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Abstract

Macro-uniformity is an important factor in the overall qual-
ity of prints from inkjet printers. The International Committee for
Information Technology Standards (INCITS) defined the macro-
uniformity for prints, which includes several printing defects such
as banding, streaks, mottle, etc. Although we can quantitatively
analyze a certain kind of defect, it is difficult to assess the overall
perceptual quality when multiple defects appear simultaneously
in a print.

We used the Macro-uniformity quality rulers designed by IN-
CITS W1.1 as experimental references, to conduct a psychophys-
ical experiment for pooling perceptual assessments of our print
samples from subjects. Then, calculated features can describe the
severity of defects in a test sample; and we trained a predictive
model using these data. The predictor can automatically predict
the macro-uniformity score as judged by humans.

Our results show that the predictor can work accurately.
The predicted scores are similar to the subjective visual scores
(ground-truth). Also, we used 6-fold cross-validation to confirm
the efficacy of our predictor.

Introduction

The INCIT S W1.1 activity recognizes that printed image
quality can be well described by a small set of attributes, including
gloss uniformity, macro-uniformity, and micro-uniformity. Nu-
merous recent papers show that among these attributes, macro-
uniformity draws the most attention [1].

Macro-uniformity (ISO 19751 macro-uniformity) refers to
the subjective impression of color uniformity across a large image
area that is intended to have a uniform color. There are several
kinds of print quality defects that influence the percept of macro-
uniformity [1], [2]. They are:

• Banding: one-dimensional, periodic lightness and/or chro-
matic variations.

• Streaks: one-dimensional, isolated lightness and/or chro-
matic variations.

1Research supported by HP Inc., Barcelona, SPAIN

• Mottle: two-dimensional, random lightness and/or chro-
matic variations.

• Graininess: two-dimensional, fine-scale, random texture
with a sand-like appearance.

• Mottle: two-dimensional, medium-scale, random lightness
variations.

• Large area variation: two-dimensional, random lightness
variations, the spatial region is larger than for mottle.

• Large-scale non-uniformity: one-dimensional, low-
frequency lightness variations.

These defects are very important to print quality, yet it is
difficult to evaluate the overall macro-uniformity when they occur
simultaneously.

The INCIT S W1.1 macro-uniformity team developed a
method to measure overall macro-uniformity. They created
macro-uniformity quality ruler samples by imposing increasing
levels of non-uniformity in a synthetic defect pattern, which con-
sists of a multitude of normally occurring defect types. Exper-
iments were conducted to calibrate the quality ruler in terms of
just noticeable differences (JND) [2].

Quality rulers labeled 3, 6, 9, 12, 15, 18, 21, 24, 27, and 30
can be generated by the macro-uniformity software. The smaller
the label (JND) is, the better the print quality is. The first qual-
ity ruler (JND = 3) would appear nearly perfect, with only mi-
nor defects. The perceived defect level is approximately logarith-
mic with the amplitude of the defects, and all levels are visually
equidistant according to the quality of the print samples.

With quality rulers, according to the ISO 20462-3 interna-
tional standard, a psychophysical experiment for estimating print-
ing quality can be designed [3]. The quality ruler method is su-
perior to many other psychophysical methods, because it can as-
sess a large range of printing quality levels with relatively few
resources.

In this paper, we complete the following three tasks:
1. Compute a value for each defect in the macro-uniformity

set, which can represent the severity of the defect.
2. Design and conduct a psychophysical experiment accord-

ing to the ISO 20462-3 international standard, which includes the
selection of test samples, the calibration of the printer and scan-
ner, and the environmental preparation and detailed guidance dur-
ing the experiment.
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3. Analyze the data and built prediction models. We use
Linear Regression and SV M to build prediction models which
can predict the subjective assessment of the JND based on the
objective defect values calculated for the test print.

