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Abstract
Vehicle re-identification (re-ID) is based on identity match-

ing of vehicles across non-overlapping camera views. Recently,
the research on vehicle re-ID attracts increased attention, mainly
due to its prominent industrial applications, such as post-crime
analysis, traffic flow analysis, and wide-area vehicle tracking.
However, despite the increased interest, the problem remains to
be challenging. One of the most significant difficulties of vehicle
re-ID is the large viewpoint variations due to non-standardized
camera placements. In this study, to improve re-ID robustness
against viewpoint variations while preserving algorithm effi-
ciency, we exploit the use of vehicle orientation information.
First, we analyze and benchmark various deep learning ar-
chitectures in terms of performance, memory use, and cost on
applicability to orientation classification. Secondly, the extracted
orientation information is utilized to improve the vehicle re-ID
task. For this, we propose a viewpoint-aware multi-branch
network that improves the vehicle re-ID performance without
increasing the forward inference time. Third, we introduce a
viewpoint-aware mini-batching approach which yields improved
training and higher re-ID performance. The experiments show an
increase of 4.0% mAP and 4.4% rank-1 score on the popular VeRi
dataset with the proposed mini-batching strategy, and overall, an
increase of 2.2% mAP and 3.8% rank-1 score compared to the
ResNet-50 baseline.

Index Terms– Scene understanding, image retrieval, vehicle
re-identification, CNN.

Introduction
At present, public safety continues to be a major concern of

society, although the safety issues are changing over the years.
An important theme in safety is the tracking of specific people
and vehicles. As a result, vehicle re-ID has been receiving in-
creasing scientific attention in recent years from the computer vi-
sion community, following the increased demand for its practi-
cal applications. Vehicle re-identification (re-ID) aims to find an
identity-sensitive correspondence between vehicle images which
are taken from non-overlapping camera views. In other words,
vehicle re-ID enables recognition of vehicles that re-appear at dif-
ferent geographical locations.

Vehicle re-ID enables intelligent surveillance video analy-
sis that targets numerous use cases. For instance, it is possi-
ble to combine intra-camera tracking with vehicle re-ID over a
multi-camera network to reveal long trajectories of individual ve-
hicles. This valuable information can be used by traffic anomaly
detection systems that decrease the response time of authorities,
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Figure 1. Typical flow of vehicle re-ID: Images of previously encountered

vehicles are passed on to the feature extraction, and a database of feature

vectors is constructed (the gallery set). Then, at run-time, the feature vec-

tor for an image with an unknown vehicle (query) is extracted. Finally, a

mathematical distance metric between the query and gallery feature vectors

are computed and the resulting distances are ranked, where a low distance

indicates a resembling match.

thereby increasing efficiency and safety of transportation. Sim-
ilarly, vehicle re-ID enables wide-area tracking, which can be
used for post-crime analysis. In addition, vehicle re-ID enhances
traffic-flow analysis, which provides valuable statistics for road-
utilization assessment and leads to efficient designs of public
roads and intersections [1, 2]. Additional use cases of vehicle re-
ID include congestion pricing, tolling on highways, and logistic
applications with autonomous tracking of products transported by
trucks in shipyards.

Despite the increased scientific attention and recent advance-
ments, the vehicle re-ID problem is still far from being solved,
mainly due to diverse and difficult challenges inherent to the
problem. Low-resolution images, environmental occlusions, vari-
ations in lighting conditions, and low intra-class or high inter-
class similarities are difficult challenges that negatively affect the
performance of many algorithms. Another particularly notorious
challenge is the broad variability in viewpoints. Depending on
vehicle orientation and camera placement, the appearance and the
visible sides of vehicles may change drastically, resulting in sig-
nificant differences in feature characteristics. For example, for a
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side-view image of a passenger car, it may be possible to get dis-
criminative features from shape and appearance of the rims. How-
ever, such a feature will simply be absent in a front- or a back-
view of the same vehicle. Thus, vehicle re-ID algorithms should
be able to determine the relevant features for different viewpoints.
Furthermore, not only the orientation of the vehicles, but also the
camera placement influences the viewpoint significantly. In an
ideal multi-camera network, camera mounting height and angle
of the camera field-of-view (FOV) with respect to the observed
road should be nearly identical for all sensors. However in prac-
tice, this is seldom the case due to realistic constraints, which even
further complicates the re-ID of vehicles.

