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Abstract. The Modulation Transfer Function (MTF) and the
Noise Power Spectrum (NPS) characterize imaging system
sharpness/resolution and noise, respectively. Both measures are
based on linear system theory. However, they are applied routinely
to scene-dependent systems applying non-linear, content-aware
image signal processing. For such systems, MTFs/NPSs are
derived inaccurately from traditional test charts containing
edges, sinusoids, noise or uniform luminance signals, which
are unrepresentative of natural scene signals. The dead leaves
test chart delivers improved measurements from scene-dependent
systems but still has its limitations. In this article, the authors
validate novel scene-and-process-dependent MTF (SPD-MTF)
and NPS (SPD-NPS) measures that characterize (i) system
performance concerning one scene, (ii) average real-world
performance concerning many scenes or (iii) the level of system
scene dependency. The authors also derive novel SPD-NPS
and SPD-MTF measures using the dead leaves chart. They
demonstrate that the proposed measures are robust and preferable
for scene-dependent systems to current measures. © 2019
Society for Imaging Science and Technology.

[DOI: 10.2352/J.ImagingSci.Technol.2019.63.6.060406]

1. INTRODUCTION

This article is concerned with the characterization of
the spatial imaging performance of capturing systems, as
implemented during their design and manufacture. The
Modulation Transfer Function (MTF) and the Noise Power
Spectrum (NPS) are commonly used for such purposes and
are principal input parameters to image quality metrics
(IQM) from the field [1-4]. The MTF and the NPS
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measure system signal transfer (relating to sharpness and
resolution attributes [2]) and noise, respectively. They are
derived traditionally by capturing test charts that provide
well-characterized input signals. MTFs and NPSs aim to
describe the average real-world performance of the system
(i.e. its “general” performance when capturing natural
scenes).

The MTF and NPS rely on linear system theory. Strictly
speaking, they should only be measured from linear, spatially
invariant and homogeneous systems [5]. In theory, they
fully specify these systems (Figure la) and measurements
obtained using any test chart, s,, are representative of the
average real-world system performance, F(s).

However, measurements from systems applying non-
linear content-aware image signal processing (ISP), such as
noise reduction and sharpening, are dependent on the input
signal content. Such “scene-dependent” capture systems
are increasingly common, especially in camera phones
and autonomous vehicles. Characterizing these systems
is far more challenging. Fig. 1(b) defines their average
real-world performance, F (s), as the mean of all MTFs/NPSs
corresponding to the infinite number of potential natural
scenes that the system may capture, s,.

Classical methods for deriving the MTF employ test
charts consisting of sinusoids [5-9], edges [5, 9, 10] or
random noise signals [11]. These charts are not repre-
sentative of natural scene signals. As a result, each chart
yields significantly different MTFs for non-linear capturing
systems [12], which are unrepresentative of average real-
world system signal transfer. For the same reason, NPSs
derived by traditional methods from uniform luminance
patches are unrepresentative of the average real-world noise
performance of such systems [13].
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The dead leaves test chart was designed with the aim
of triggering non-linear content-aware ISPs at comparable
levels to natural scenes. It provides a more appropriate signal
for measuring non-linear system signal transfer [14-16]
and noise [13] and represents a step toward measuring
performance using natural scenes. It simulates natural scene
textures using a stochastic model [17]. It models the inverse
power function of the “average” natural scene, among other
natural scene statistics [14].

To date, the NPS has not been measured directly
from dead leaves signals. But noise has been measured by
comparing MTFs from different dead leaves measurement
implementations [13]. Such noise measures have not been
used as input parameters to the direct dead leaves MTF
implementation [15] and should be more appropriate than
the currently used uniform patch NPS.

No measurement from any current test chart can
represent the MTF/NPS of a non-linear system with respect
to a given input scene. Such an MTF/NPS is defined by
F(s1) in Fig. 1(b) if s; is the signal of the scene. Branca et
al. have made a first attempt to derive MTFs from natural
scenes with some success [18]. But no prior art has combined
MTFs/NPSs derived from many scenes, F(s,), to yield an
average real-world system performance measure, ?(s), that
accounts for scene dependency.