Macro-Uniformity Quality Ruler

To print the samples for the image quality ruler, we used
an E pson Stylus Pro 3880 Color Inkjet Printer2, which is a
photo quality inkjet printer, as recommended by the INCIT S
W1.1 macro-uniformity team. Printer calibration is required be-
fore generating and printing the quality ruler. We first used the
W1.1 macro-uniformity software [4] to generate the printer cali-
bration file. An image of the calibration page is shown in Figure
1.

A companion file for the calibration page contains a table
of input values for the patches in the generated calibration test
pattern. The first column in this file contains an arbitrary index.
The second column is the row-index of the test patch. The third
column is the column-index of the test patch. The fourth column
is the input value to the printer, as a CIE Y value from 0 to 100,
before mapping to an 8 bit value from 0 to 255.

Figure 1. The Calibration Pattern.

This file needs to be printed using the same printer that is
going to be used to print quality rulers. We then measured the
CIE XY Z values of each patch on the printed file using an X-
Rite DT P-70 3 color measurement instrument. The measuring

2Epson America, Inc., Long Beach, CA.

process can be repeated several times to minimize the effect of
noise. The final step to complete printer calibration is to arrange
all the patches’ average CIE XY Z values into a specific format file
and input it into the W1.1 macro-uniformity software.

The software automatically calibrates the CIE Y data accord-
ing to the input file, and then generates quality ruler samples with
specific defect scales.

Each quality ruler sample includes a 170 mm × 170 mm
defect region and a test target surrounding the defect region. As
shown in Figure 2, the quality rulers are created at fixed quality
levels ranging from highest to lowest in steps that are 3 JNDs
apart. Quality ruler samples labeled 3, 6, 9, 12, 15, 18, 21, 24,
27, and 30 can be generated by the software. But according to the
severity of the defects in the test samples, the appropriate range
should be chosen. (Quality rulers with JND from 3 to 21 were
used in our work.)

Figure 2. Quality ruler samples labeled with JND = 3, 6, 9, 12, 15, 18, and

21. The smaller the label (JND) is, the better the print quality is. The first

quality ruler (JND = 3) would appear nearly perfect.

Compute Defect Features in the Macro-
Uniformity Test Set

Our test samples were printed at four different tint levels with
a prototype large-format printer using a page-wide array inkjet
print bar. Print defect features such as banding, streaks, graini-
ness, etc., could be seen in the print samples. The framework for
computing the defect features includes scanning hard-copy test
samples, removing halftoning pattern using a descreening pro-
cessing and then computing values that represent the severity of
defect features as described below.

First, scanner calibration needs to be performed before scan-
ning the test samples. All test samples were scanned at 600 d pi
resolution, as recommended by a previous study [5]. We used an
E pson Expression 10000XL scanner 2. The scanner calibration
was performed as described in [6], [7]. A Kodak Q60 reflective
target was scanned, and an X-Rite DT P-70 3, was used to deter-
mine the CIE XY Z values of the patches. The gray patches were

3X-Rite, Inc., Grand Rapids, MI.
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Figure 3. Print samples with tint levels 30%, 50%, 70%, and 100% were

printed with a prototype large-format printer using a page-wide array inkjet

print bar. We selected 12 samples from levels 30%, 50% and 70%, and 6

samples from level 100%, resulting in a total of 42 test samples.

used to determine the gray-balance curves for each of the R, G,
and B scanner channels. Then, the 240 color patches were used to
determine the elements of a 3× 3 matrix used to transform from
linear scanner RGB to CIE XY Z. Finally, we transform from CIE
Y to CIE L∗ to complete the transformation that is applied to the
monochrome test pages.

Figure 4. Gray balancing curves for the R, G, B channels.

The Gray balancing results are:

Rl = 99.4942(
Rs

255
)1.6821−0.6268 (1)

Gl = 98.5282(
Gr

255
)1.6542−0.4967 (2)

Bl = 102.6936(
Br

255
)1.7003−0.5815 (3)

The transformation from Linear RGB to CIE XY Z is :X
Y
Z

=

 0.3628 0.3310 0.1875
0.1137 0.1407 0.1901
0.1819 0.1846 0.1197


Rl

Gl
Bl


A human vision model is then applied to the scanned

samples to measure defects as perceived by a human subject. The
contrast sensitivity function (CSF) we used in the human vision
model was proposed by Mannos and Sakrison [8]. The viewing
distance of the CSF is set to 15.7 inches (approximately 40 cm),
which is also the viewing distance recommended by the INCIT S
W1.1 working group for conducting psychophysical experiments
using the quality ruler method.