Taking a technical perspective on computer vision for ve-
hicle re-ID purposes, it is evident that deep learning revolution-
ized the technical field since it gained popularity in 2012 [3].
Today, most state-of-the-art algorithms addressing various prob-
lems utilize deep learning to efficiently model complex data struc-
tures from given annotations. This approach can also be suc-
cessfully applied to the problem of vehicle re-ID. Recent best-
performing algorithms employ various deep network architec-
tures, additional semantic data, novel training methodologies and
data pre-processing techniques, to increase the performance and
robustness of vehicle re-ID algorithms against various challenges.
Similarly, in this study, we aim to improve re-ID performance
by utilizing the viewpoint data (orientation of vehicles). When
supplying the feature extraction with the viewpoint data in addi-
tion to raw pixel values of a vehicle image, we hypothesize that
it is possible to extract richer and highly-specialized features. In
other words, our aim is to teach the network to extract viewpoint-
specific features that are more descriptive with respect to the iden-
tity of vehicles. To this end, we first explore the possibility of
extracting accurate viewpoint classification labels from input im-
ages bearing computational cost in mind. Then, various different
popular deep learning architectures are benchmarked on their per-
formance of vehicle orientation classification. We then propose a
novel vehicle re-ID algorithm that uses the extracted orientation
labels. Specifically, our algorithm is a branched network, where
the branching is controlled by the viewpoint label of the input im-
age. The algorithm does not increase the inference time of the
re-ID feature extraction network and is framework-independent,
which means that the proposed approach can be applied to any re-
ID feature extraction network to improve performance. Further,
to compensate for the reduced effective batch-size per viewpoint
branch and to increase the efficiency of training, we propose a
novel viewpoint-aware mini-batching strategy that ensures proper
training of our architecture. To summarize, the contributions of
our study are as follows.

• Benchmarking of various architectures on their performance
and computational cost for classifying vehicle orientation.

• Novel viewpoint-aware branched network (VABN) architec-
ture that takes viewpoint information into account, to yield
better re-ID feature extraction while preserving a low infer-
ence time.

• Viewpoint-aware branching strategy that improves the train-
ing performance.
The remainder of this paper is organized as follows. The

section on Related Work provides a short overview of vehicle
re-ID methods in literature. In Methodology, the problem of
viewpoint classification is discussed, and our methodology is de-

scribed, explaining the VABN architecture in detail. The section
on Experiments presents the quantitative experimental results for
both orientation classification and re-ID. Finally, concluding re-
marks are given in the Conclusion section.

Related Work
Due to its valuable applications in the industry, the problem

of re-ID has been studied in many forms and for multiple target
entities, including the re-ID of people, vehicles, and maritime ves-
sels. Among these, person re-ID has received particularly strong
scientific attention. As a result, a vehicle variant of the re-ID
problem includes many methodologies from the person re-ID lit-
erature, adapted to the vehicle case. Thus, prior to moving on
to specific vehicle re-ID related work, a brief overview of person
re-ID algorithms is presented.
Person Re-identification. The problem of person re-ID aims to re-
identify people across non-overlapping cameras. The most com-
mon methodology of person re-ID is to find a transformation, f :
RH×W →RNf , that extracts an identity-sensitive, Nf-dimensional
feature vector for a given image of size H ×W . In a typical re-
ID scenario, feature vectors for the images with known identities
are computed and stored in a database (the gallery set). At run-
time, a feature vector for a query image is compared against each
of the gallery entries by computing a mathematical distance. Fi-
nally, computed distances are ranked, and the minimum-distance
entry in the gallery is considered to be the most likely match for
the given query. This process is illustrated in Fig. 1 for the vehicle
re-ID problem, and is used commonly in the literature with only
a few exceptions. As a result, re-ID literature relies heavily on
novel feature extraction techniques and metric-learning method-
ologies that aim to develop improved distance measures to yield
better ranking.