This article proposes scene-and-process-dependent MTF
(SPD-MTF) and NPS (SPD-NPS) measurement frameworks
that account for the effect of input image content on non-
linear content-aware spatial ISPs. There are four SPD-MTF
measures and four SPD-NPS measures, which use different
input signals. All measures are validated by evaluating
measurements from simulated linear and non-linear image
capture pipelines. Each measure tests one of the following
hypotheses:

1. The NPS can be derived directly from dead leaves signals
and is more appropriate than the uniform patch NPS.

2. The accuracy of the direct dead leaves MTF [15] Eq. (3)
improves if it accounts for system noise using #1.

3. The MTF/NPS can be derived with respect to a given
input scene, accounting for system scene dependency.

4. The average real-world performance of a system can be
characterized, accounting for its scene dependency, as
the mean of #3 over a large and representative image set.

5. The level of system scene dependency can be measured
as the standard deviation of #3 over the same image set.

The following sections of this article define the MTF
and NPS, describing current measurement methods and
their limitations. The SPD-MTF and SPD-NPS measures are
then presented, including their sources of error. The test
image dataset and simulated pipelines are described later.
We then validate each measure, analyzing sources of error
and scene-dependent pipeline behavior. Finally, we draw
conclusions on the validity of our hypotheses, the proposed
measures and their broader application.

J. Imaging Sci. Technol.
IS&T Infernational Symposium on Electronic Imaging 2020

060406-2

2. BACKGROUND ON MTF AND NPS MEASURES

2.1 The Noise Power Spectrum

The NPS characterizes the power of noise introduced
by the system, with respect to spatial frequency, u. The
one-dimensional (1D) NPS can be obtained from digital
systems as the radial average of a two-dimensional (2D)
NPS (Eq. (1)) computed using the discrete Fourier transform
(DFT). uand v are horizontal and vertical spatial frequencies,
respectively. H(x, y) is a noise image of dimensions M by
N, expressed by Eq. (2), where g(x, y) is the output image
intensity and g (x, y) is the expected (or mean signal) value.

2
M/2  Nj2

NPS(u, v) = Z Z H(x, y)e2ritwcty) 1)

x=+1 y=5+1
where H (x, y) = g(x, y) —g(x, y). )

When characterizing image capture systems, the NPS
is normally derived from captured uniform luminance
patches. This renders g(x, y) approximately constant at all
coordinates if lens shading correction is applied, or patches
are captured where lens shading is minimal. However, noise
in captured uniform patches is not representative of noise
in captured scenes. This comes from the fact that, for all
capture systems, photon noise is a function of scene intensity.
Moreover, the uniform patch NPS measure fails more
noticeably for systems applying non-linear content-aware
denoising and sharpening.

Linear denoising algorithms “average-out” noise at
the expense of image detail, texture and edge contrast.
Non-linear content-aware algorithms adjust their denoising
intensity to preserve valuable signal content. Many spatial
domain examples apply thresholding in the presence of
luminance gradients [19, 20]. Machine learning can also
be implemented to denoise certain features more than
others [21-25]. Other algorithms operate on a patch-wise
level [26], finding “windows” containing similar structure
and averaging them to remove noise [27, 28]. Structural
signals impede the local removal of noise by all these
non-linear algorithms. This renders system noise scene-
dependent, as shown in Figure 2 [3, 13]. Uniform patches
provide ideal input conditions for these algorithms. When
captured, they are generally less noisy than real scenes. Thus,
NPSs derived from them often underestimate the average
real-world system noise power. Non-linear content-aware
sharpening algorithms cause further scene dependency. They
amplify the contrast of edges, detail and high frequencies
selectively—as described in the next section—increasing
noise in these regions more than others.

The SPD-NPS measurement framework proposed in
this article aims to account for the above scene-dependent
behavior.

2.2 The Modulation Transfer Function

The MTF and the related Spatial Frequency Response (SFR)
are signal transfer measures. They characterize the reproduc-
tion of modulation with respect to spatial frequency [5]. The

Nov.-Dec. 2019

Image Quality and System Performance



Fry et al.: Validation of modulation transfer functions and noise power spectra from natural scenes

S1
S2 -\-\__“‘_‘ Linear
i S
| System = ystem | Fion
(@) (b)

—Fls)

g F(s1)
=2 ::_“ Non-Linear /'.:.(.52)} Fe)

Figure 1. lllustration of theoretical properties of the MTF or NPS (F(s)) for
signals (s) present in a range of n natural scenes (or test charts): (a) linear
system; (b) non-linear system. F(s) is the mean of Flsy) fo F(sp).