Figure 5 and Figure 6 show a 70% tint test sample before and
after filtering with our human vision model.

After applying the human vision model, we converted the
samples from the RGB color space to the CIE L*a*b* space.
Since our test samples are all printed in grayscale, we only use

Figure 5. The test image before HVS filtering.

Figure 6. The test image after HVS filtering.

the lightness channel (L* channel) to compute the defect features
in the macro-uniformity test set.

To compute values that can represent the severity of the de-
fects in the macro-uniformity test set, spatial variations including
one-dimensional, two-dimensional, periodic, aperiodic, localized,
large-scale, and small-scale variations were considered. In the re-
mainder of this section, we describe the attributes of each defect
feature, and how it is computed. The methods we used to compute
values for the defect features are mainly inspired by ISO image
quality standards [3].

Graininess refers to the image fluctuation in both the hori-
zontal and vertical directions of the image. We use the root mean
square fluctuation (RMSF) of L* value to measure Graininess.

G =

√√√√ 1
MN

M

∑
i=1

N

∑
j=1

(L*i j−L*)2 (4)

where M and N are the number of image samples in the vertical
and horizontal directions, and L* is the global mean of L* in the
sample.

Mottle refers to random lightness variations in both the hori-
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zontal and vertical directions of the image. To compute its value,
an averaging window of 2× 2 mm2 (47× 47 pixels at the scan-
ning resolution of 600 d pi) is convolved with the sample. Then,
the standard deviation of the resulting array is computed as the
Mottle.

Large Area Variation also refers to two-dimensional random
lightness variations, but the spatial region is larger than for Mottle.
We use an averaging window of 4×4 mm2 (95×95 pixels at the
scanning resolution of 600 d pi), and convolve it with the sample.
Then the difference between the largest and smallest array entries
was computed as the Large Area Variation.

Banding and Streaks represent high-frequency lightness
variations in different directions. So their computational meth-
ods are the same except for the processing direction. First, the
1D (one-dimensional) projection in both the horizontal and ver-
tical directions is performed. Then the average of the signal is
subtracted from the signal to exclude the DC component. After
that, its DFT (discrete Fourier transform) is computed; and the
strengths of signal peaks are measured. The Banding and Streaks
features are obtained by integrating the energy of the peaks whose
frequency is higher than 10 cycles/inch.

Large-scale Non-uniformity represents two-dimensional
low-frequency lightness variations. First, we perform 1D projec-
tion in the horizontal and vertical directions. Then, we smooth the
projections with an averaging window of length 3 mm (80 pixels
at the scanning resolution of 600 d pi). After that, we use a piece-
wise linear spline fit to iteratively add knots until the maximum
error between two adjacent knots is less than 0.5∆E units. The
Large-scale Non-uniformity is obtained by computing the mean
absolute slope of those line segments for which ∆L∗

∆d > 0.5, where
d is the distance in inch.

Psychophysical Experiment

The psychophysical experiments were conducted under con-
trolled viewing conditions in a laboratory at Purdue University
dedicated for this purpose. The viewing booth used was the
Graphiclite CV X2 4. For viewing, the quality ruler samples
and test samples were placed in frames. The frames were fabri-
cated by MatShop 5. For the ruler samples, the frames were 9 ×
9 inch2 in size with a 6 × 6 inch2 opening. The frame border was
sufficiently large to hide the test target around the border. For the
test samples, the frames were 9 × 9 inch2 in size with an 8 × 8
inch2 opening. These frames can be seen in Figure 3. For both
the ruler samples and the test samples, the frame color was cream
with a white color core, which was chosen to be as neutral as pos-
sible.