To the best of our knowledge, the problem of person re-
ID was first defined in 2005, where Zajdel et al. [4] used a
dynamic Bayesian network formulation with handcrafted color
features to enable re-ID. Similarly, handcrafted feature extrac-
tion methodologies were used extensively in other earlier stud-
ies. For instance, in [5], Gheissari et al. used spatio-temporal
over-segmentation to determine the viewpoint-invariant regions
in a given image. Then, color features with structural infor-
mation were computed and used as re-ID features. In [6],
authors introduced Symmetry-Driven Accumulation of Local
Features (SDALF). They extracted features by first applying
foreground-background segmentation on person bounding boxes.
Then, the authors detected salient regions by employing silhouette
partitioning on the foreground. Final features were computed us-
ing the color and texture features from each salient region. In [7],
the authors divided the input image into semantically meaningful
parts such as the top, the torso, legs, the left arm and the right
arm by applying a detector based on Histogram of Oriented Gra-
dients (HOG). Then, local position, color and gradient features
from each semantic region were extracted and concatenated to
form the final feature vector. Finally, the authors computed dis-
tances between feature vectors by employing a pyramidal match-
ing scheme to improve the attention of the method to small vi-
sual cues. In [8] and [9], scale-invariant feature transform (SIFT),
and its modification, the speeded-up robust features (SURF) were
used to extract features from person bounding boxes. Other pop-
ular feature extraction methods that have been proposed to solve
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the problem of person re-ID include maximally stable color re-
gions (MSCR) [10], center rectangular ring ratio occurrence de-
scriptor (CRRRO) [11], Schmid and Gabor texture features [12]
and Mean Riemannian Covariance Grid (MRCG) [13]. Besides
handcrafted properties, learned features have been extensively
used recently in person re-ID. Similar methods have been em-
ployed also for the vehicle re-ID problem. Thus, the related work
utilizing deep learning methods is covered in the context of vehi-
cle re-ID.
Vehicle Re-identification. In recent years, travel safety and effi-
ciency have become increasingly important, thus giving more sci-
entific attention to vehicle re-ID. Especially with the introduction
of large-scale vehicle re-ID datasets [14–17], deep learning based
methods have become feasible and have obtained state-of-the-art
performance. In general, the majority of studies are concerned
with modifications of popular CNN architectures and incorpora-
tion of auxiliary information into training and testing phases, in
order to extract rich and robust feature vectors from vehicle im-
ages. For example, in [18], authors have used a MobileNet-based
architecture and have reported results for various hard-triplet min-
ing strategies, feature normalization techniques and loss func-
tions. In [19], Liu et al. have proposed a multi-branch archi-
tecture with various feature pooling schemes on each branch to
capture both local and global features and to improve attention
to small appearance cues. Similarly, in [20], authors have devel-
oped a quadruple-pooling strategy that applies mean-pooling on
intermediate feature volumes towards horizontal, vertical, diago-
nal and anti-diagonal axes and concatenates them to compute rich
features. In [21], authors have incorporated auxiliary information
to re-ID in the form of spatio-temporal constraints with a sophis-
ticated probabilistic prediction of vehicle routes and travel times.

Various previous studies utilize vehicle viewpoint or pose
information, to enhance the performance of vehicle re-ID. For
instance, the authors of OIM [22] use auxiliary data to extract
orientation-invariant features. For this, Wang et al. train a land-
mark regression network that aims to extract the locations of 20
pre-defined keypoints in a given vehicle image, including the
wheels, lamps, headlights, license plates and logos. To train the
regression network, the authors annotated the VeRi-776 dataset
for these keypoints, as well as for the orientation labels of equally-
spaced 8 bins around vehicles. Following the extraction of the
keypoints, the OIM architecture uses them to generate orientation-
based region proposals and extracts local features for these pro-
posals. Finally, the ultimate feature vector for a given image is
computed by aggregating global and local features. In [23], au-
thors propose a 4-branch architecture, where one of the branches
is trained to classify the vehicle orientation as well as the vehicle
identity. Authors use the viewpoint annotations from [22] and de-
rive a multi-task mutual learning loss function to jointly optimize
network weights for identity and viewpoint classification tasks.
In [24], Khorramshahi et al. utilize detected keypoints in their
dual branch network. In their AAVER architecture, one of the
branches extracts global features using the ResNet-50 backbone,
while the second branch uses the estimated keypoint heatmaps
and vehicle orientations to extract local features around keypoints.

In line with the popular research directions in the field of ve-
hicle re-ID, our approach utilizes deep features from our novel
branched network architecture, which is enhanced by the aux-
iliary vehicle viewpoint information. Taking advantage of this

additional data, the approach offers efficient training and feature
refinement, leading to improved feature extraction and robustness
against a large variability of viewpoints.

