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Abstract
As depth imaging is integrated into more and more consumer

devices, manufacturers have to tackle new challenges. Applica-

tions such as computational bokeh and augmented reality require

dense and precisely segmented depth maps to achieve good re-

sults. Modern devices use a multitude of different technologies to

estimate depth maps, such as time-of-flight sensors, stereoscopic

cameras, structured light sensors, phase-detect pixels or a com-

bination thereof. Therefore, there is a need to evaluate the quality

of the depth maps, regardless of the technology used to produce

them. The aim of our work is to propose an end-result evalua-

tion method based on a single scene, using a specifically designed

chart. We consider the depth maps embedded in the photographs,

which are not visible to the user but are used by specialized soft-

ware, in association with the RGB pictures. Some of the aspects

considered are spatial alignment between RGB and depth, depth

consistency, and robustness to texture variations. This work also

provides a comparison of perceptual and automatic evaluations.

Introduction
Computational Bokeh, and various other depth-based pho-

tographic features, have become major selling points for flagship

smartphones in the last few years. These applications have dif-

ferent quality requirements than most depth imaging technolo-

gies. Bokeh simulation requires depth maps to be very precisely

aligned with an RGB picture, and suffers largely from artifacts

and segmentation errors. On the other hand, distance estimation

is generally less important, and the relative depth levels of the

elements of the scene is what matters. Additionally, those appli-

cations use various types of depth imaging technologies, ranging

from single-image deep learning estimation to time-of-flight sen-

sors.

In this article, we present a quality evaluation framework for

depth maps as a means towards photographic applications. The

different aspects of quality that we evaluate can be classified in

two main categories: segmentation and depth consistency. Ex-

amples of segmentation problems are offset edges or incomplete

detection of small elements. Under depth consistency, we regroup

aspects such as sensitivity to texture variations, depth estimation

and depth regularity.

Our approach is based on a single scene, designed to high-

light those defects and make them measurable. The scene con-

tains a 2-dimensional chart and a background. Our measurement

algorithms output several metrics, mostly local. Rather than a sin-

gle global evaluation metric, we propose feature-level measure-

ments to enable manufacturers to evaluate precisely the strengths

and weaknesses of their devices.

The rest of the article is organized as follows. The next sec-

tion presents the chart that we designed as the main element of

our test setup. The following section introduces the experimen-

Figure 1. Picture of the bokeh setup proposed in [7] and the associated

depth map captured with a smartphone. Depth map defects are obviously

visible in this example, mostly around the head and in the edges. Some

background elements start to appear, and some holes of the palettes are

blended in with the foreground.

tal setup and test protocol used for our analyses. Afterwards, we

present the metrics we propose as well as the implemented algo-

rithms, followed by the analysis of the results and a comparison

with perceptual evaluation.

Related Work
A number of papers on depth map quality evaluation have

been published over the last few years. Several trends can be dis-

tinguished. Haddad [6] and Kim et al. [11] focus on depth maps

for application such as Free Viewpoint Television or 3D Televi-

sion, whereas Koch et al. [12] proposes a set of metrics to evaluate

the output of CNN-based single-image depth estimation. Several

papers [1, 19] propose evaluations based on well-known 2D qual-

ity metrics (PSNR, SSIM, VIF, etc.) applied to stereoscopic cases.

Others, such as Benoit et al. [2], propose local quality metrics for

disparity distortion. Finally, many papers [3, 14, 13, 18, 15] also

propose neural network architectures to extract depth maps from
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single images, using various quality metrics for training.

Those works have in common that they do not take advantage

of a complete prior knowledge of the scene. They are meant to

be usable for image-to-image comparisons with a ground truth

image, which makes them easily testable against datasets such as

KITTI [4], NYU v2 [17] or Middlebury [16]. The novelty of our

work is to use a precisely known laboratory setup to compute local

metrics, targeted at specific known defects.

Chart design
The main part of our experimental setup is the chart. Our

goal was to design the elements of the chart to mimic some real

life situations, and highlight some specific defects. Therefore, its

conception was very much based on observation and experimental

prototyping. As starting point we used the Bokeh chart proposed

in [7] shown in Fig. 1. This work was designed for perceptual

evaluation, and was not fit for automated measurements because

of the imperfect knowledge of the geometry of the chart. How-

ever, it enabled us to observe and classify many defects.