Output Image

Noise Image

Noise from uniform patch || Noise calculated from replicate images

Figure 2. Noise images generated from a non-linear camera simulation
pipeline at SNR 10 [3] for the following: uniform patch (left), Branca
et al. [18] "People” image (center] and "Architecture” image (right).
Noise image confrast was increased to emphasize scene-dependent noise
variation.

MTF is obtained from capture systems by three methods,
relating to noise [11], edges [9] and sine-wave [5-7, 9]
signals. There are various implementations of each method
that use particular test charts and processing to deliver the
MTE Each implementation has different sources and levels
of measurement error. These include variation error and bias
resulting from (i) inaccurate specification of the input signal,
(ii) inaccurate measurement of the output signal and (iii)
errors resulting from processing when computing the MTF
(e.g. DFT computation). Consequently, although a unique
MTF exists for linear systems in theory (Fig. 1a), in practice,
each implementation produces a different result.

The differences between MTFs derived by these different
methods and implementations are far greater, however,
for cameras that apply non-linear content-aware denoising
and sharpening ISPs. Denoising removes edges, detail
and texture. Thus, the mentioned adaptive characteristics
of non-linear denoising algorithms also render system
signal transfer scene dependent. Non-linear content-aware
sharpening introduces further signal transfer scene de-
pendency. For example, adaptive unsharp masks [29-32]
reduce contrast amplification in areas of a low signal
gradient to avoid boosting noise. Other content-aware
sharpening filters operate in various domains [33-36] and
can employ guidance images [35] or multi-scale contrast
manipulation [36].

Edges, sinusoidal signals and noise have little relation to
the average pictorial scene. Their interaction with non-linear
content-aware ISPs means that they yield biased MTFs.
Namely, the derived MTFs consistently overestimate or
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underestimate the average real-world performance of non-
linear systems, shown as F(s) in Fig. 1(b). Edges are generally
denoised less and sharpened more than natural scene signals;
sinusoidal signals respond less to sharpening [12]. MTFs
derived from such signals also fail to describe texture loss [12,
14-16] that is a primary driver of perceived image quality
in non-linear capture systems [37]. In order to characterize
the real-world performance of non-linear cameras more
effectively, MTFs should be measured using test charts that
are representative of natural scene signal properties, or
even better from scenes themselves, provided this does not
significantly increase measurement error.

MTFs are nowadays commonly measured from non-
linear systems using the dead leaves chart [14-16] and
characterize average real-world system performance and
texture loss more effectively. This chart relates more closely to
natural scene signals than edges, sinusoidal signals and noise.

The direct dead leaves implementation for measuring
the MTF [15] is widely adopted, and core to the IEEE
P1858 texture acutance metric and multivariate IQM [2].
It is defined using Eq. (3). It compensates for the system
noise power, NPSoutput (1), using the uniform patch NPS.
PSinput(4) and PSoutput(u) are input and output test chart
power spectra, respectively and u is the spatial frequency.

MTF (1) = PSOutput(”) - NPSOutput(”)
- PSnput (1)

©)

The recently standardized intrinsic dead leaves MTF
implementation [16] calculates signal transfer with respect to
the cross-spectrum. It is less susceptible to bias from noise
since it measures the transfer of both image amplitude and
phase content [13]. However, “reversible” image processing,
such as sharpening or contrast stretching, is not accounted
for [38]. These processes contribute toward both the scene
dependency and the perceived image quality of non-linear
systems.

Branca et al. derived MTFs with respect to a given
natural scene [18] (ie. F(s;) in Fig. 1b) by adapting
the direct dead leaves implementation (Eq. (3)) so that
PSinput(#) and PSoutput(u) are input and output scene
power spectra, respectively. This method accounts for signal
transfer scene dependency but is often biased since (i) like
the direct dead leaves MTE, it compensates for the system’s
noise, NPSoutput (), using the uniform patch NPS and (ii)
input images are not windowed or zero-padded, causing
periodic replication artifacts that are discussed in the next
section. The SPD-MTF measures of this article address these
limitations.

3. SCENE-AND-PROCESS-DEPENDENT SYSTEM
PERFORMANCE MEASURES

3.1 Scene-and-Process-Dependent NPSs

The SPD-NPS measurement framework (Figure 3) derives

the NPS using a number of captured images of the same

scene or test chart, referred to as replicates. The 1D SPD-NPS

is defined as the radial average of Eq. (1), where g(x, y) is
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Figure 3. The SPD-NPS measurement framework, adapted from [3].