Methodology

Our viewpoint-aware branched network (VABN) architec-
ture relies on accurate vehicle orientation labels to improve ro-
bustness against viewpoint variations. This section first investi-
gates the feasibility of extracting reliable orientation labels from
vehicle images, and then discusses the proposed architecture.

A. Orientation Classification

Because of the availability of large-scale classification
datasets, a substantial number of strong deep learning archi-
tectures with pre-trained weights are at our disposal. In order
to perform an up-to-date benchmark of existing classification
networks on the task of orientation classification, we selected
nine popular architectures of variable complexity: ResNet-18,
ResNet-34, ResNet-50, ResNet-101, ResNet-152 [25], ResNeXt-
50, ResNeXt-101 [26] and two MnasNet [27] models with depth
multipliers of 0.5 and 1.0. The ResNet architecture employs resid-
ual connections to alleviate the problem of vanishing gradients
and therefore, it enables deeper networks to be properly trained.
ResNeXt models are similar to ResNet, but they are constructed
by repeating a building block that aggregates a set of transfor-
mations with the same topology. On the other hand, MnasNet
is a light-weight architecture that is designed by a neural archi-
tecture search, which was jointly optimized for high performance
and low computational cost. In our experiments, the only mod-
ification to the original architectures lies in the size of the final
fully-connected layer, which is set to 8 for an 8-bin orientation
classification.

B. Viewpoint-Aware Branched Network

To show the applicability of viewpoint embedding for vehi-
cle re-ID, we develop a viewpoint-aware branched deep learning
architecture. Fig. 2 provides the general overview of our network.

The architecture follows the popular branched style [19,
22, 28] with a shared backbone for low-level feature generation.
Without loss of generality, we use a ResNet-50 backbone where
the first three residual blocks are shared among all branches, and
the remaining two blocks are replicated for each branch without
sharing parameters. In our architecture, each branch is respon-
sible for extracting features from vehicle images with a specific
viewpoint. In order to improve robustness against mis-classified
viewpoints and to increase the number of training samples per
branch, we group the cross-viewpoint classes (left-back, right-
front, etc.) to their nearest “front” or “back” viewpoint classes.
As a result, we obtain three branches corresponding to each of
the viewpoint groups. Similar to the ResNet architecture and fol-
lowing the backbone feature extraction, global average pooling
(GAP) is applied to the feature volumes, which collapses the spa-
tial dimensions. The global average pooled features are trained for
triplet loss with the batch-hard hard-triplet mining strategy [29],
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Figure 2. Viewpoint-Aware Branched Network (VABN): First, vehicle image crops are propagated forward through the parameter-shared ResNet-50 backbone.

After this, only one viewpoint-specific branch is selected according to the viewpoint of the input image to generate the final feature vector. The network is trained

using the triplet loss (Ltriplet) and the softmax cross-entropy loss (LXE) for identity classification (FC = Fully-connected, GAP = Global average pooling).
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where X denotes an input mini-batch, θ represents the learned
network weights, P and K are the number of different identities
and images per each identity in a mini-batch, m is the triplet loss
margin, and D denotes the distance calculation function. Follow-
ing the GAP, we apply a fully-connected layer that effectively
reduces the data size to the number of identities in the training
dataset. Resulting vectors are then trained with the softmax cross-
entropy loss function for identity classification. During testing,
the feature vector for a given vehicle image is obtained from the
output of the GAP layer from only one branch, which is the branch
that corresponds to the input viewpoint. Our architecture includes
branches strongly specialized to extract features from one view-
point only, which yields more descriptive features. However,
there are two main drawbacks of the viewpoint-guided branch-
ing. (1) Each branch is trained using only the training samples
that have the corresponding viewpoint, effectively reducing the
training samples per branch. (2) Randomly sampling each mini-
batch leads to an unbalanced number of samples per branch and
consequently reduces the efficiency of the batch-normalization
layers, leading to sub-optimal training. We employ two training
strategies to address both drawbacks by two measures. (A) Use
a two-step training strategy, where on top of the ImageNet [30]
pre-trained weights, we first train our ResNet-50 backbone on the
full dataset with the same per-branch settings of our VABN archi-
tecture. (B) Develop a viewpoint-aware mini-batching strategy, to
ensure that a sufficient number of samples per branch is available
for each training iteration.

