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Abstract
Expert advice and conventional wisdom say that important

information within a statistical graph should be more salient than
the other components. If readers are able to find relevant infor-
mation quickly, in theory, they should perform better on corre-
sponding response tasks. To our knowledge, this premise has not
been thoroughly tested. We designed two types of salient cues
to draw attention to task-relevant information within statistical
graphs. One type primarily relied on text labels and the other
on color highlights. The utility of these manipulations was as-
sessed with groups of questions that varied from easy to hard. We
found main effects from the use of our salient cues. Error and
response time were reduced, and the portion of eye fixations near
the key information increased. An interaction between the cues
and the difficulty of the questions was also observed. In addition,
participants were given a baseline skills test, and we report the
corresponding effects. We discuss our experimental design, our
results, and implications for future work with salience in statisti-
cal graphs.
Keywords: Charts, Diagrams, and Plots; Perception; Cognition;
Salient Cues; Highlights; Human-Subjects Quantitative Studies

Introduction
Saliency is widely considered useful for emphasizing to

graph readers the particular message that a graph’s author wishes
to convey. In this work, we interpret “salient” to mean that an
element has a value in some aspect of its appearance (e.g. color,
intensity, contrast, shape) that is unique among the elements of the
graph. This, in theory, should attract the human perceptual sys-
tem. There is ample evidence that salient cues in fact draw atten-
tion to graph components. However, there is little direct evidence
that cues improve or speed up comprehension of the message.

The Value of Salience in Graphs
Statistical graphs are widely used; thus, proper use of

salience in their presentation is described in the literature of multi-
ple disciplines. In perceptual psychology, Kosslyn [15] states The
Principle of Salience (PoS) in his eight Psychological Principles
of Effective Graphs:

The most visually striking aspects of a display will
draw attention to them (as did this bold type), and
hence they should signal the most important informa-
tion. All visual properties are relative, and thus what
counts as “visually striking” depends on the properties
of the display as a whole.

This manifests itself in more specific guidelines; here are several
examples (all quoted from [15]). “Use more salient labels to la-
bel more general components of the display.” “The label for the

display as a whole should be more salient than the labels for any
parts.” “Only 25% of wedges in a pie graph should be exploded
(if too many are emphasized, the PoS is being violated).” This
advice (of not emphasizing too many items) is repeated multiple
times. He warns that a bar graph should not vary the salience of
individual bars arbitrarily. He gives an example line graph where
salience is varied intentionally to draw attention to one line out
of three. He recommends to ensure that error bars do not make
less stable points more salient than the stable ones (because error
bars will be longer when the point is less certain). He advises
to ensure that best-fit lines in scatterplots are discriminable and
more salient than the points. In discussing color, Kosslyn advises
to “make the most important content the most salient.” He notes
that having every Nth gridline (e.g. 10th) stand out can be help-
ful, but no gridlines (emphasized or not) should obscure the data.
Pinker [25] arrives at similar advice by starting with the reader’s
goal. A goal invokes graph schema and gestalt processes, wherein
salience will determine the likelihood of encoding a graph feature.
Encoded features are used to build an interpretation of the infor-
mation conveyed by the graph; thus, salient items are more likely
to influence the interpretation of the graph.

In cartography, Bertin [2] recommends widely-cited guide-
lines for presentation of graphics. Hegarty et al. [11] study maps
and draw the salience principle from Bertin. Their formulation
suggests that visual attributes such as color or line orientation
should be ordered so that important information is visually salient
compared to contextual information.

In education, McCrudden and Rapp [22] define selection as
focusing or directing attention to information in an instructional
message. They note that

[I]f attention is not allocated toward important infor-
mation, it will not be consciously processed. Similarly,
if attention is allocated toward interesting but unimpor-
tant information, those contents can disrupt the coher-
ence of the main instructional message.

They define signaling as the use of cues to increase the salience of
important information. In the work presented here, we focus on
the use of two such choices, text labels and color, for this purpose.

Our Contribution
We study the efficacy of making task-relevant information

in a statistical graph salient via the use of text labels, a common
but understudied practice. We study a broader range of statistical
graphs than we generally see in the literature, and we explicitly
evaluate different levels of task difficulty. Our work is similar to
existing studies on the role of salience in visual information tasks
in that we use color and intensity manipulations, and we study
expertise as a possible interacting factor.
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Despite the above and many similar statements in the liter-
ature, we see a surprising lack of direct evidence for improved
understanding of statistical graphs in the presence of salient cues.
If salient cues help convey the message a graph’s author intends
for the reader to grasp, then we should be able to gather evidence
that supports this. We undertook to design and conduct an exper-
iment to provide direct evidence. We first describe some related
work, then detail our experimental design. We present statistical
results and discuss the interpretation of these results, along with
some potential limitations and extensions to our work.

Related Work
As evidenced by the passages above, there is a widely-held

belief in the value of salience in various visualization contexts. In
this section, we start our review of related work with user studies
and then consider applicable results from eye tracking in visual-
ization. We found only a few user studies in the literature, and
they are from diverse application contexts. Statistical graphs are
a small portion of the related work.

