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Abstract 

Segmentation is usually performed in the spatial domain and 

is likely hindered by similar intensity, intensity inhomogeneity, and 

partial volume effect. In this article, a visual-selection method is 
proposed to carry out segmentation in the intensity space such that 

the aforementioned difficulties are alleviated and better results can 

be produced. The proposed procedure utilizes volume rendering to 

explore the input data and builds a transfer function, encoding the 
intensity distribution of the target. Then, by using this transfer 

function and image processing techniques, a region of interest 

(ROI) is constructed in the intensity field. At the following stage, a 

texture-based region growing computation is conducted to extract 
the target from the ROI. Experiments show that the proposed 

method produces high quality results for a phantom which is 

composed of plates with similar intensities and textures. It also 

out-performs a traditional segmentation system in separating 

organs and tissues from a torso CT-scan data set. 

Introduction  
Segmentation is vital in medical image data processing. 

Tissue and organ models, segmented from 3D medical image data, 

are useful for health assessment, injury examination, surgical 

planning, and artificial implant manufacturing. Segmentation can 
be carried out in automatic and semi-automatic manners, 

depending on the degree of human involvement [1]. In an 

automatic segmentation process, the users give the computer 

program initial information at the beginning stage. Then, the 
program relies on predefined mathematical models, built-in pattern 

classifiers, and embedded anatomic rules to extract the target [2, 3, 

4].  In a semi-automatic segmentation procedure, the users may 

need to create a region of interest (ROI) and place seeds inside the 
ROI before the computer program can start to extract the target. 

During the process, the users might have to guide searching 

directions, set thresholds, and make decisions for the computer 

program such that high-quality results could be produced [5, 6, 7]. 
Intuitively, automatic segmentation methods are more 

convenient than semi-automatic approaches. However, some 

intrinsic difficulties hinder segmentation processes, for examples, 

intensity overlapping, partial volume effects, and intensity 

inhomogeneity [1, 8]. When encountering these obstacles, 

obtaining feasible parameters for the mathematic models, training 

the recognizers to detect features, and acquiring precise anatomic 

rules for the classifiers pose challenges to the users and the 
automatic segmentation programs. On the other hand, in semi-

segmentation procedures, the users can direct the computations on 

the fly based on their anatomic knowledge and experiences and the 

intermediate results. The segmented results are usually superior to 
those produced by automatic algorithms [2]. Hence, we prefer 

semi-automatic segmentation methods to automatic ones. 

When conducting a semi-automatic segmentation task, any 

prior knowledge about the target is beneficial to the model 
extraction computation. In the proposed segmentation pipeline, we 

utilize a visual-selection method to extract prior knowledge about 

the target, including the intensity distribution, position, size, and 

shape of the target as well as the nearby structures. These data 
uncover the geometric and intensity features hidden in the data and 

help us to make feasible decisions in the subsequent computations. 

Volume rendering is a powerful technique for exploring 3D 

medical image data [9]. We utilize volume rendering to preprocess 
the input data and generate images of the target and a transfer 

function, encoding the intensity distribution of the target. The 

transfer function helps us to classify voxels, remove unwanted 

parts from the input data, and create a ROI.  Consequently, 
intensity overlapping and geometrical intertwining between the 

target and other objects can be reduced.  

There are many efficient methods for segmenting volume data, 

for example thresholding, classification [10], morphological 
operations [11], and region growing [12]. Individually, these 

techniques are effective for extracting certain types of objects 

under specified conditions but may fail to generate good results in 

other situations. Our segmentation pipeline selectively combines 
these procedures to extract targets such that tissues and organs 

possessing different characteristics  can be successfully segmented. 

Overview 
The flowchart of the proposed method is illustrated in Figure 

1. The entire pipeline is composed of three stages: The aim of the 

first stage is to explore the input data and generate the transfer 

function and images of the target. At the second stage, the ROI of 
the target is constructed. The major computations include the Otsu 

classification [13] and morphological operations.  At the third 

stage, the system extracts the target from the ROI by using a 

Seeded Region Growing (SRG) procedure. 
We have performed several experiments to verify and analyze 

the capability of the proposed segmentation pipeline. In the 

experiments, we use the system to extract structures with similar 

intensities and textures from a phantom to study how well the 
system can do to alleviate these hazards. In other tests, the 

proposed procedure is utilized to segment organs and tissues from 

a complex torso CT-scan data. These tests are carried out to 

evaluate the performance of the proposed method under the 
influences of intensity overlapping, partial volume effects, and 

intensity inhomogeneity. Furthermore, the proposed segmentation 

pipeline is adopted to assist layered manufacturing in another set of 

experiments. We employ the system to extract targets from volume 
data and fabricate the physical models by using 3D printers. All 

these experiments are to be presented in this article. 