In previous studies, selecting suitable triplets during re-ID
training was found to be of great importance [29]. Ideally, the
constructed triplets should be of medium difficulty, since too

easy or too difficult triplets do not contribute to and sometimes
harm the overall generalization performance. As a result, vari-
ous hard-triplet mining strategies emerged to ensure proper se-
lection of triplets. Following a similar reasoning and to allow
batch-normalization layers to work properly, we propose to use a
viewpoint-aware mini-batching strategy. The proposed strategy is
depicted in Fig. 3 for a batch size of 32 images. In the commonly
used batch-hard hard-triplet mining strategy [29], a mini-batch is
constructed by first randomly picking P identities and then select-
ing K images from each. Then, for each image in the mini-batch,
the network weights are updated only once, considering the hard-
est positive and negative samples. Here, we extend this idea with
viewpoint information. We start by picking randomly, one pri-
mary and one secondary viewpoint. Among the eligible identities
that include samples from both viewpoints, we randomly select
Pv identities. Then, we randomly adopt Kp and Ks samples from
each identity, where Kp and Ks are the number of samples having
the primary and secondary viewpoints, respectively. This sam-
pling strategy ensures that, (1) there is at least one different view-
point sample per identity, and (2) for every branch that is trained
during a training iteration, the minimum number of samples is at
least min(Ks,Kp) ·Pv, which can be further tuned to ensure proper
training.

Experiments
We have conducted our experiments on the VeRi-776

dataset [14, 31], using vehicle orientation annotations from [22].
For the orientation classification experiments, we use an 80-20
training-testing set split on identities. For the re-ID experiments,
we employ the readily available, disjoint query and gallery sets
of the VeRi-776 dataset and the ResNet-18 generated orientation
labels.

A. Discussion: Orientation Classification
We have benchmarked 9 popular models on their classifica-

tion performance of vehicle orientation and their related compu-
tational cost. We have trained the ImageNet pre-trained models
for 40 epochs with the Adam optimizer [32] and with a learning
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Figure 3. Illustration of an example viewpoint-aware mini-batch for Pv = 8, Kp = 3 and Ks = 1. Here, the randomly selected primary viewpoint is “front” and

secondary is “back”. The total batch size for this example is Pv · (Kp +Ks) = 32. In this mini-batch, the images with the primary and secondary viewpoints are

denoted by blue and green colors. (Color online)

rate of 2x10−4, which is reduced by a factor of ten at every 10th

epoch. We have resized the images first to a size of 256× 256
pixels, and used random cropping with an output size 224×224.
We have also used random erasing data augmentation [33]. The
obtained results are summarized in Table 1. It should be noted
that the tested models vary greatly in complexity, from 2.2 to 88.7
million parameters. Consequently, we observe a variability of in-
ference time between 13.1 and 82.6 ms executing on a Quadro
M1200 GPU.

Examining the results in Table 1, it is possible to conclude
that most of the models perform similarly. One outstanding ex-
ception is MnasNet with a depth multiplier of 0.5. The accuracy
of this model is around 4.5% lower than other architectures, which
can be explained by the fact that this model is by far the least
complex architecture with only 2.2 million parameters. For the
other models, the classification accuracy saturates around 94%
and only minor differences in performance occur. Results for the
ResNet models clearly show that, even for the smallest ResNet-
18 model, the accuracy reaches the saturation point, similar to
much more complex models such as ResNet-101 and ResNet-
152. Among all models, ResNeXt-50 attains top performance
with an overall accuracy of 94.87%. However, compared against
ResNet-18, this means an increased accuracy of only 0.27%, at the
expense of a significantly higher inference time and GPU mem-
ory usage. It should be noted that when examining the common
mis-classifications by the benchmarked models, we have encoun-
tered mis-labeled samples, which may explain the saturated per-
formance of the models. Overall, the results listed in Table 1 im-
ply that the current attainable performance and computational cost
of the orientation classification is sufficient for this data to be used
for improving re-ID, even in the case of strict real-time constraints
and low-cost hardware.