Graphs and Maps
Carenini et al. [4] selected four interventions for bar graphs

(drawing on [23]): bolding (borders around bars), de-emphasizing
(desaturation), adding reference lines, and adding connected ar-
rows. They studied these in an experiment similar to ours. The
first two interventions helped identify individual bars; the other
two assisted in identifying bars to be compared. They also var-
ied the onset of the intervention; it was either present at the start
of a trial, or it was added to the graph after the graph and then
the question appeared in sequence. They also measured users’
perceptual speed, visual working memory, verbal working mem-
ory, (self-reported) expertise, and locus of control. They used two
classes of task: a task to retrieve a value and compare to a group
average, and a task to aggregate comparison results. They found
that more complex tasks took longer and induced more errors,
and delayed onset of the cue induced longer response times. They
found that the de-emphasis intervention was best, with bolding
and connected arrow next; reference line was no better (statis-
tically) than no intervention. Those with high perceptual speed
performed better; those with low verbal working memory per-
formed more poorly. Toker and Conati [27] later analyzed eye
tracking data from this experiment. They found that those with
low perceptual speed spent more time looking at labels. Those
with low visual working memory spent more time looking at the
answer choices and button to submit the answer. Those with low
verbal working memory needed more time, as they lingered over
the legend and question and other textual elements of the graph.
Although there is some overlap with the cues we used, we study
more diverse cues, graphs, and tasks.

Bera [1] examined two ways colors were used improperly
in bar graphs. He defined overuse of colors as attracting atten-
tion through changes in color between adjacent bars when these
changes carried no meaning (a violation of Kosslyn’s PoS). He
defined misuse of colors as attracting attention through color con-
trast to areas that are not relevant to a task. Both poor designs
increased the number and duration of fixations on graph compo-
nents not relevant to the task. They also delayed the time to the
first fixation on the relevant components. While he noted that
these fixation patterns would induce greater cognitive effort, he

did not find that the increased effort affected performance. Based
on his data, we believe Bera used a minimum duration to identify
fixations of at least 200 ms. We set a threshold of 100 ms; this
minimum has shown to increase the accounted portion of time
when viewing a complex geometric stimulus [21]. We also stud-
ied types of statistical graphs that Bera did not.

Klippel et al. [13] asked observers to rate subjective sim-
ilarity of star plot glyphs. They found that the introduction of
color reduced the influence of shape on the classifications. With-
out the color, a salient shape characteristic (“has one spike”) was
the dominant classification criterion. With the color, more par-
ticipants classified shapes with “one spike” into different classes.
Star plots are an advanced type of statistical graph. We focus our
study on mostly simpler graphs, a range of reading tasks, and the
use of text labels as well as color.

Madsen et al. [19] had participants answer physics problems
using diagrams and unlabeled graphs. People who answered cor-
rectly spent a higher percentage of time looking at the relevant
areas of the diagram or graph. However, in a larger follow-up
study [20], they found no effect of salience manipulations (via
luminance contrast) and no interaction between these manipula-
tions and prior knowledge of participants. They also did not find
an effect of the manipulations on the percentage of fixation time
relative to the relevant area. They postulate that the time window
(first two seconds) may have been too long to capture the percep-
tual effect before cognitive processes (whether correct or incor-
rect) exerted a larger influence than the perceptual mechanism.
Some of their graphs and tasks are similar to some of ours.

Hegarty et al. [11] provide further evidence that proper use
of salience can affect understanding of complex visual representa-
tions (weather maps). Salience was manipulated by the saturation
of the color map for temperature and the thickness of isobars for
pressure. In their first experiment, changes in salience affected
accuracy only after participants learned the meteorology princi-
ples; eye fixations were primarily directed by task and domain
knowledge. In their second experiment, there was no evidence
that participants were drawn to visually salient areas of the maps.
They conclude that their “research provides evidence for one prin-
ciple of cartography and graphics design more generally: Good
displays should make task-relevant information salient in a dis-
play” (cf. [15]). They also provide evidence for the mechanism
of this advantage. Attention was primarily affected by top-down
knowledge, and the visual design affected performance through
facilitation of the processing of visual features that conveyed task-
relevant information. Cartographic maps and the specific use of
saturation to create salience are only a small part of our study. Our
use of text labels would likely not work well on maps.

Diagrams
In Duncker’s radiation problem, readers must surmise from

a diagram how to irradiate a tumor without damaging interven-
ing tissue. Using an eye tracker, Grant and Spivey [9] observed
an empirical pattern of gazes to the critical area of this diagram
that discriminated among readers who hit upon the solution and
those who did not. In follow-on work, they found that using an
animation to draw attention to this area doubled the rate of suc-
cess in comparison to giving readers the original static version of
the diagram or a version in which a noncritical feature was ani-
mated. They proposed that the guided visual attention induced by
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the critical animation likely facilitated the correct insight.
Thomas and Lleras [26] replicated this work and added an

attempt to force this eye movement pattern with a secondary task.
They found that only an order of animated cues that forced the
gaze to cross the diagram led to greater success. That is, cue-
ing the same locations in a sequence that progressed around the
outer portion diagram were not sufficient; the gaze had to move
in the pattern that was analogous to the solution. Few participants
claimed to notice the connection; most appear to have had their
thinking influenced by the eye movements covertly.

Lowe and Boucheix [17] found no difference in learning
from an animated representation of a piano mechanism using
attention-directing cues. They did find a difference in cue obe-
dience (i.e. strict following of the bottom-up cues). They defined
color cueing as increasing salience of elements which the anima-
tion’s author wanted to direct attention. They defined anti-cueing
as lowering salience of elements not desired to be a focus of at-
tention. At the start of an animation, color cueing was more suc-
cessful at drawing attention than anti-cueing was at limiting the
drawing of (incorrect) attention. This difference faded as the an-
imation progressed over time. Although these diagram problems
are interesting, they are not directly applicable to our work.

Other Applications of Salience
Kong and Agrawala [14] describe a system to add user-

specified graphical overlays to graphs. Overlays included refer-
ence structures such as gridlines, highlights such as outlines, re-
dundant encodings such as numerical data labels, summary statis-
tics, and descriptive text annotations.