 Preliminary ROI Creation  
Before starting the segmentation task, we preprocess the input 

data to uncover the target and its surroundings. This procedure 

produces 3D images of the target and a transfer function encoding 
the intensity distribution of the target. The 3D images help us to 

plant seeds for the region growing segmentation computation. The 

transfer function offers information for classifying the foreground 

and background voxels and building a preliminary ROI. 
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Figure 1. Flowchart of the segmentation pipeline, using visual selection and 

region growing. 

 

Figure 2. GUI of the volume rendering program, right: volume rendering image, 
left top: intensity histogram and the transfer function, left bottom: Otsu 
classification result. 

In the proposed segmentation method, we use volume 

rendering [9] to explore the input data and search for the target.  

The data exploration procedure is conducted in an interactive way. 

The graphical user interface (GUI) of this program is shown in 
Figure 2. This GUI displays the histogram of the intensity field and 

offers tool-kits for the users to define four splines. These splines 

constitute a transfer function, which converts voxels’ intensities 
into colors and opacities.  We call these splines the R-, G-, B-, and 
A-spline.  

We assign colors to voxels to differentiate structures by using 

the RGB-splines and give opacities to voxels via the A-spline. The 

voxels, potentially belonging to the target or being helpful to high-
light the target, are given non-zero-opacities while the remaining 

voxels are associated with zero opacities. Once the transfer 

function has been defined, the input data is shaded and the 

resultant volume rendering image is shown in the right part of the 
GUI. If the results are satisfied, we stop this visual selection 

process and output the transfer function and volume rendering 

images. Otherwise, we adjust the RGBA splines via the GUI and 

repeat the process again.  
 At the first step, we collect voxels possessing non-zero 

opacities and form a preliminary ROI. In this article, this 

preprocessing computation is called the visual-selection since the 

ROI is produced via human visual-perception of the data.  

A good ROI should tightly enclose the target such that the 
searching space is narrowed and the segmentation computation is 

thus sped-up [14]. Traditionally, ROI construction is carried out in 

the data space and assisted by users or predefined rules. The 

related techniques are well-developed and hard to improve. In this 
research, we offer an alternative way and create the ROI in the 

opacity field. The process is guided by the transfer function, which 

has been generated in the visual-selection process. The resultant 

ROI tightly surrounds the target in the intensity domain and 
reduces the influences of the nearby background voxels with 

similar intensities. It confines the target in the intensity space. 

An example of the visual-selection process is shown in Figure 

3. In this example, the input data is a torso CT-scan data and the 
target is the right lung. An image of the raw data is displayed in 

part (a). The target is totally obscured by other structures. We can’t 
locate it, let alone extracting it. After performing the visual-section 

process, we successfully build a transfer function which filters out 
many irrelevant voxels and uncovers the target from the data set. 

One of the resultant images is shown in part (b). In this image, the 

two lungs emerge from the input data. Their locations and shapes 

are very comprehensible, though further computations are needed 
to extract the target. 

 

 

Figure 3. The intermediate and final results of the segmentation process. 

ROI Improvement 
In the visual selection process, the transfer function gives 

relatively higher opacities to the target’s voxels to high-light the 

target in the resultant images. However, the transfer function may 

also assign non-zero opacities to other voxels to manifest the 
target’s position, range, and orientation. These voxels enhance our 

cognition about the target but should not be included in the ROI. 

Thus, we establish a threshold in the opacity field to exclude more 

irrelevant voxels. 
At first, we quantize the spectrum of the opacity field into k 

levels and create a table of k entries. In the i-th entry of the table, 

we record the number of voxels whose opacities are at the i-th 

level. Assume this number is Mi. Then, we divide Mi by M, the 
total number of voxels in the input data: 

.i
i

M
p

M
=

                                                                            (1) 
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Consequently, this table stores the probability density 
function of the opacity field. Then, we carry out the Otsu method 

presented in [13] to classify the opacity field. In the computation, 

we search for an opacity level t, which maximizes the inter-class 

variance defined as follows 
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The resultant level t splits the opacity field into two classes, as 

shown in the low-left part of Figure 2. (In this image, the gray bars 

show the probability density function of the opacity levels and the 
red bar represents the computed t.) Then, based on t, we keep those 

voxels whose opacities are greater than or equal to t and remove 

other voxels from the ROI.  

