

shown in Fig. 8.  

Let us verify the proposed algorithm and compare the results 

with the probabilities of voting for denoising of images from 

SubjectiveIQA database. Note that we will consider the use of 

denoising expedient if subjective scores (probabilities of voting for 

denoising 𝑃𝑣𝑜𝑡𝑒 are greater than 0.6).  

The correctness of the decision-making according to the 

proposed algorithm for images denoised by the BM3D filter is 

92.86% which ensures a reliable decision. 

An example of an image for which the algorithm incorrectly 

indicates that it is not useful to apply BM3D for noise STD equal to 

10, 15, 20 is shown in Fig. 9. This is due to the ability of texture to 

mask a noise. 

 

 
Figure 8. Algorithm for decision-making on image denoising expedience 

 
Figure 9. Example of an image for which the algorithm incorrectly indicates 
the usefulness of applying denoising 
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Prediction of subjective scores for denoised 
images 

To undertake a decision on image denoising expedience let us 

consider a problem of predicting subjective quality scores for 

denoised images. To this end, artificial neural network is as a 

predictor. Values of improvements of the most appropriate image 

quality measures in accordance with the values of Spearman’s rank 

order correlation coefficient (SROCC) calculated between the 

improvements of image quality measures and subjective scores 

𝑃𝑣𝑜𝑡𝑒 for the SubjectiveIQA database (available at: 

https://github.com/ViA-RiVaL/SubjectiveIQA) are used as inputs.  

We have employed a feedforward multilayer back propagation 

neural network to predict subjective image quality scores 

(represented in the SubjectiveIQA database by 𝑃𝑣𝑜𝑡𝑒). The neural 

network consists of an input layer, two hidden layers of 3 and 2 

neurons, respectively, and an output layer. For each of the hidden 

layers, hyperbolic tangent activation function is used, while the 

output layer is activated by a linear function. The architecture of the 

employed neural network is shown in Fig. 10. The inputs of the 

neural network are values of improvements of full-reference image 

quality measures, namely I-FSIM, I-SSIM4 and I-ADD-SSIM. The 

neural network architecture has been empirically selected during 

preliminary training and validation experiments.  

 

 
Figure 10. Architecture of a neural network 

To assess a prediction accuracy of the trained neural network, 

goodness-of-fit adjusted 𝑅2 (coefficient of determination) along 

with root mean square error (RMSE) are used. A coefficient of 

determination 𝑅2 is the square of the linear correlation between the 

predicted values and ground truth values [16]. It ranges from 0 to 1, 

where high values of 𝑅2 correspond to better prediction accuracy. 

At the same time, lower the value of RMSE, more accurate the 

prediction is. 

Since the number of training epochs affects a prediction 

accuracy at the testing (validation) stage, we have conducted 

additional intensive experiments. In this regard, the neural network 

has been trained on different number of epochs varied from 15 to 25 

with a step 1. Various training/testing dataset split ratios (namely 

90/10%, 80/20%, 70/30% and 60/40%) have been also studied. To 

obtain more reliable results of a prediction accuracy, the procedure 

of random splitting into training and test sets has been carried out 

1000 times for each of the considered number of epochs and split 

ratios. Training of neural network took about 0.6 sec. All 

experiments were conducted on a computer with Intel Core i7-2670 

QM processor and 16 Gb of RAM. The obtained dependences are 

shown in Fig. 11.  

Analysis of these dependences shows the following. It is well 

seen that the best prediction accuracy in terms of coefficient of 

determination (adjusted 𝑅2) is provided for the training/testing 

dataset split ratio of 70/30 % and 25 training epochs. Second, the 

optimal number of training epochs for the training/testing dataset 

split ratios of 80/20% and 90/10 % is 24, while for the split ratio of 

60/40 % is 23.  

Summarized results of RMSE and adjusted 𝑅2 obtained by 

averaging across 1000 random splitting into train/test sets and their 

standard deviations for different splitting ratios and optimal number 

of training epochs are presented in Table 1. 

 

 
Figure 11. Dependences of adjusted 𝑅2 on different number of training 

epochs for various training/testing dataset split ratios 

Table 1: Prediction Accuracy 

Train/Test 
dataset split 
ratio 

RMSE 
STD of 
RMSE 

Adjusted 

𝑅2 

STD of 
adjusted 

𝑅2 

60/40 0.0870 0.0115 0.6855 0.0853 

70/30 0.0852 0.0117 0.6905 0.088 

80/20 0.0829 0.0139 0.6835 0.1105 

90/10 0.0794 0.018 0.6576 0.1491 

 

As can be seen from Table 1, the best prediction accuracy in 

terms of RMSE is provided for the training/test dataset split ratio of 

90/10% which is normal since the neural network is trained on a 

larger amount of data. Meanwhile, for this case, the STD value of 

RMSE is greater than for the cases of other splitting ratios that 

influences stability of the prediction results. For all the cases of 

splitting ratios, values of RMSE do not exceed 0.09. Values of STD 

of RMSE and adjusted 𝑅2 are high, which can be explained by the 

limited size of the dataset.  

To further improve a prediction accuracy and obtain more 

reliable results, it is desirable to expand the existing database of 

denoised images by adding more test images, noise levels and 

obtaining more subjective scores. Thus, a prediction is quite 

accurate, but, in future work, we will study more accurate prediction 

models of subjective scores for denoised images.  
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Conclusions 
In this paper, analysis of visual quality for denoised images 

using appropriate full-reference image quality assessment measures 

along with the provided subjective image quality scores and image 

dataset has been carried out. Based on this analysis, the algorithm 

for decision-making on image denoising expedience for images 

corrupted by AWGN in the form of a sequence of comparisons to 

the thresholds and logic operations has been proposed. Its testing 

has shown that it is possible to make a reliable decision on image 

denoising expedience in advance without carrying out denoising. 

Additionally, a method of subjective image quality scores prediction 

for images denoised by the BM3D filter using artificial neural 

network has been proposed. It has been shown that the subjective 

image quality scores can be predicted rather accurately with 

goodness-of-fit R-squared about 0.69.  
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