In designing a system to automatically understand bar charts,
Elzer et al. [5] applied the salience of elements as one of the “com-
municative signals in the graphic itself.” They noted highlights in
the form of color, shade, or texture, as well as labels used as an-
notations. They note other sources of salience, such as the tallest
bar or the right-most due to being the most recent data on a time-
based axis. Of note for us, they adopted “a GOMS-like approach
to estimate the relative effort involved in performing a task.” In-
dependently, we utilized a Goals, Operators, Methods, and Se-
lections (GOMS) model [3] to identify the most difficult step in
completing a task and thus most in need of the reader’s attention.

Eye Tracking and Visualizations
Gegenfurtner et al. [7] reviewed eye tracking research that

investigated differences in expertise on the comprehension of vi-
sual representations. They discuss three theories to account for
these differences. They develop their argument by then stating
findings regarding gaze that would support each theory. Finally,
they assess the accumulated evidence. They found the most com-
plete support for the hypothesis that experts optimize the amount
of information processed by neglecting task-irrelevant and, when-
ever possible, redundant information. Of note for our findings
is that they conclude that task complexity modulates the differ-
ence between expertise; smaller differences were found for less
complex rather than more complex tasks. However, there is scant
overlap between the visual representations they reviewed and our
representations. Just two (out of 73) of the studies they reviewed
included cartographic maps. We will consider this finding in our
Discussion in the light of the evidence we contribute.

Harsh et al. [10] tracked users’ gaze as they answered sci-

ence questions using graphs. They found that novices spent a
greater percentage of their time reading the question and the an-
swer choices than experts. They further found that experts fol-
lowed their planned first three steps in reading a graph (two com-
mon approaches were: title/caption–variables–data and variables–
title/caption–question). While non-experts planned the same pro-
gressions, they did not follow this, and those with lower expertise
(even within the novice category) were farther from their plan,
according to the gaze data.

Experimental Design
Our fundamental goal was to look for evidence for two ef-

fects of visually salient cues in statistical graphs. First, do these
cues in fact draw readers’ attention to targeted areas of informa-
tion? Second, does their presence improve readers’ performance
on corresponding response tasks? Our design goals included us-
ing validated tests of graph comprehension, increasing statistical
power by using a within-subjects design, and measuring fixation
data to yield insight about the mechanisms that led to the hypoth-
esized performance improvement. We discuss the design in detail
in the rest of this section. Each stimulus consisted of a graph
image, the text of the question to be answered, and between two
and four answer choices. The stimuli were presented on a desk-
top PC running Windows 10, using custom software and a Dell
U2412MB 24-inch monitor running at 1920x1200 resolution at
60 Hz. Eye tracking data was received from a GazePoint GP3HD
eye tracker running over USB3 at 150 Hz. Synchronization of the
eye tracker data and the stimulus was accomplished through the
Windows QueryPerformanceCounter function; this clock tick
data is returned with the eye tracker data. We estimated the mean
viewing distance as 63 cm, yielding approximately 46.4 pixels per
degree of visual angle (averaging vertically and horizontally).

Subject Procedures and Characteristics
After giving informed consent, participants sat down and ad-

justed the chair, keyboard, and mouse to their comfort. The exper-
imenter then adjusted the eye tracker to capture the participants’
eyes, which they saw on the feedback display of the eye tracker’s
control software. They were asked not to move significantly, in
order that their eyes would remain in view of the eye tracker. The
GazePoint’s nine-point calibration procedure was then run. Dur-
ing this, a white dot swept back and forth across the screen, paus-
ing at each of nine points that form a 3x3 grid. The participant
was instructed to focus on the dot the whole time. After this ran,
the control software reported how many of the nine points were
successfully calibrated; if any point was not calibrated, the proce-
dure was run again. This was necessary only for one participant,
and only once.

Next, we started our data logging and custom stimulus soft-
ware. Our stimulus software first displayed five test points to
determine the accuracy of the eye tracking data; specifically, we
needed a tolerance for a fixation point to be considered within a
region of interest (described below). On the five test points across
all subjects, we saw an average of 124 pixels of error, which
equals 2.7◦ of visual angle. We felt this threshold would be too
permissive, but we wanted to make sure that we were able to get
sufficient tracking data. Thus we chose 2.0◦ of visual angle as our
tolerance for eye tracking data, as described below.

We recorded data from 28 participants (19 male, 9 female).

IS&T International Symposium on Electronic Imaging 2021
Visualization and Data Analysis 2021 329-3



The range of ages was 22-70, with a mean and median of 43. We
grouped highest educational degree into Bachelor’s or Associate’s
degrees (10 participants), Master’s or Professional (9), or Doctor-
ate (9). These demographics were used as independent variables
in analyses as described in Results. Most participants were native
English speakers (including two bilingual); the four who were not
native speakers had a minimum of 30 years speaking English. All
instructions and questions were in English.

Independent Variables and Stimuli
After calibrating the eye tracker and testing the data quality,

we gave each participant a baseline test of graph literacy skill. For
this, we used the Graph Literacy Scale [6] (GLS). It asks questions
involving bar graphs (four questions), a pie graph (two questions),
line graphs (five questions), and an icon array (also called a pic-
tograph or pictogram, two questions). Designed for health care
communication, GLS focuses on health care scenarios. But we
felt the graph types would yield an accurate test of expertise for
VLAT. Both the skills test and the VLAT graphs in the study fo-
cus on domains that we anticipated being outside our participants’
areas of expertise (which varied). We had hoped to use the GLS
to separate our participants into groups of high and low expertise
with graphs. However, as noted in the Results, we do not see this
separation in our data.