Part (c) of Figure 3 shows a volume rendering image of the 
CT-scan data after undertaking the Otsu classification. Comparing 

part (b) and (c), it is obvious that more irrelevant voxels have been 

removed and the lungs are better revealed.  

Morphological Operations 
After undertaking the Otsu classification, the ROI may 

contain small dangling parts, narrow gapes, and tiny holes. To 
remove these noises, we selectively apply closing, opening, and 

connected component labelling operations [14] on the ROI.  The 

closing operation dilates the ROI first and then erodes it. This 

operator fills small gaps and holes in the ROI. The opening 
operator performs an erosion followed by a dilation. It removes 

small and thin structures from the ROI. We monitor the filtered 

results by using the volume visualization module and selectively 

perform opening or closing. Excessive opening or closing may 
damage the ROI. To undo such mistakes, our system saves a copy 

of the ROI in a disk file before each operation. Hence, we can 

always recover the ROI if a morphological calculation degrades its 

quality. 
After the above filtering step, we conduct connected 

component labelling to divide the ROI voxels into groups. Then, 

we count the number of voxels in each group.  If the cardinality of 
a group is too small, all its voxels are converted into background 

voxels and removed from the ROI. Therefore, small dangling parts 

are deleted. 

The ROI, shown in part (c) of Figure 3, contains some 
dangling parts and thin structures. We perform an opening 

operation to reduce these noises. The results are displayed in part 

(d) of the same figure. In the following step, we carry out 

connected component labelling to group the foreground voxels and 
delete small clusters. As part (e) shows, the ROI is greatly 

improved after this operation. It contains five separate clusters, 
shaded in different colors.  

Textured-based Seeded Region Growing 
Once the ROI has been constructed, a Seeded Region 

Growing (SRG) process [15] is triggered to extract the target. At 

first, one voxel is selected in the ROI by referring the volume 

rendering images produced in the visual-selection and ROI 
creation processes. This seed voxel is kept in the target set, which 

is initially empty. Then, all other ROI voxels, which are connected 

to the seed, are examined to extract the target. For each of these 

ROI voxels, the similarity between it and the seed is evaluated. If 
the similarity exceeds a predefined threshold, this voxel is added to 

the target set. Otherwise, it is converted into a background voxel. 

 

 

Figure 4. Directional variograms of a voxel (shaded in gray color), left: the 

bounding box, right: the four directional variograms of the middle layer. 

Voxel Similarity Measurement 
Similarity between voxels is measured by their 

semivariograms. The algorithm presented in [16,17] are revised in 

this research to compute voxels’ semivariograms.  
Before computing the semivariogram of a voxel, a 3x3x3 

bounding box (BB) centered at this voxel is first created as shown 

in the left part of Figure 4. This BB contains three layers of 3x3 

squares. Then, four directional variograms, in 0, 45, 90, and 135 
degrees and at distance 1, are computed at the middle layer, as 

shown in the right part of Figure 4. The directional variogram in 

the direction θ is calculated by 

( )
1

1
( ) ( ) ( ) ,

N

i i

i

I x I x h
N

  
=

= − +
                        (4) 

where N is the number of voxels having a neighbor in the direction 

θ within the box, and I(xi) represents the intensity of the voxel 

located at position xi. The vector h is an offset vector decided by θ 

as follows 

   

   

(0 ) 1 0 0 , (45 ) 1 1 0 ,

(90 ) 0 1 0 , (135 ) 1 1 0 .

h h

h h

 = =

 = = −
         (5) 

These four directional variograms are combined to produce 
the semivariogram of the middle layer: 

(0 ') (90') (45') (135')
log .

(90') (0 ') (135') (45')
mid

   


   

 
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Then, the semivariograms of the upper and lower layers, γtop and 
γlow, are evaluated by using the same procedure. Finally, the 

semivariogram of the voxel is set to the average of the three 

semivariograms: 

( ) / 3.low mid top   = + +
                                          (7) 

In part (f) of Figure 3, the segmentation results are shown. 

The segmented lung is in good quality and free from the 

surroundings. 

Layered Manufacturing 
When the target has been segmented, we show its outer 

appearance and inter structures by using volume rendering. The 

resultant images are useful in many medical applications, including 

pathological assessment and surgical planning. As layered 

manufacturing technologies have made significant progressions, 
the physical model of the segmented target can be fabricated by 

using a 3D printer. The printed result is a real model, and the users 

can touch, measure, and examine it in various aspects. Thus, it is a 

better media for surgical planning and pathologic assessment than 
the volume rendering images. In some medical applications, the 

printed model can serve as an artificial implant in a surgery too. 