Figure 4. Artifacts of fixed pattern caused by demosaicing the Branca
etal. [18] "People” image (left) and the detail of it [right); image contrast
was enhanced.

the mean image of all replicates; other parameters are as
previously stated.

The framework accounts for system noise scene depen-
dency but is computationally complex since many replicates
must be captured (10 in this article); using fewer replicates
underestimates system noise. The framework does not
account for demosaicing artifacts of a fixed pattern (Figure 4)
or sensor fixed pattern noise. The latter can be measured
via other methods [39]. It is also less significant than
temporally varying noise in current capture systems under
most exposure conditions.

We define the four proposed SPD-NPS measures below.

(i) The dead leaves SPD-NPS is derived from the dead
leaves chart using the SPD-NPS framework (Fig. 3).
It aims to characterize average real-world system
noise but requires assumptions of non-linear system
behavior.

(ii) The pictorial image SPD-NPS is derived from a single
pictorial scene using the SPD-NPS framework (Fig. 3).
It measures system noise with respect to that scene.

(iii) The mean pictorial image SPD-NPS characterizes
average real-world system noise, accounting for system
scene dependency. It is defined as the mean, F(s), of
all pictorial image SPD-NPSs, F(s,), across a set of
n scenes, as shown in Fig. 1(b). Averaging NPSs is
unorthodox. However, the measure tends toward the
average real-world system noise power as # increases,
provided that the image set reflects the properties of
commonly captured scenes.

(iv) The pictorial image SPD-NPS standard deviation mea-
sures the level of scene-dependent variation in a
system’s noise power. It is defined as the standard
deviation of all pictorial image SPD-NPSs over a set of
n images. Its accuracy increases as # increases.

Measurement bias and variation error in the pictorial
image SPD-NPSs are carried into the mean pictorial image
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Figure 5. The SPD-MTF measurement framework, adapted from [3].
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Replicates Mean Image HWNPS
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Before Windowing After Windowing

(e) Windowing Mask
Applied

Image

2D DFT Spectrum

Figure 6. 2D DFT log luminance spectra [c) and (d) for the Branca
et al. [18] "People” image (a) and (b), before and after windowing,
respectively, with (e).

SPD-NPS and pictorial image SPD-NPS standard deviation,
respectively.

3.2 Scene-and-Process-Dependent MTFs

The SPD-MTF measurement framework (Figure 5) builds
upon the previously defined method of Branca et al. [18].
It accounts for scene dependency in terms of system signal
transfer and noise. Eq. (3) defines it when PSpypy¢(4) and
PSoutput () are input and output scene (or dead leaves) power
spectra, respectively, and NPSougput (1) is the pictorial image
(or dead leaves) SPD-NPS.

Input scenes must be windowed to prevent periodic
replication artifacts corrupting the 2D luminance spectrum
(Figure 6¢). These artifacts occur during DFT processing
when opposite image edges differ in luminance. They are
unaffected by image processing and bias the MTF toward the
line MTF(u) = 1. We applied a square-edged mask (Fig. 6e)
to taper image edges to a neutral pixel value, starting at 64
pixels from each edge. It uses a cosine function of 1/128
cycles/pixel. It preserves scene signals to mitigate bias from
signal-to-noise limitations.

The SPD-MTF inherits signal-to-noise limitations from
the direct dead leaves MTE These are described by Eq. (4).
As the input image power, PSypy(u), approaches zero at
frequency u, MTF(u) becomes increasingly biased, especially
if the measured NPS, NPSy; (1), underestimates the real
system NPS, NPSg (u). PSoutput (1) is the output image power
spectrum. Even if the real system NPS is measured with
absolute accuracy in a theoretical ideal (i.e. NPSy(u) =
NPSg (1)), the numerator and denominator of line 3 of Eq. (4)
limit toward zero at equal value and MTF(u) limits to 1.
Thus, test scenes should not have zero (or very low) power at
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any frequency. Power spectra should also be computed with
satisfactory precision.

if NPSps (1) < NPSp(u)

then lim PStnput () < PSoutput () — NPSps (1)

PSInput(u)"O

and lim

PSOutput(”) — NPSp(u) — 0
PSinput()—0 N

PSInput(“)
= MTF(u).

(4)

Signal-to-noise limitations and periodic replication
artifacts explain the bias in the scene MTFs of Branca
et al. [18]. They also clarify why low-power scenes, and
higher frequencies of generally lower power, were most
affected. The SPD-MTF framework is less biased since it
uses a more appropriate noise measure and windowing.
Scenes with significant power across all frequencies, and
the dead leaves chart, are expected to yield SPD-MTFs
with acceptable bias unless captured under poor exposure
conditions. Low-power scenes are still expected to yield
biased SPD-MTFs, particularly at higher frequencies, or if
captured under poor exposure conditions.