B. Discussion: VABN Performance
We have evaluated the performance of our VABN architec-

ture using the official evaluation protocol of the VeRi-776 dataset.
We have used the ImageNet pre-trained ResNet-50 backbone and
the 2-step training approach of first training the backbone alone
for triplet and cross-entropy losses for vehicle re-ID. We have
employed the AMSGrad-based [34] Adam optimizer and trained

Table 1: Performance of the benchmarked methods on the
VeRi-776 dataset for the orientation classification task. Mnas-
Net depth multipliers are given between parentheses.

Model # Parameters Infer. time (ms) Acc. (%)

ResNet-18 11,689,512 13.1 94.60
ResNet-34 21,797,672 23.0 94.80
ResNet-50 25,557,032 29.7 94.46
ResNet-101 44,549,160 56.2 94.68
ResNet-152 60,192,808 82.6 94.58
ResNeXt-50 25,028,904 33.9 94.87
ResNeXt-101 88,791,336 74.7 94.25
MnasNet (0.5) 2,220,824 22.1 89.99
MnasNet (1.0) 4,383,312 22.7 94.34

the model for 125 epochs with an initial learning rate of 2x10−4,
which was reduced by a factor of ten at epochs 75 and 100. For
the viewpoint-aware mini-batching, we have set Pv = 4, Kp = 3
and Ks = 1. During training, we have used random horizontal flip-
ping data augmentation and set the image size to 256×256 pixels.
During testing, we have exploited re-ranking with k-reciprocal
neighbors [35] with parameters k1 = 20, k2 = 6 and λ = 0.3.
Our experimental results are summarized in Table 2. Table 2
shows that when enabled by the viewpoint-aware mini-batching,
our VABN architecture achieves 93.2% rank-1 re-ID score with a
mean average precision (mAP) of 71.6%. These results imply a
performance increase of 2.8% rank-1 score and 1.3% mAP over
the ResNet-50 baseline with re-ranking, and 3.8% rank-1 score
and 2.2% mAP without re-ranking. Furthermore, the viewpoint-
aware mini-batching strategy improves the performance of our
VABN architecture by 4.4% rank-1 and 4.0% mAP. However, on
the other hand, the results for VABN without the viewpoint-aware
batching are lower compared to the ResNet-50 baseline. We con-
jecture that this performance loss is due to the sub-optimal train-
ing in the case of random batching, which does not guarantee a
sufficient amount of samples for the batch-normalization layers
in every training iteration. The results suggest that the use of a
viewpoint-aware mini-batching structure is an essential require-
ment to attain a high performance with our VABN architecture.
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Table 2: Re-ID performance comparison. From top to bottom,
the performance of ResNet-50 baseline, our VABN architecture
with 2-step training and our architecture with 2-step training
and viewpoint-aware mini-batching strategy.

Method mAP Rank-1 Rank-5

ResNet-50 Baseline 63.60 88.00 95.59
ResNet-50 Baseline + RR 70.27 90.45 93.21

VABN + 2ST 61.13 86.77 94.99
VABN + 2ST + RR 67.55 88.86 92.19

VABN + 2ST + Sampler 65.82 91.84 95.17
VABN + 2ST + Sampler + RR 71.56 93.21 94.70

Conclusion
This study presents a vehicle re-ID methodology that takes

advantage of the auxiliary viewpoint information to improve the
re-ID performance. The first contribution of this study is the feasi-
bility analysis of extracting accurate orientation classification la-
bels from given vehicle image crops. The performed benchmark
of nine up-to-date classification networks from literature with re-
spect to their accuracy, GPU memory usage and forward inference
time, reveals that it is possible to attain high-quality classification
accuracy even with less-demanding architectures such as ResNet-
18 and MnasNet (1.0). The required forward inference time de-
mands for a reasonable accuracy is found to be small enough to
even allow real-time operation on mobile platforms. Secondly,
we present our VABN architecture for the re-ID problem. The
VABN architecture utilizes viewpoint information along with raw
pixel values of vehicle images to extract rich and descriptive fea-
tures. Adopting branching according to the viewpoint observed
at the input, our network learns to extract highly-specialized,
viewpoint-specific features without increasing the forward infer-
ence time. Furthermore, the proposed architecture is framework-
independent, meaning that it can be applied to any backbone to
improve re-ID performance. Finally, we introduce the viewpoint-
aware mini-batching strategy. This technique enables efficient
training of the viewpoint-aware architecture and ensures that the
network is trained with triplets of desired difficulty. If the pro-
posed architecture is combined with the viewpoint-aware mini-
batching, the system outperforms the strong ResNet-50 baseline.
With respect to real-time operation and efficiency, we conjecture
that the results and methodology presented in this study is helpful
in bridging the gap between industrial applications and the use of
re-ID systems.
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[8] Kai Jüngling, Christoph Bodensteiner, and Michael Arens. Person
re-identification in multi-camera networks. In CVPR 2011 WORK-
SHOPS, pages 55–61. IEEE, 2011.