However, most assistant software of layered manufacturing 

can only process polygonal models. They are unable to generate G-
codes for volume models. Hence, the results produced by our 

segmentation pipeline cannot be manufactured by using 3D 

printers. We can transform the results into polygonal 

representations. Nonetheless, this format transformation may 
produce extra geometric errors. In recent researches, 3D printing 

assistant software have been upgraded and are able to generate G-

codes for volume models [18, 19]. Thus, the format transformation 

is unnecessary. The segmented result can be directly manufactured 
by 3D printers. 

Test Results 
We implement the proposed segmentation pipeline by using 

C-language and OpenGL libraries. The volume rendering module 

is accelerated by the GPU so that the visual-selection and ROI 

construction processes can be monitored and adjusted in real-time. 
To verify the effectiveness of our system, three sets of experiments 

have been conducted. The results and analysis are presented in this 

section. 

Test Data Sets and Evaluation Methodology 
Several data sets are employed in the experiments. The first 

one is a Credence Cartridge Radiomics (CCR) phantom [20]. It is a 

man-made multi-layer structure, including a plaster layer (layer 1), 
a shredded rubber particle layer (layer 2), an acrylic layer (layer 3), 

two cork layers (layers 4 and 5), and one sycamore wood layer 

(layer 6). These layers are shown in Figure 5. This phantom is used 

to measure the accuracy of the proposed segmentation method. 
Assuming that X and Y represent the ground truths and the 

segmented results, the accuracy of the segmentation process is 

calculated by 

.
X Y

Accuracy
Y


=

                                                    (8) 

The similarity between the ground truths and the results is 
measured by using the Sørensen-Dice Coefficient (SDC) [21], 

defined as follows: 

2
.

X Y
SDC

X Y
=

+
                                                        (9) 

The ||.|| operator computes the cardinality of a set.  The two metrics 

defined in Equation (8) and (9) are 1, if the segmented results 

match the ground truths perfectly. On the other hand, if X and Y are 
totally exclusive, these metrics will be 0. 

The second data set is a CT-scan data of a human torso, 

containing two lungs, a spine, ribs, a heart, a liver, and other 

organs and tissues. The input data are stored in a DICOM file [22]. 
Intensities of these organs and tissues are measured by Hounsfield 

units (HUs) [23]. Besides our system, we also use the segmentation 

software ITK-SNAP [24] to extract targets from the CT-scan data. 
Since this software supports semi-automatic segmentation and its 

operational procedure is similar to ours, a fair comparison can be 

made. However, the kernel segmentation methods of these two 

systems are different. Our program employs the SRG method to 
generate targets while ITK-SNAP uses a SNAKE algorithm [25] to 

extract objects. 

The third data set is the Bonsai CT-scan data, shown in Figure 

2. We segment the tree from the data set and fabricate the physical 
object by using a 3D printer. Conventional 3D printing takes 

polygonal representations as input. However, the tree contains a lot 

of fine structures. It is hard to create a polygonal representation for 

the segmented object. Instead, we employ a 3D printing software, 
which is capable of directly converting volume models into G-

codes. Thus, the segmented model can be physically built. 

Segmentation Accuracy 
In the first set of experiments, we segment the six plates 

hidden in the phantom by using our program. The segmented 

plates are displayed in Figure 5. These images reveal their shapes 

and surface patterns. The porosities and textures of these plates are 
well preserved in the segmentation process. 

 

 

Figure 5. The six layers extracted from the phantom by using our program. 

The accuracy and SDC are estimated based on Equation (8) 
and (9). These metrics are recorded in Table 1. Based on the data 

of Table 1, we can see that the accuracy and SDC metrics of the 

segmented plates are high, except the accuracy of plate 4 and the 

SDC of plate 5. These two plates are adjacent and made with the 
same material. The visual selection module cannot create clean 

ROIs for them. By examining Figure 5, we find that the 

granularities of holes and porous inside them are a little different, 

and the SRG procedure should be able to separate them. 

Nonetheless, the semivariograms of the interface voxels between 

these two plates are almost the same. When extracting plate 4, 

some voxels belonging to plate 5 are included. Thus, the accuracy 

of the segmentation is reduced. 
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Table 1. Accuracy of the proposed segmentation procedure 

Layer 
Ground 
Truth X 

 

Our 
results 

Y 

 
𝑋 ∩ 𝑌 

 
DSC  Accuracy 

1 
2 
3 
4 
5 
6 

639,350 
612,876 
607,509 
597,463 
628,167 
688,154 

599,781 
605,046 
559,173 
631,398 
534,025 
686,084 

596,036 
586,889 
559,164 
586,646 
530,506 
672,871 

0.96202 
0.96375 
0.95855 
0.95478 
0.91234 
0.97926 

0.99376 
0.96999 
0.99998 
0.92912 
0.99341 
0.98074 

 

CT-scan Data Segmentation 
In another set of experiments, we use our program to extract 

three targets from the CT-scan data. Since the ground truths of 

these targets are not available to us, we utilize the ITK-SNAP 

program to segment the same targets and visually compare the 
results. The segmented objects include the lungs, spine (with ribs), 

and liver. The models generated by our system are volume models. 