The second and final phase of data collection entailed three
visual manipulations of groups of graph-reading tasks (of vary-
ing difficulty). Each trial featured a graph and a corresponding
question about its data. We chose to adopt all the questions from
the Visualization Literacy Assessment Test (VLAT) [16]. In the
control manipulation, the graphs were unmodified from their pre-
sentation in VLAT. In the other two manipulations, certain task-
relevant components in each graph were emphasized with salient
cues. Figure 1 shows the control and the two manipulations for
one question relating to one graph. The VLAT has many graph
types: bar graph (including stacked and 100% stacked types), his-
togram, line graph, area chart (including stacked type), pie chart,
scatterplot, bubble chart, treemap, and a chloropleth map. We
edited the text of some questions and answers lightly in ways that
we believed would improve their clarity for our participants. In
the next two subsections, we describe the salient cues and their
construction, as well as the independent variables created as a re-
sult. The VLAT has a defined set of question types; we used this
as an independent variable in our analysis as well.

Visually Salient Cues
First, we divided the VLAT’s questions into three groups.

The goal in this division was to create groups of approximately
equal overall difficulty. This enabled us to use a within-subjects
design to test the effects of different types of salient cues. The first
issue was that the VLAT has 53 questions; to make the number of
questions divisible by three, we chose to add a question. Inspect-
ing the data published with the VLAT, we observed that the area
chart did not have a question of type “Make Comparisons” (using
the terminology of [16]). We created a question to fill this slot. To
determine approximately equal difficulty for the three groups, we
used the VLAT’s item difficulty index, which is the “portion of the
test takers who answered the item correctly” [16] in a pilot study.
We estimated the item difficulty index for our new question by
comparison to similar questions and the graph type. Based on our

Table 1. Summary statistics of the item difficulty index for the three groups

into which we divided queries, showing that the overall difficulty of the three

groups was approximately equivalent. Each group contained 18 queries.

Group Mean Std. Dev. Minimum Maximum
1 0.65056 0.25708 0.20 0.98
2 0.65222 0.26906 0.24 0.98
3 0.64778 0.26249 0.15 1.00

participants’ performance, we are confident that our estimate was
reasonable. We then assigned questions to the groups manually,
achieving nearly equal summary statistics for the item difficulty
index values in each of the three groups (Table 1), as well as a
nearly equal distribution of graph types among the three groups.
This enabled us to compare three approaches to salient cues, since
the set of questions each participant saw with each salient cue type
was of approximately equal (overall) difficulty.

Next, we created a GOMS model [3] for each of the 54 ques-
tions. The goal was dictated by the question: find the correct an-
swer. The method generally involved a search for the relevant
information. The operators varied depending on the type of ques-
tion and the type of graph. For example, finding the maximum on
a line graph required searching for the highest point along the de-
pendent axis. Searching for the maximum of a single variable in
a stacked bar graph required searching for the tallest segment of
the proper series. Our choice of operators assumed that our read-
ers knew how to decode the visual metaphors employed by each
graph type; this assumption may have been incorrect for some
graph types for at least some users. When faced with a selection,
we chose the one we believed to be the most direct path to a solu-
tion. Our GOMS model for the question in Figure 1 is:

1. Read the graph title.
2. Read the dependent (vertical) axis title.
3. Locate (start of) second half on independent axis (July).
4. Scan up to data point for July.
5. Scan the graph to the right of July to determine the pattern.

In the Discussion, we present evidence that our readers did not
follow our models, notably ignoring the title on many, most, or
even all questions.

Finally, we identified graph components that we felt were
central to accomplishing the task of answering the question ac-
cording to our GOMS model. (We note that different selections in
the GOMS model may lead to different graph components being
identified.) In the above example, we chose step 3. Again, the
graph as it appeared in VLAT served as a control. We drew two
sets (modes) of cues designed to draw attention to these critical
components1. One set, which we shall refer to as text cues, relied
primarily on text labels. Clearly, these have a spatial extent which
sometimes was deliberately used to enhance the cue’s ability to
assist with steps in the GOMS model. The second set, which we
call color cues, relied primarily on colored shapes to draw atten-
tion to components. Often, these shapes were shapes present in
the visual representation; other shapes were drawn over the visual
representation. An example of each cue type appears in Figure 1;
note that although they have similar positions, the cues are not
normalized for intensity or salience by any metric. The indepen-
dent variable Salience Type, with values “No cues,” “Text cues,”

1Interested parties may contact the first author for the full set of cues.
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Figure 1. We designed visually salient cues for the questions in the Visualization Literacy Assessment Test (VLAT) [16]. At the left is a graph with oil prices

(y-axis) for the twelve months (x-axis labels) of 2015, shown with the original line graph from VLAT. In the center is the graph with a text cue added which reads

“Oil Price History for the Second Half of 2015.” At right is the graph with a color cue added to the data for the second half of 2015. These salient cues help direct

the reader’s attention to the components of the graph needed to answer the question “Over the course of the second half of 2015, the price of a barrel of oil

was...?” with answer choices of “increasing,” “decreasing,” and “staying the same.” We measured the effect of visually salient cues like these on the error rate,

response time, and fixations of graph readers.

and “Color cues,” refers to these cues. Most graph drawing was
done through the creation of specifications in the HighCharts

language2; some was done directly in Adobe Photoshop3. We
also created two sets of examples of all three cue modes; these
were shown, with explanations, to participants to serve as a tuto-
rial, immediately prior to the main task.