[9] Omar Hamdoun, Fabien Moutarde, Bogdan Stanciulescu, and Bruno
Steux. Interest points harvesting in video sequences for efficient per-
son identification. In The Eighth International Workshop on Visual
Surveillance-VS2008, 2008.

[10] Bingpeng Ma, Yu Su, and Frédéric Jurie. Local descriptors encoded
by fisher vectors for person re-identification. In European Confer-
ence on Computer Vision, pages 413–422. Springer, 2012.

[11] Wei-Shi Zheng, Shaogang Gong, and Tao Xiang. Associating
groups of people. In BMVC, volume 2, pages 1–11, 2009.

[12] Chunxiao Liu, Shaogang Gong, Chen Change Loy, and Xinggang
Lin. Person re-identification: What features are important? In Eu-
ropean Conference on Computer Vision, pages 391–401. Springer,
2012.

[13] Slawomir Bak, Etienne Corvee, François Bremond, and Monique
Thonnat. Multiple-shot human re-identification by mean rieman-
nian covariance grid. In 2011 8th IEEE International Conference
on Advanced Video and Signal Based Surveillance (AVSS), pages
179–184. IEEE, 2011.

[14] X. Liu, W. Liu, H. Ma, and H. Fu. Large-scale vehicle re-
identification in urban surveillance videos. In 2016 IEEE Interna-
tional Conference on Multimedia and Expo (ICME), pages 1–6, July
2016.

[15] X. Liu, W. Liu, T. Mei, and H. Ma. Provid: Progressive and mul-
timodal vehicle reidentification for large-scale urban surveillance.
IEEE Transactions on Multimedia, 20(3):645–658, March 2018.

[16] Milind Naphade, Zheng Tang, Ming-Ching Chang, David C Anas-
tasiu, Anuj Sharma, Rama Chellappa, Shuo Wang, Pranamesh
Chakraborty, Tingting Huang, Jenq-Neng Hwang, et al. The 2019 ai
city challenge. In CVPR Workshops, 2019.

[17] Jakub Sochor, Jakub Spanhel, and Adam Herout. Boxcars: Improv-
ing fine-grained recognition of vehicles using 3-d bounding boxes in
traffic surveillance. IEEE Transactions on Intelligent Transportation
Systems, 20(1):97–108, Jan 2019.

[18] Ratnesh Kuma, Edwin Weill, Farzin Aghdasi, and Parthasarathy Sri-
ram. Vehicle re-identification: an efficient baseline using triplet em-

234-6
IS&T International Symposium on Electronic Imaging 2021

Image Processing: Algorithms and Systems XIX



bedding. In 2019 International Joint Conference on Neural Net-
works (IJCNN), pages 1–9. IEEE, 2019.

[19] Xiaobin Liu, Shiliang Zhang, Qingming Huang, and Wen Gao.
Ram: a region-aware deep model for vehicle re-identification.
In 2018 IEEE International Conference on Multimedia and Expo
(ICME), pages 1–6. IEEE, 2018.

[20] Jianqing Zhu, Huanqiang Zeng, Jingchang Huang, Shengcai Liao,
Zhen Lei, Canhui Cai, and Lixin Zheng. Vehicle re-identification
using quadruple directional deep learning features. IEEE Transac-
tions on Intelligent Transportation Systems, 21(1):410–420, 2019.

[21] Kai Lv, Weijian Deng, Yunzhong Hou, Heming Du, Hao Sheng,
Jianbin Jiao, and Liang Zheng. Vehicle reidentification with the lo-
cation and time stamp. In Proc. CVPR Workshops, 2019.

[22] Zhongdao Wang, Luming Tang, Xihui Liu, Zhuliang Yao, Shuai Yi,
Jing Shao, Junjie Yan, Shengjin Wang, Hongsheng Li, and Xiaogang
Wang. Orientation invariant feature embedding and spatial tempo-
ral regularization for vehicle re-identification. In Proceedings of
the IEEE International Conference on Computer Vision, pages 379–
387, 2017.