The four proposed SPD-MTF measures are defined
below.

(i) The dead leaves SPD-MTF characterizes the transfer of
dead leaves signals by a system. It aims to describe aver-
age real-world signal transfer but requires assumptions
of system behavior. It applies the SPD-MTF framework
using dead leaves power spectra and the dead leaves
SPD-NPS.

(ii) The pictorial image SPD-MTF characterizes system
signal transfer with respect to a given input scene. It
implements the SPD-MTF framework using pictorial
scene power spectra and the pictorial image SPD-NPS.

(iii) The mean pictorial image SPD-MTF characterizes
average real-world system signal transfer, accounting
for scene dependency. It is defined as the mean, F(s),
of all pictorial image SPD-MTFs, F(s,), across the
previously defined set of n scenes (Fig. 1b). Bias is
transferred to it from the pictorial image SPD-MTE.

(iv) The pictorial image SPD-MTF standard deviation
describes the level of system signal transfer scene
dependency. It is defined as the standard deviation of
all pictorial image SPD-MTFs over the set of n scenes.
It is biased by variation error in the pictorial image
SPD-MTFs.

4. CAMERA SYSTEM SIMULATION AND TEST
IMAGES

Two image capture pipelines were simulated in MATLA

They were tuned to behave similarly to real camera phones at

various simulated exposures. Both pipelines modeled phys-

ical capture processes and image pre-processing identically,

in the following order.

B™,
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Lens blur was simulated by convolution with a Gaussian
approximation for the central lobe of a diffraction-limited
lens airy disk, using the f-number and pixel pitch of an
iPhone 6 camera phone [40]. 2D photon noise was simulated
using Poisson statistics at maximum linear signal-to-noise
ratios (SNR) of 5, 10, 20 and 40 (i.e. at saturation) [41].
It was scaled by factors of 2, 1 and 3.3 in the R, G and
B channels, respectively, to account for quantum efficiency
variation. Dark current noise was modeled as Gaussian
noise with a higher mean and standard deviation at lower
SNRs. Black and white levels were adjusted. Pixel information
was sampled according to a “grbg” color filter array.
Most pipelines simulate the latter process before noise and
pre-processing. But the chosen order produced the same
output images and facilitated the scaling of photon noise in
the R and B channels.

Further, the non-linear pipeline applied the following
non-linear content-aware ISPs in order. Demosaicing was
by the One Step Alternating Projections (OSAP) [42] algo-
rithm. Denoising was by Block Matching and 3D Filtering
(BM3D) [27]. Color channel images were sharpened by the
Guided Image Filter (GIF) [35] with no external guidance
image specified, and concatenated.

The linear pipeline applied the following equivalent
linear ISPs in order. Demosaicing was by the Malvar et al. [43]
algorithm. Denoising was by 2D spatial domain Gaussian
filtering. Sharpening was by the imsharpen MATLAB™
function.

The image set consisted of 50 high-quality imaged
scenes of 512 x 512 pixels, from the LIVE Image Quality
Assessment Database [44], Branca et al. [18], Fry et al. [45]
and Allen et al. [46] image sets. They reflected the variety of
scenes captured by contemporary camera systems.

5. VALIDATION AND DISCUSSION

The SPD-MTF and SPD-NPS measures were validated by
analyzing measurements from the linear and non-linear
pipelines that are referred to by their Poisson noise SNR.
Here, we present results from SNRs 40 and 5, representing
very good and very poor signal quality, respectively. SNRs
in between showed comparable trends. All NPSs describe
luminance noise. Burns’s direct dead leaves MTF implemen-
tation [47] was adapted for computing all measures. All
measurements were smoothed by a moving average filter of
seven segments.