Our cues were designed to focus attention on the smallest
area that would enable the reader to take the next step in our
GOMS model of the solution process. One could argue that high-
lighting a specific step in the GOMS model would obviate the
need to perform any steps prior to it. This would make our choice
of highlighting dependent on the order of our GOMS model,
which in many cases is not a uniquely valid solution. One could
argue that highlighting makes it plainly obvious what the answer
is. However, we reasoned that the entire purpose of providing
salient cues on top of a graph is to answer a question that the graph
author is implicitly placing in front of the reader and demanding
that the reader answer. Thus, the entire purpose of a salient cue
could be considered to be the author forcing the reader to make a
particular interpretation of the graph. Thus, many of our cues in
fact do this. Some of our cues could be criticized as not following
standard practice. Although we are not aware of a single standard
for highlighting elements of a graph, it is true that certain common
practices do not appear in our cues and some uncommon ones do.
For example, one common highlight for a bar graph is to assign a
unique color to a bar of interest. But this cue may not focus the
reader directly on the value of that bar (which is indicated by the
top of the bar only). Thus some of our designs may seem unusual,
such as circling the top of a bar. We felt such unusual cues would
focus the reader on the perceptual task that most directly leads to
accomplishing the steps of our GOMS model. Other cues, such
as highlighting an entire sector in a pie graph (which gives its
value by the angular size), are more in keeping with conceptions
of “standard” practice.

Estimated Question Difficulty
While the mean difficulty of the three manipulations each

participant worked through was approximately equal, we saw
from the item difficulty index that certain questions were eas-
ier than others. We wanted to see if the salient cues interacted

2https://api.highcharts.com/highcharts/
3https://www.adobe.com/products/photoshop.html

Table 2. The division of questions into groups yielded approximately equal

difficulty for the three groups. IDI is the item difficulty index in [16]; our

added question was set to 0.55. Class Deviation for each class is the sum

of squared deviations from class mean and for All is the sum of squared de-

viations for the array mean. GVF is the goodness of variance fit (used to

evaluate Jenks’ natural breaks), which indicates an excellent division.

Class IDI range Class Deviation GVF
Easy 0.75-1.00 0.14318
Medium 0.47-0.72 0.08729
Hard 0.15-0.44 0.12309
All 3.52570 0.89972

with the difficulty of the questions. Thus, we used Jenks’ natural
breaks [12] on the item difficulty index to partition questions into
three groups. This assigned 24 questions to the “Easy” group, the
next 15 to the “Medium” group, and the final 15 to the “Hard”
group. The measure of quality of the partition is goodness of
variance fit, which has a range of [0..1]. This partition yielded
0.8997 (Table 2), considered to be an excellent division. The par-
tition into groups with equal mean difficulty enabled us to com-
pare performance across the modes of salient cues. This division
by difficulty enabled us to study the interaction of the cues with
the difficulty of the question.

Region of Interest Construction
To facilitate analysis of gaze data, we need to define a region

of interest (ROI) for each question. We constructed regions with
the following procedure. First, we manually selected pixels that
were part of the text or color cues. This was done with a combi-
nation of the Magic Wand and Rectangular Marquee tools in
Adobe Photoshop. Next, still using Photoshop, the selections for
the text and color cues were merged (set union) into a single selec-
tion. Finally, this single selection for each question was expanded
by 93 pixels (46.4×2, rounded) to give us the 2.0◦ of visual an-
gle we needed for the error tolerance for our eye tracking data.
For a few graphs, the color cue consisted of the outline of a large
region (e.g. a sector on the pie chart). In these cases, the above
procedure resulted in the ROI having a “hole” consisting of pixels
that were surrounded by the region but not within 93 pixels of the
boundary (and thus inside the ROI). We opted to fill in these holes
(make them part of the ROI), so that a participant who fixated on
the center of such a region was considered to have looked at a rel-
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Figure 2. Gaze-related regions of interest (ROIs) for the analysis of par-

ticipants’ eye tracking data in the three manipulations of the graph reading

task shown in Figure 1. These brightly colored ROIs should not be confused

with the salient color cues designed for our study. The number and duration

of participants’ gaze fixations (longer than 100 ms) falling within the color

ROIs in this figure were counted. The green region is the primary ROI; the

yellow is the secondary ROI. The size of the ROIs shows the error tolerance

(2.0◦ of visual angle) we chose based on tests of our eye tracking system’s

performance. The gray frame around the graph was not present during the

study; it represents the image boundary to illustrate how ROIs may need to

exceed the image boundary. Also note that the primary and secondary ROI

overlap near the bottom right of the graph; a fixation in this overlap region

was considered to belong to the primary ROI.

evant portion of the graph. Had we not done this, the center of a
large, relevant region would have been considered as irrelevant to
the question as the plain white background of the graph.

Our salient cues rarely direct attention to all the graph com-
ponents in our GOMS model for the question. Thus, we labeled
the ROIs described in the previous paragraph “primary ROIs” and
created a set of “secondary ROIs.” Secondary ROIs included
graph components that were (potentially) applicable to methods
to solve the problem, but were not highlighted by our salient cues.
Most often, these included portions of one or both axes (with asso-
ciated labels) as well as a portion of the legend (if present). When
questions arose about the inclusion criteria, the first three authors
resolved the differences through discussion. These primary and
secondary ROIs enabled the dependent measures related to fixa-
tions in the ROIs4 (Figure 2).

The ROIs were created on images that spanned the entire
screen, even though the graph images were smaller. This enabled
us to define ROIs that expanded beyond the image boundaries.
This allowed us to include fixations that were within the tracker
error tolerance of a cue but not within the boundary of the dis-
played graph image (as often happened for components in sec-
ondary ROIs, such as axes and legends).