[23] Aytac Kanaci, Minxian Li, Shaogang Gong, and Georgia Raja-
manoharan. Multi-task mutual learning for vehicle re-identification.
In The IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR) Workshops, June 2019.

[24] Pirazh Khorramshahi, Amit Kumar, Neehar Peri, Sai Saketh Ramb-
hatla, Jun-Cheng Chen, and Rama Chellappa. A dual-path model
with adaptive attention for vehicle re-identification, 2019.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–
778, 2016.

[26] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming
He. Aggregated residual transformations for deep neural networks.
In Proceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 1492–1500, 2017.

[27] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark
Sandler, Andrew Howard, and Quoc V Le. Mnasnet: Platform-
aware neural architecture search for mobile. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pages 2820–2828, 2019.

[28] Hao Chen, Benoit Lagadec, and Francois Bremond. Partition and re-
union: A two-branch neural network for vehicle re-identification. In
The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, June 2019.

[29] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In de-
fense of the triplet loss for person re-identification. arXiv preprint
arXiv:1703.07737, 2017.

[30] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-
Fei. Imagenet: A large-scale hierarchical image database. In 2009
IEEE conference on computer vision and pattern recognition, pages
248–255. Ieee, 2009.

[31] Xinchen Liu, Wu Liu, Tao Mei, and Huadong Ma. A deep learning-
based approach to progressive vehicle re-identification for urban
surveillance. In European conference on computer vision, pages
869–884. Springer, 2016.

[32] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization, 2014.

[33] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang.
Random erasing data augmentation. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages 13001–

13008, 2020.
[34] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the conver-

gence of adam and beyond. arXiv preprint arXiv:1904.09237, 2019.
[35] Zhun Zhong, Liang Zheng, Donglin Cao, and Shaozi Li. Re-ranking

person re-identification with k-reciprocal encoding. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1318–1327, 2017.

Author Biography
Oliver Kocsis holds a Masters degree (2020) from Eindhoven Uni-

versity of Technology, where he conducted research in the Vehicle Re-ID
field for his thesis work. Since then he is working at Silicon Labs in the
field of Embedded Systems.

Tunc Alkanat received the B.S. and M.S. degrees in electrical and
electronics engineering from Middle East Technical University, Ankara,
Turkey, in 2013 and 2016, respectively. He is currently working toward
the Ph.D. degree at the Video Coding and Architectures Group, Eindhoven
University of Technology, Eindhoven, The Netherlands. His research in-
terests include image retrieval, anomaly detection, computer vision for
surveillance and computational spectral imaging.

Egor Bondarev obtained his PhD degree in the Computer Science
Department at TU/e, in research on performance predictions of real-time
component-based systems on multiprocessor architectures. He is an As-
sistant Professor at the Video Coding and Architectures group, TU/e, fo-
cusing on sensor fusion, smart surveillance and 3D reconstruction. He
has written and co-authored over 50 publications on real-time computer
vision and image/3D processing algorithms. He is involved in large inter-
national surveillance projects like APPS and PS-CRIMSON.

Peter H.N. de With is Full Professor of the Video Coding and Archi-
tectures group in the Department of Electrical Engineering at Eindhoven
University of Technology. He worked at various companies and was active
as senior system architect, VP video technology, and business consultant.
He is an IEEE Fellow and member of the Royal Holland Society of Aca-
demic Sciences and Humanities, has (co-)authored over 600 papers on
video coding, analysis, architectures, and 3D processing and has received
multiple papers awards. He has served as a program committee member
of various IEEE conferences and holds some 30 patents.

IS&T International Symposium on Electronic Imaging 2021
Image Processing: Algorithms and Systems XIX 234-7



• SHORT COURSES • EXHIBITS • DEMONSTRATION SESSION • PLENARY TALKS •
• INTERACTIVE PAPER SESSION • SPECIAL EVENTS • TECHNICAL SESSIONS •

Electronic Imaging 
IS&T International Symposium on

SCIENCE AND TECHNOLOGY

Imaging across applications . . .  Where industry and academia meet!

JOIN US AT THE NEXT EI!

www.electronicimaging.org
imaging.org