They are displayed by using volume rendering. On the other hand, 

ITK-SNAP produces surface models.  Hence, the results from 
ITK-SNAP are shaded by using surface rendering. In each test, the 

extracted object is portrait in four different view angles to reveal 

its outer-shape. The images of the segmented models are shown in 
Figure 6, 7, and 8. 

In Figure 6, the lungs segmented by both systems are shown. 

Images of the results produced by ITK-SNAP are contained in the 

lower row while images of our results are presented in the upper 
row. Comparing these images, we find that the targets created by 

both systems are in good quality. Since the intensity distribution of 

the lungs does not overlap with the surrounding structures and 

occupies a narrow range in the HU scale, the segmentation 
processes do not suffer from overlapping intensity and intensity 

inhomogeneity problems. Thus, both the systems produce decent 

results, though our resultant model is smoother. 

The segmented spines are illustrated in Figure 7. The models 
created by ITK-SNAP and our program are shown in the lower and 

upper rows respectively. The intensities of the spine (and ribs) are 

overlapped with those of the heart and arteries in the HU scale. It is 

difficult to separate the spine from the arteries based on voxels’ 
intensities. The arteries and heart are included in the model 

produced by ITK-SNAP. In our system, the opening and 

connected-component labelling operators successfully separate the 

spine from the heart and arteries. Therefore, our results do not 
contain the heart and arteries. 

The segmented liver is displayed in the images of Figure 8. 

The intensities of the liver overlap with the intensities of the 

surrounding structures. It is difficult to separate the liver from the 
backgrounds based on intensity contrast. Furthermore, the liver 

intertwines with the surrounding structures. Thus, it is hard to 

produce a clean ROI in the spatial domain. However, our system 

creates the ROI in the intensity space and excludes more 
surrounding structures than ITK-SNAP. Therefore, the liver 

produced by our system is much cleaner. 

 

Figure 6. Segmented lungs, upper row: by our program, lower row: by ITK-
SNAP. 

 

Figure 7. Segmented spine, upper row: by our program, lower row: by ITK-
SNAP. 

 

Figure 8. Segmented liver, upper row: by our program, lower row: by ITK-
SNAP. 

 

Figure 9. Physical models produced by layered manufacturing.  

Physical Model Manufacturing 
Besides evaluating segmented objects by using volume 

rendering, we fabricate them by using 3D printers. The resultant 

physical models can be used in surgical planning, pathological 
assessment, and artificial implant surgery [26]. 

We extract the spline model, the lung model, and the tree 

model by using the proposed segmentation pipeline. Then, the 

resultant models are sent to a 3D printing software to generate G-
codes. At the following step, the physical models are built by using 

a Fused Deposition Modelling (FDM) 3D printer. The images of 
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the printed results are shown in Figure 9. Comparing the physical 
models and the volume rendering images, we found that the 

physical models retain many details, which are filtered out by the 

volume rendering process. The physical models improve our 

cognition about these targets. This phenomenon is especially 
obvious in the tree model. Thus, segmentation augmented with 

layered manufacturing enhance the usability of medical image data. 

Conclusion 
The proposed pipeline utilizes volume rendering to explore 

the input data. Thus, the density distribution, position, shape, and 

size of the target can be revealed before the segmentation process 
starts, and we can make better decisions in the following 

computations by referring the resultant images. The Otsu 

classification, performed in the opacity space, and the 

morphological operators eliminate noises and delete unwanted 
background voxels such that geometrical and intensity intertwining 

between objects are alleviated in the ROI. Furthermore, the 

pipeline employs the texture-based SRG method to annex 

candidate voxels into the target set, and hence structures 
possessing similar intensities can be separated. Test results reveal 

that the proposed segmentation method accurately splits adjacent 

planar structures with similar intensities. Its performance may 

slightly decrease if these segmenting structures are not only 
adjacent but also having similar textures and intensities. In another 

test, we utilize the ITK-SNAP program and ours to segment tissues 

and organs from a CT-scan data. The results conclude that our 

program generates better models in all the tests than ITK-SNAP. 
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