Dependent Variables
For each data trial, we recorded the (binary) response error,

response time, data about the question, and the hardware clock
tick counter at stimulus onset and at the time of the response. Eye
tracking data was recorded per subject into a log file. As a post-
process, this log file was split by stimulus, using the clock tick
data to identify beginning and ending data records for each stimu-

4Interested parties may contact the first author for the ROIs.

lus, and processed to identify fixations. When searching for fixa-
tions, we ignored data records for which the tracker reported that
either the left or right eye contained invalid data. In concert with
the eye tracking error noted above, we used a dispersion metric of
2.0◦ of visual angle to determine whether a consecutive sequence
of valid data records was a fixation. Invalid data records did not
end or reduce the time measured for a fixation that otherwise met
the criteria; invalid records were treated as if they simply did not
exist. We recorded the location, duration, and inclusion in a sin-
gle ROI for each fixation. In cases where a primary and secondary
ROI both contained a fixation (e.g. a salient cue near a relevant
axis label), the primary ROI was considered to have been fixated.
Each participant saw each question once (on one salience manip-
ulation), so we gathered data from 54∗28 = 1512 trials.

Hypotheses
We made the following hypotheses regarding our indepen-

dent and dependent variables.

1. Error will be lower with salient cues present than without.
2. Response times will be lower with salient cues than without.
3. Question difficulty will interact with the salient cues, with a

greater reduction in the error for Hard questions.
4. Question difficulty will interact with the salient cues, with a

greater reduction in the response time for Hard questions.
5. Graph literacy will interact with the salient cues, with greater

reduction in error for readers with low graph literacy.
6. Fixations will more often occur in the primary ROIs with

salient cues present than without.

Hypothesis 6 is perhaps the most obvious and follows di-
rectly from much of the Related Work. Although only some of the
related work would support Hypotheses 1 and 2, we believed that
the visually salient cues would both keep participants on a correct
solution process and move them through it faster. Since the cues
came directly from the GOMS models for a solution, it followed
that the cues would have these positive effects. Similarly, we
believed the benefits would be greater when the difficulty of the
question mandated greater skill from the graph reader(especially
in relation to the skill level the graph reader possessed). Hypothe-
ses 3, 4, and 5 all follow from this belief.

Results
We analyzed the results using the ezANOVA package in R.

We report p-values with Greenhouse–Geisser corrections where
needed and effect sizes. Post-hoc correlated t-tests were con-
ducted by hand using intermediate values calculated in a spread-
sheet and standard formulas [18]. Error was given a binary value
for each trial, and all trials were analyzed. Response time data
were analyzed only for those trials on which the response was cor-
rect. While this is common practice, it is often not well-justified.
The concern is that incorrect answers may indicate a lack of effort
on the part of participants and thus not be indicative of a process
of working towards a solution. Nielsen and Wilms [24] point out
that this is more likely to be true when the response accuracy is
near ceiling (i.e. almost perfect). We do not think this is true of all
the tasks embodied in the VLAT. However, we did instruct partici-
pants that they must answer each question; we removed the option
(present in VLAT) to “Skip this question.” Thus it is entirely pos-
sible that participants read a question, decided that they did not
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know, and simply guessed. Of the 212 errors we recorded (14%
of trials), approximately half (102) were by participants whose
mean response time did not appear statistically faster on correct
responses than on incorrect responses. This behavior could be
consistent with guessing. Therefore, in the analysis presented
here, we removed incorrect trials when analyzing response time.
We note that one could make an analogous argument about fixa-
tion data; if the response was incorrect, perhaps the participant did
not make a serious effort to identify and process the graph com-
ponents. However, because we are interested in attention that is
controlled below the level of conscious effort, we included incor-
rect trials in our analysis of gaze data. We leave for future work
the application of models for differentiating effort on a per-trial
basis [28]. We analyze the percentage of fixations and percentage
of time spent in ROIs using the same statistical tests.

Use of visually salient cues had a main effect on the error:
F(2,54) = 2.587, p = 0.014, η2 = 0.077. We saw a small reduc-
tion in error with both types of cues when compared to no cues
(17.5% error). Post-hoc testing showed that color cues (11.1%)
were significantly better (t(27) = 2.875, p = 0.008) and text
cues (13.5%) were marginally better (t(27) = 1.795, p = 0.084).
Salient cues also had a small but statistically significant main ef-
fect on the response time: F(2,54) = 4.426, p = 0.017, η2 =
0.055. Responses were slightly faster with both the color cues
(17.6 sec, t(27) = 2.786, p = 0.010) and the text cues (18.3 sec,
t(27) = 2.121, p = 0.043) than with no salient cues (21.5 sec).
These effects support Hypotheses 1 and 2, respectively.

More interesting is the interaction of the salient cues with the
question difficulty (Figure 3). There was a small but significant in-
teraction between question difficulty and the use of cues for error:
F(4,108) = 4.688, p = 0.004, η2 = 0.050. This supports Hy-
pothesis 3. We did not find a corresponding interaction between
difficulty and salient cues for response time: F(4,100) = 1.018,
p = 0.390. Thus we cannot support Hypothesis 4.

We found a main effect of graph literacy on error: F(1,26) =
5.058, p = 0.033, η2 = 0.163. We found a marginal effect on
the response time: F(1,26) = 4.142, p = 0.052, η2 = 0.137.
Those with very high graph literacy were slightly more accurate
and faster than those with high graph literacy. (See Discussion
for the reasoning behind these two classes.) However, we did
not see an interaction between graph literacy and the use of cues,
for either error: F(2,78) = 1.598, p = 0.209, or response time:
F(2,78) = 0.394, p = 0.676, so we cannot support Hypothesis 5.