A total of 26 subjects participated in the entire experiment.
14 of these subjects came from our research group; and most of
them had an image processing background. The other 12 subjects

4GTI Graphic Technology, Inc., Newburgh, NY.
5MatShop, Victoria, BC, Canada.

Figure 7. Two views of the lab environment and viewing booth. In the far

left of the left image, some of the wooden platforms used to adjust viewing

height can be seen standing on end.

were from non-engineering departments at Purdue, and did not
have an image processing background. We conducted a pilot ex-
periment before the official experiment to double-check that the
procedure worked well. The data from the pilot experiment was
not used to train or evaluate the predictors.

Before each subject’s experiment, we tested their visual acu-
ity and color vision, and adjusted their viewing distance based on
their height by having them stand on an appropriate number of
stacked wooden platforms. We showed all quality ruler samples
as well as the test samples, and briefly explained the experimental
process.

During the experiment, the subjects walked along the view-
ing booth, and slid the test sample in front of them, comparing it
with the hard-copy quality ruler samples, until finding a suitable
location based on overall visual uniformity (The test sample’s
location meets the condition that each ruler sample farther to
the right is lower in quality than the test sample, and each ruler
sample farther to the left is higher in quality). Since the reference
stimuli are labeled 3, 6, 9, etc., if the test sample’s location fell
in between two adjacent ruler images, as it often did, the subject
then selected an intermediate integer value from the ruler scale.
For example, if the location was between the ruler prints “12”
and “15”, but was closer to “12”, the value of the test sample was
assigned to be “13”.

Data Analysis

Before using the subjects’ assessments, we pre-processed the
data and removed the outliers. In our work, we define a subject’s
data to be an outlier if it meets both of the following conditions:

1. Weak consistency.
2. Large average absolute deviation.
We conducted the consistency test as part of the experimen-

tal process. We selected 4 samples from different tint levels and
repeatedly added these 4 samples into the waiting list in the early,
middle, and end stages of each participant’s experiment. So each
subject assessed the uniformity of these four samples 3 times
throughout the experiment.

We performed the same procedure for each subject to collect
data to analyze their score consistency. For a given test sample,
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if the difference between the highest and lowest scores given by
a subject was greater than 6 JND, the subject’s score was consid-
ered to be weakly consistent. Thus, the weak consistency condi-
tion is defined as:

X i
max−X i

min ≥ 6 (5)

where X i
max and X i

min represent the highest and lowest scores given
to the same print sample i by the subject at different stages of the
experiment.

The second condition for the subject’s data to be an outlier
is that it exhibits a large average absolute deviation, which is:

1
N

N

∑
i=1
|Si−Si|> 3 (6)

where N denotes the total number of subjects, Si denotes the score
assigned by the subject to the print sample i, and Si denotes the
average score assigned by all subjects to the print sample i. If the
subject failed both these tests, then all their scores were eliminated
from further analysis of the dataset. Of the 26 subjects, a total of
3 subjects were eliminated as outliers.

Prediction Models

At this point, we had collected 26 participants’ perceptual
assessments (JND) of 42 samples. After removing the outliers as
described in the previous section, we obtained the average percep-
tual assessments of all samples, which was the ground-truth used
to build the prediction model. For each sample, the seven features
described previously, which represent the severity of printing de-
fects in the macro-uniformity set were computed. This data was
also the input for building the prediction model. Our goal was to
find the relation between defects and the overall perceptual uni-
formity. Using this correspondence, we can predict the overall
JND score for prints in the future.

In this paper, we used linear regression (LR) and support vec-
tor regression (SV R) to build predictors. Linear regression is a
simple algorithm that models the relationship between a scalar
response and one or more explanatory variables, and then pre-
dicts future data response based on that relationship. The support-
vector machine (SV M) is a supervised learning model used for
classification and regression analysis. The learning strategy of
SV M is to identify the hyperplane which maximizes the margin,
so the task is transformed into a convex quadratic programming
problem.