5.1 Scene-and-Process-Dependent NPS

There is no current way of deriving the ground truth (or
“correct”) NPS. Nevertheless, Figs. 7 and 8 are used to
validate SPD-NPSs derived from the dead leaves chart and
pictorial images, respectively. Fig. 7 demonstrates that the
dead leaves SPD-NPS (red lines) characterizes the average
real-world noise power of the non-linear pipeline more
competently than the uniform patch NPS (black line). This
validates hypothesis 1. Levels of bias in both measures
were comparable since they delivered similar measurements
from the linear pipeline. This was as expected, in theory,
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Figure 7. Luminance NPSs derived from the dead leaves chart (red lines)
and uniform patches [black lines) at different stages of processing at SNR
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___ Uniform
Patch NPS

40 (a)-(f) and SNR 5 (g)-(l).

for two NPS measures reliant on linear system theory
(Fig. 1a). The uniform patch NPS is derived from a less

J. Imaging Sci. Technol.
IS&T International Symposium on Electronic Imaging 2020

060406-6

2
=102 L~ 10
g %
3 a
£
510.4 3 -4
B 131
& &
£ 10 § 100
& &
10 10°?

0.1 0.2 03 04 0.5
Frequency (cycles/pixel)

Pictorial Images’ SPD-NPS’ (Measured from 10 Replicates)

—— Mean of the Pictorial Images' SPD-NPS'

....... One Standard Deviation from the Mean of the Pictorial Images’ SPD-NPS'

Dead Leaves SPD-NPS

Figure 8. Pictorial image SPD-NPSs (gray lines), mean pictorial image
SPD-NPSs (black lines), SPD-NPS standard deviations (black dotted lines)
and dead leaves SPD-NPSs (red lines) of luminance noise at different
stages of processing atf SNRs 40 and 5.

suitable input signal than the dead leaves SPD-NPS. It
should be considered the less representative, thus, the less
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“correct” measure. It underestimated the dead leaves SPD-
NPS after non-linear denoising (Figs 7(d) and 7(j)). This
underestimation was compounded slightly by non-linear
sharpening. It was also greater at higher SNRs because
mild denoising still cleaned the uniform patch effectively.
Dead leaves SPD-NPS measurements derived using 10 and
100 replicates were relatively consistent to one another and
difficult to distinguish on logarithmic axes. Thus, SPD-NPSs
were derived from pictorial images also using ten replicates,
for consistency.

Fig. 8 indicates that measurement bias was similar for the
pictorial image SPD-NPS (gray lines), mean pictorial image
SPD-NPS (black line) and dead leaves SPD-NPS (red line)
since their respective measurements from the linear pipeline
were alike. The pictorial image SPD-NPS is validated as the
most suitable noise measure for non-linear systems with
respect to a given input scene (hypothesis 3). It accounted
for scene-dependent system behavior as demonstrated by the
variation between measurements from different input scenes
after non-linear denoising (Figs. 8(d) and 8(j)).

The mean pictorial image SPD-NPS (Fig. 8, black
line) best described the average real-world noise power
of the pipelines. It accounted for the general trends in
scene-dependent pipeline behavior over the 50 test scenes
(hypothesis 4). The dead leaves SPD-NPS (Fig. 8, red line)
generally underestimated the SPD-NPS measurements from
scenes. This suggests the non-linear content-aware BM3D
algorithm (which operates on a patch-wise level) denoised
dead leaves signals more effectively than pictorial scenes.
This may also apply to other non-linear content-aware
denoising filters.

The pictorial image SPD-NPS standard deviation (Fig. 8,
black dotted lines) described well the level of noise scene
dependency in both pipelines in real-world capture scenarios
(hypothesis 5). Non-linear denoising was the primary cause
of scene dependency. Non-linear sharpening changed the
shape and order of the pictorial image SPD-NPSs (gray lines)
in a scene-dependent manner but did not compound their
spread. The pictorial image SPD-NPS standard deviation
accounts for the latter but not the former. Note that the
sudden change in the lower standard deviation boundary in
Fig. 8(j) is not a discontinuity. It was caused by the curve
crossing the x-axis of a graph with a logarithmic y-axis.

When Fig. 8 was plotted on linear y-axes, we also
noted some scene-dependent variation in the pictorial image
SPD-NPSs from the linear pipeline. We analyze this variation
further in reference [48]. Its standard deviation was around
10% and 15% of the mean pictorial image SPD-NPS at SNRs
40 and 5, respectively. We expect that it is mainly caused by
scene-dependent variations in (i) the level of Poisson noise,
(ii) the scaling of this noise when simulating color channel
quantum efficiency and (iii) the effect of black/white level
adjustments. Measurement error scene dependency may also
have contributed to these curve variations and could not
be distinguished from genuine system scene dependency
described above. Regardless of its origin, our simulations
suggest this variation should not affect significantly the
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validity of the pictorial image SPD-NPS, mean pictorial
image SPD-NPS or pictorial image SPD-NPS standard
deviation.