With regard to the gaze data, we found a significant main ef-
fect of salient cues on the percentage of fixations in primary ROIs:
F(2,48) = 7.166, p = 0.003, η2 = 0.118, as well as on the per-
centage of fixation time spent in primary ROIs: F(2,48) = 7.237,
p = 0.002, η2 = 0.111. Both the text cues (t(24) = 4.339,
p < 0.001) and color cues (t(24) = 2.423, p = 0.023) increased
the percentage of fixations that occurred in primary ROIs and
the percentage of fixated time (with nearly identical t-tests) that
was spent in primary ROIs (Figure 4). This supports Hypoth-
esis 6. We see that when the graphs were presented with text
cues, participants made a significantly smaller portion of fixations
(t(24) = 2.281, p = 0.032) and spent a significantly lower portion
of time (t(24) = 2.397, p = 0.025) in secondary ROIs (Figure 5).

We did not observe a main effect of educational degree or
gender. Age had a marginal effect on error; the 45-54 age bracket
generated slightly more error than other brackets. There was a

significant main effect of age on response time. The younger a
bracket’s ages, the faster the response time. These results are in
line with typical effects of aging [8] on attention, working mem-
ory, long-term memory (we note this includes mathematical pro-
cedures), and perception; we do not consider them further.

Discussion
We demonstrated improvement from visually salient, task-

relevant cues with a wide variety of graphs, using both text cues
and color cues, on error, response time, proportion of fixations,
and proportion of fixated time. Intuitively, cues that are designed
to draw visual attention to the relevant portion(s) of a visual repre-
sentation ought to lead to improved performance on correspond-
ing queries through increased attention. To our knowledge, how-
ever, this has not been shown with a broad range of types of sta-
tistical graphs. Previous work showed benefits of cues akin to our
color cues [1, 4] and hypothesized benefits of highlighting text la-
bels [27]. Our results offer empirical evidence for this hypothesis.

While we observed significant differences, we note that the
effect sizes were quite modest. So although we can support Hy-
potheses 1 and 2, we do not find that the improvement is so large
that it is certain to have an impact in all applications. Perhaps
more notable is the significant interaction between our salient cues
and the problem difficulty classification levels we assigned. Al-
though the effect size is small, the lower error on Hard questions
with the color cues (25.9%) versus either no cues (42.6%) or text
cues (40.7%) is of potential value in many applications. This
result supports Hypothesis 3. Although we are hesitant to cre-
ate guidelines for graph authoring based on a single experiment,
we think the most likely practical guideline that may eventually
emerge from our research is a recommendation to add salient
cues for difficult tasks. The lack of support for Hypothesis 4 is
disappointing, but the main effect of adding visually salient, task-
related cues on response time is sufficiently interesting and of po-
tential value on its own. Color cues were on average 19.4% faster
than no cues, while text cues were 15.0% faster.

To truly understand the differences will require a deeper un-
derstanding of the reasons for success or failure of the individual
cues we developed. We do not claim that our cues were optimal by
any metric. We drew inspiration from various sources of statisti-
cal graphics (technical publications, news media, government re-
ports, school textbooks, etc.). We did not survey the literature for
example cues or make our cues (cue distribution) representative
of what we found. Such an endeavor would be interesting, albeit
tedious, and subject to questions of how well the collected sam-
ples represent a particular application. We hoped that the baseline
graph literacy skills test would yield insight into how well the
cues worked for various types of graph readers. But we did not
have sufficient diversity of reader expertise to study the effect of
skill level. Our readers all demonstrated a high degree of graph
literacy per the median split criterion defined for the GLS [6]. Per-
haps because of this, we were unable to support Hypothesis 5. It
is entirely possible that readers of low graph literacy skill (who
are especially important to measure for fields like education) may
yet prove to be helped more by these types of cues.

We were able to support Hypothesis 6; we drew readers’ at-
tention proportionally more to the primary ROIs, analogous to
results with weather maps [11]. This also seems to be a sort of
contrapositive result to the results of Bera [1]. We also see it
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Figure 3. Left: Error by the type of salient cues and the difficulty of the questions, with the mean for each cue type in gray. The main effect can be seen by

the gray bars, whereas the interaction is most notable in the text and color cues for the medium and hard questions. Right: Response time by the type of salient

cues and the difficulty of the questions, with the mean for each salient cue type in gray. The main effect can be seen by the gray bars. There was no significant

interaction between salient cues and question difficulty for response time.

Figure 4. Left: Percentage of fixations that occurred in primary regions of interest (ROIs) for each of the three salient cue conditions. Right: Percentage of

fixation time spent in primary ROIs for each of the three cue conditions. Participants fixated proportionally more and proportionally longer in primary ROIs with

both the text and color cues.

as in concert with the results with animated salient cues for dia-
grams [9, 26]. One curious observation is that our readers spent
very little time looking at the graph title; a few were never ob-
served to have fixated on it at all (on any question). This may have
occurred because we showed only one graph and one question at a
time; readers may have felt no need to validate the graph’s subject
through its title. Also, only twelve graphs were used for 54 ques-
tions, so familiarity could have reduced the number of fixations
even for those who initially read the title. A more complicated
task might alter this behavior. We leave for future work an anal-
ysis of sequences of fixations; however, we did not ask users to
announce their plan for the graph-reading task (as [10] did), al-
though we intend to do this in future studies.