In our work, we used the Least-squares support-vector ma-
chines (LS− SV M) to solve the regression problem. It has the
same principles as the SV M for classification, with only a few mi-
nor differences. For the kernel function K, typical choices are the
linear kernel, polynomial kernel, and Gaussian radial basis (RBF)
kernel. We use the RBF kernel represented by the following for-
mula.

K(x,xi) = exp(
−||x− xi||2

σ2 ) (7)

We used Matlab and Python to implement the SV R model.
For Matlab, we used the Least Squares Support Vector Machines
(LS-SV M) [9]; and the Scikit-Learn [10] package was used for the
Python version SV R model.

In the process of building the model, we used k-fold cross-
validation. Cross-validation is a verifying method used to evalu-
ate how the results of a statistical analysis will generalize to an
independent data set. It is mainly used for assessing the ability of
a predictive model to predict new data. Also, it can help to find
problems such as overfitting or selection bias [11].

In k-fold cross-validation, the original sample is randomly
divided into k equal-sized subsets. Among the k subsets, one is
used as testing data, and the remaining k-1 subsets are used as
training data. Then, the cross-validation process is repeated k
times, and each of the k subsets is used as the testing data only
once. The k results can then be averaged to produce the model
estimation. The advantage of this method is that all observations
are used for training and testing, and each observation is only used
once for testing.

For our data, setting k = 6 will result in 6 folds. We randomly
shuffle the samples into 6 folds indicated by d0 to d5 so that each
set is equal in size, which is with 7 samples in each fold. Then,
we train on d0, ...,d4 and verify on d5, then train on d1, ...,d5 and
verify on d0, .... This process is repeated 6 times. The average
prediction is the model estimation.

Results

To evaluate our regression models, we use mean absolute er-
ror (MAE) and mean squared error (MSE). The standard deviation
of MAE is a measure of the robustness of the predictions.

MAE =
∑

n
i=1 |pi−ai|

n
(8)

MSE =
∑

n
i=1(pi−ai)

2

n
(9)

where pi represents predicted data and ai represents actual data.
For the predictor built by LR, we have:

MAE = 0.9100 JND Std.Dev. of MAE = 0.6340
MSE = 1.2399 JND

For the predictor build by SV R, we have:
MAE = 0.8305 JND Std.Dev. of MAE = 0.5469
MSE = 0.9463 JND
It is a quite encouraging that the MAE between the predicted

scores and the subjects’ scores for both models is less than 1. As
mentioned earlier, the interval between two adjacent quality rulers
used as a reference is JND = 3 so for an accurate model, its MAE
should be less than 3 JND. Also, the standard deviation shows
that the error distribution is stable.

We were particularly interested in some samples with a rel-
atively large absolute error. We found that most of these samples
were from the 100% tint level. We feel that this is understandable,
because the 100% tint level means the sample is totally black. It
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was more difficult for subjects to notice the defects; and thus these
samples were given a relatively better quality evaluation than was
predicted.

Figure 8. The results of the Linear Regression Predictor. The abscissa is

the sample ID and the ordinate is the JND score. The orange bars indicate

the predicted score for each sample. The blue bars indicate the subjects’

mean score for each sample.

Figure 9. The results of the SVR Predictor. The abscissa is the sample ID

and the ordinate is the JND score. The orange bars indicate the predicted

score for each sample. The blue bars indicate the subjects’ mean score for

each sample.

Conclusion
In this paper, we designed and conducted a psychophysical

experiment to collect the perceptual assessment of print macro-
uniformity. The experiment worked well, and showed that the
quality ruler method proposed by the INCIT S W1.1 macro-
uniformity team can provide a reliable method to assess macro-
uniformity of print samples. Also we developed models for
predicting the overall macro-uniformity as judged by humans.
We confirmed the efficacy of the predictors using 6-fold cross-
validation. Also, the model evaluation metrics MAE, MSE and
standard deviation of MAE indicated that the models can perform
accurate prediction.
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