5.2 Scene-and-Process-Dependent MTF

As with the NPS, there is no current method to derive
the ground truth (or “correct”) system MTE. We validate
the SPD-MTFs by comparing them with the direct dead
leaves MTF [15]. Figures 9 and 10 support the validation of
SPD-MTF measures using the dead leaves chart and pictorial
images, respectively. All measurements were heavily biased
before denoising at SNR 5 due to signal-to-noise limitations
(Eq. (4)). This was because noise power was high at these
SNR levels and thus underestimated significantly by all NPS
measures. Increasing the number of replicates reduced this
bias for each SPD-MTF measure, as demonstrated in Fig. 9
for the dead leaves SPD-MTE. Denoising also mitigated bias
in all MTF and SPD-MTF measurements and is generally
applied in such situations. Thus, Figs. 9(g) and 9(h) and
Figs. 10(g) and 10(h) are hereafter referred to as less relevant
conditions.

The dead leaves SPD-MTF (Fig. 9, red lines) uses a more
appropriate noise measure for non-linear systems than the
direct dead leaves MTF (Fig. 9, black line), as confirmed
by observations from Fig. 7. This caused it to characterize
non-linear pipeline signal transfer with slightly improved
accuracy, under the most relevant conditions (hypothesis 2).
Both the above measures have similar levels of bias since
measurements from the linear pipeline were alike under
such conditions. Reducing the number of replicates from 100
to 10 increased the underestimation of noise by the dead
leaves SPD-NPS. This, in turn, introduced minor positive
bias to dead leaves SPD-MTFs at higher frequencies due to
signal-to-noise limitations (Eq. (4)).

The other SPD-MTF measures were derived from
pictorial images, also using ten replicates, for fair comparison
(Fig. 10). The pictorial image SPD-MTF (gray lines) is the
most valid measure, in theory, for non-linear system signal
transfer concerning a given scene; such measurements are
particularly relevant to image quality modeling applications.
It accounted most comprehensively for system scene depen-
dency (hypothesis 3), showing significantly higher variation
after application of non-linear ISPs than linear ISPs.

We note, however, that scene-dependent variation was
also present in measurements from the linear pipeline under
some conditions. We expect this variation to be mainly
caused by bias from signal-to-noise limitations (Eq. (4)).
This bias was mitigated by denoising but affected the
“correctness” of the measure and should be investigated
further. It was also scene-dependent, due to variations in
scene signal power, and in the underestimation of noise
power by the pictorial image SPD-NPS measure. Higher
frequencies of low-power images, at lower SNRs, were most
affected. It is not presently possible to distinguish between
the effects of this bias and measurement variation resulting
from genuine system scene dependency.
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of system scene dependency effectively (hypothesis 5).
Measurements were greater for the linear pipeline than as
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expected in theory. They were also higher proportionally
than for the equivalent noise scene dependency measure
(Fig. 8, black dotted lines). This was caused by the mentioned
scene-dependent variation in pictorial image SPD-MTF
measurements. Nevertheless, we expect the pictorial image
SPD-MTF standard deviation to be a valuable measure,
especially if bias in the pictorial image SPD-MTF can be
reduced further. Like the equivalent SPD-NPS measure, it
accounts for the spread of the pictorial image SPD-MTF
curves but not changes in their shape or order.

The mean pictorial image SPD-MTF (black line) is
validated in Fig. 10 as a more relevant measure for average
real-world signal transfer in non-linear systems than the
dead leaves SPD-MTF (red line). Bias in both measures was
similar under the most relevant conditions. This was because
calculating the mean of the pictorial images’ SPD-MTFs
averaged out their scene-dependent variation and bias. This
produced curves of similar shape to the dead leaves SPD-
MTF for the linear pipeline. This suggests that—provided
it is measured from a representative scene set—the mean
pictorial image SPD-MTF is often less biased than the
individual pictorial image SPD-MTF measurements it is
derived from.

After applying non-linear ISPs, however, the dead
leaves SPD-MTF was dissimilar to the pictorial image
SPD-MTFs and often underestimated the mean pictorial
image SPD-MTE Both of the other measures account for
scene dependency more comprehensively than the first.
We infer that the non-linear content-aware denoising and
sharpening algorithms processed dead leaves signals in a
different manner to the average pictorial scene. For a fair
comparison, the dead leaves chart was windowed as per all
scenes to mitigate bias from periodic replication artifacts.