Looking across studies that reported results with respect to
task performance, we see a potential pattern by difficulty that
echoes the finding of Gegenfurtner et al. [7] with visual repre-
sentations other than statistical graphs. Here, we consider the
studies we reviewed in Related Work. Grant and Spivey [9] and
Thomas and Lleras [26] found some evidence of improved per-
formance on a single task that is known to be challenging without
assistance; they saw successful responses between 20% and 37%
with varied groups (and expertise) on a free-response question.
Hegarty et al. [11] found that performance on a task requiring ex-
pertise was affected only when participants had training on the
task. Their two-alternative, forced-choice task yielded a propor-
tion correct just above chance (when given without instruction).
The first study by Madsen et al. [19] analyzed questions that were

answered correctly 51% of the time in a pilot study of university
students with at least one course on the topics in the questions.
Counter to the other findings, those who answered incorrectly ap-
peared to err due to top-down misconception of the task rather
than bottom-up distraction of perceptually salient areas. Their
follow-up study [20] did not give sufficient data to indicate the
difficulty of their tasks. The tasks in VLAT vary greatly in diffi-
culty, with an average of 65% correct in the VLAT pilot data [16].
Bera’s tasks were notably easier, with approximately 90% correct
responses in his study [1]. Bera did not find an effect on per-
formance on his bar graph tasks. Carenini et al. [4] found greater
differences on the simple tasks, but found differences on both sim-
ple and complex tasks. They also noted a potential ceiling effect,
with 91.4% correct responses overall. Although Madsen et al.’s
and Carenini et al.’s results do not appear to fit, we could still
ask whether a reliable comparison might show that this (partial)
order of difficulty we’ve hypothesized is reasonable for a greater
class of visual representations than Gegenfurtner et al. reviewed.
(We note that the work of Grant and Spivey is the only overlap
between their review and our discussion.) A true comparison of
task difficulty does not exist and would be challenging to design.
But if we and Gegenfurtner et al. are correct, then a mostly con-
sistent pattern of harder questions (for the participants, given their
expertise) yielding a performance difference from visually salient
cues could be discerned. This is an important avenue for future
research. We advocate for the use of GOMS or similar modeling
approaches to help resolve the influence of problem difficulty.
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Figure 5. Left: Percentage of fixations that occurred in secondary regions of interest (ROIs) for each of the three salient cue conditions. Right: Percentage of

fixation time spent in secondary ROIs for each of the three cue conditions. Participants fixated proportionally less and for proportionally less time in secondary

ROIs with the text salient cues.

We believe it is reasonable to have expected an interaction
between question difficulty and the use of salient cues (Hypothe-
ses 3 and 4). In particular, we anticipated cueing would reduce
the nominal degree of effort required for more difficult questions.
We conducted analyses of error and response time as a function
of the graph type and as a function of the question type. While
we did not find significant results, we note that the group sizes
are in some cases very small. Such unbalanced designs are un-
likely to yield statistical significance. This was not a design goal
of our study, but it could potentially be a design goal and an in-
teresting variable for future studies focused on the various graph
types and question types we inherited from VLAT [16] or other
classifications, such as the often-used types of Bertin [2]. Error
shows some differences, and so does response time, but they are
clearly not in concert (Table 3). Some cues led to faster response
and increased error (color cues for clustering tasks), whereas both
text and color cues reduced error but not response time when find-
ing extremes. A similar pattern is observed for the task of finding
trends. Despite the lack of statistical significance, Table 3 could
reasonably lead us to form hypotheses about effects for particu-
lar question types and build experimental designs that rigorously
test such hypotheses. A similar argument could be made regard-
ing the graph type, although the analogous table to Table 3 has
even smaller patterns that would lead one to hypothesize about an
interaction between uses of salient cues and the graph type.

It seems reasonable to conclude that the explanation for per-
formance with the text cues was that our participants fixated pro-
portionally more and proportionally longer in the primary ROIs.
This result seems consistent with the results with maps [11] and
diagrams [9, 26, 17]. Most importantly for comparison to our
work, it is generally consistent with the results for bar graphs [1]
and star plots [13]. However, we again note the variety of modes
of salience (color and text in our work, versus color, luminance,
line thickness, and motion/animation in other work). All these
cues should lead readers of visual media to fixate more on the
emphasized visual elements. Furthermore, we are not surprised
by the slightly greater percentages for the text cues over the color
cues; it generally requires more fixations (and thus longer total
duration) to comprehend text than geometric shapes [21]. How-
ever, we found no correlation between fixations and error, nor
betweeen fixations and response time, when the color cues were
present. The lack of a consistent effect leads to speculation as
to what other influences there are on the error and response time.
Hegarty et al.’s [11] and Madsen et al.’s [19] observation that top-

down knowledge of the task context was the primary influence on
attention may reflect the influences on our graphs and tasks.

Conclusion
We found evidence that two types of visually salient cues

can improve the accuracy and response time in graph-reading
tasks. This is important evidence that documents the effect of two
commonly-used types of cues: text labels and colored shapes. It
appears that often, but not always, a mechanism driving this im-
provement was an increased portion of fixations and fixation time
on the intended ROIs. We also found that this effect interacts with
the difficulty level of the reading task, wherein the improvement
was greater for more difficult questions when using color cues.
We did not observe an effect of graph literacy skill within our
pool of participants, although this may be due in part to the high
degree of skill in our sample population. Nor did we see an inter-
action between graph literacy skill and salient cues, though one
might reasonably hypothesize that cues would be more helpful to
novices. However, any position on this conjecture is premature,
and we have identified this as an avenue for future work. With the
data we have collected, one could perhaps analyze thoroughly to
see how to improve the salient cues we gave. We leave this for
future work as well.

In conclusion, we have shown that salient, straightforward,
task-relevant cues in statistical graphs can improve specific as-
pects of graph-reading task performance. The sources of this re-
sult in the general population cannot be fully differentiated on the
basis of our findings. Our approach offers a structured framework
for studying additional factors at play in the effective design of
graph-reading tasks.
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