6. CONCLUSIONS

In this article, we reviewed the limitations of current MTF
and NPS measures when characterizing capture systems
that apply non-linear, content-aware spatial ISPs. We then
proposed several scene-and-process-dependent MTF and
NPS measures that account for the scene dependency of
such systems. These measures were validated using simulated
camera phone capture pipelines. The fact that they revealed
significant scene dependency in the non-linear pipeline
indicates their promise when characterizing real non-linear
cameras and other non-linear imaging systems.

The pictorial image SPD-MTF and SPD-NPS measured
pipeline performance suitably with respect to a given input
scene, accounting for scene-dependent behavior. They are
the only current measures capable of such characterization.
In a separate publication [49], we demonstrate their suit-
ability as input parameters for IQMs when modeling the
perceived quality of a given captured scene.

The mean pictorial image SPD-MTF and SPD-NPS
characterized average real-world pipeline performance, ac-
counting for general trends in scene dependency. We
propose them as performance optimization parameters
and IQM input parameters for applications concerning
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average real-world system image quality. Current equivalent
measures do not account for system scene dependency.

The pictorial image SPD-MTF and SPD-NPS standard
deviation described the degree of scene-dependent variation
in each pipeline’s performance. They are the only current
measures for system scene dependency but do not account
for all aspects of it. Combining these measurements with the
mean pictorial image SPD-MTF and SPD-NPS characterizes
both the average real-world system performance and its level
of scene dependency.

The dead leaves SPD-MTF and SPD-NPS measured
non-linear pipeline performance more accurately than the
current direct dead leaves MTF and uniform patch NPS,
respectively. We propose that they should be used to estimate
average real-world system performance. However, results
from both these measures were often outliers compared
to measurements derived from scenes. This is because
non-linear content-aware ISPs were triggered at different
levels by the dead leaves chart, compared to natural scene
signals. The dead leaves chart simulates an average scene
signal with a typical power spectrum. However, with respect
to these algorithms, it is only a mathematically generated
image with limited relation to the complex spatial signals in
pictorial scenes. We propose that a more suitable test chart
should either simulate natural scene signal structure more
comprehensively or be composed of such signals.

The SPD-NPS measures account for the effect of relevant
input signals on temporally varying noise in non-linear
systems. They showed little measurement error. Thus, they
are more appropriate than current equivalent measures
for such systems (if equivalent measures exist). They do
not account for fixed patterns of noise/artifacts. Their
requirement for many replicates causes all SPD-MTFs and
SPD-NPSs to be more computationally complex than current
measures.

The SPD-MTF measures are more suitable for non-
linear capture systems than current equivalent measures.
However, the pictorial image SPD-MTF was prone to
measurement bias under certain conditions due to signal-to-
noise limitations inherited from the direct dead leaves MTF
implementation. This bias was mitigated by denoising. It was
also reduced by computing the measure either with more
replicates or with higher power scenes. Further investigations
are recommended to reduce it further.

This bias was scene dependent and affected the accuracy
of the pictorial image SPD-MTF standard deviation. It can-
not currently be distinguished from genuine measurement
scene dependency that results from interactions between
image signals and non-linear ISPs. It averaged itself out over
the 50 test scenes, however, to similar levels to the bias in the
dead leaves SPD-MTE Thus, we expect the mean pictorial
image SPD-MTF to be less affected than other SPD-MTFs
derived from pictorial scenes.

In-depth analysis of this bias and other forms of
SPD-MTF and SPD-NPS measurement error were beyond
the scope of this article. We suggest that further analysis of
such an error is needed to evaluate the “correctness” of each
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SPD-MTF and SPD-NPS measure. For the SPD-MTFs, this
may involve adapting error propagation methods for existing
dead leaves MTF measurement implementations [50].

All the proposed SPD-MTF and SPD-NPS measures
would benefit from validation with real capturing systems. In
a parallel article [49], we have used them as input parameters
to IQMs with the aim of modeling the quality of individual
scenes. The modified IQMs were more successful (i.e. they
correlated more accurately with perceived image quality). We
also developed novel log Noise Equivalent Quanta (log NEQ)
and Visual log NEQ metrics from these measures, which
performed very competitively. In a separate publication [48],
we have used SPD-NPS measures to examine camera pipeline
noise scene dependency in further detail. We also have
developed the former into objective single-figure metrics for
system noise performance and scene dependency.
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