From those observations, we established a list of interesting

elements to put in our new chart. Starting with textures, it was

obvious that strong texture variations caused some devices to infer

depth variations, even if there was none. This is likely caused

by some kind of guided filtering [8], which causes background

details to appear in the depth maps. Furthermore, highly repetitive

patterns are tricky for devices that use stereoscopic vision, and

low-reflectivity surfaces usually cause depth estimation issues for

time-of-flight or structured light sensors.

Segmentation issues were most visible around elements that

are very close together, such as fingers. Artifacts were also visible

near the end of thin elements, where the resolution of the depth

sensors may not be sufficient and filtering algorithms come into

play. In low-contrast areas, the difference between foreground

and background was sometimes not detected, highlighting the im-

portance of the background.

Knowing that face detection is almost universally used in the

process of depth estimation in smartphones, a simulated head is

an essential element to put in our setup. It is likely that some

devices will infer the shape of a body under the head, introducing

some interesting defects. Furthermore, the face is the part of the

body where human perception focuses the most and where any

small defect can result in a very unrealistic portrait.

The decision was made to create a two-dimensional chart,

shown in Fig. 2, because measurements can be carried out much

more easily than on a three-dimensional one. It is easier to know

the geometry with sufficient precision, and avoids occlusion and

perspective issues. The legend for the regions of interest in Fig. 2

are given in Tab. 1. The bottom part of the chart is simply used as

a support, so that it can be held without wasting any useful space.

The chart was printed on DIBOND R© aluminium composite ma-

terial, which makes it rigid and reasonably flat.

Experimental setup
Our experimental setup consists of the chart and a back-

ground, providing two layers of depth. As previously stated, the

importance of the background is capital. The contrast and the

patterns of the background have a big impact on the end result,

especially parts that are connected or very close to the foreground

elements. Therefore, the choice of the background to be used was

Figure 2. Annotated depth map chart.

Element Expected defects

1. Triangular holes Filtering issues, wrong detection
of thin parts

2. Gradual holes No detection or mixed detection
of thin holes

3. Checkerboard Depth estimation issues due to
repetitive pattern

4. Textured strip Depth inconsistency due to tex-
ture variation

5. Black and white strip Depth inconsistency due to re-
flectivity variation

6. Head Depth inference caused by face
detection

7. Letters Filtering issues because of very
contrasted elements

8. Markers None, used for chart detection
9. Crown Filtering issues, wrong detection

of thin parts
10. Alignment marker None, used to check the printer

alignment

Table 1. Elements of the chart

non-trivial. Our first idea was to use a uniform white backdrop,

but this was unfair to stereoscopic devices, and did not really re-

semble any real life situation. In the end, our choice was to use

the same background that is used for the bokeh setup of [7].

This background is quite challenging because it has lots of

small elements, however it is fair for every kind of technology,

which is what we are mainly looking for. It is printed on a back-

drop and is therefore flat. In order to ensure that results are com-

parable among devices, the same exact framing is used in every

case. During a shooting session, both the distance from the chart

to the background and the distance from the device to the chart

need to be adjusted depending on the focal length of the device,

using the following formula d2 = f2

f1
d1, where d2 is the new dis-

tance between the device and the element, d1 the previous dis-

tance, and f1 and f2 are the focal lengths of each device.

We use two lighting conditions during our shooting sessions:

D65 at 1000 lux, simulated by a fluorescent illuminant with a

color temperature of 6500K, and A at 50 lux, a tungsten illumi-

nant at 2856K. Those two cover the most common illuminants and

offer widely different spectra. In both cases, our shooting protocol

consists of five pictures taken on a tripod, forcing the autofocus

370-2
IS&T International Symposium on Electronic Imaging 2020

Image Quality and System Performance



Figure 3. Evolution of the gray levels along the width of the chart. We can

see that the levels are very noisy and it is difficult to extract a clear tendency.

A linear regression is given for reference.

to run again between pictures. The chart is placed parallel to the

sensor of the device or at low angles (≤ 10◦).

Metrics and algorithms
The goal of our work was to propose a number of local met-

rics rather than one global metric. In every case, we started from

a known defect, and tried to find a metric to measure it. All of our

metrics take advantage of a near-perfect knowledge of the scene

to compute relevant values.

The linearity issue
As a starting point, we need a precise estimate of the ground

truth of the scene. By considering that the chart and the back-

ground are both flat, the depth becomes easy to model. However,

the interpretation of the depth maps is more problematic. There

is currently no standard for depth map encoding, and the formats

used by the manufacturers are usually not documented. Since the

absolute distance is not important in this use case, depth maps are

not directly associated to real distances. The conversion from a

distance to a gray level is done by an unknown function, which

we assume strictly monotonic and continuous. In order to mea-

sure the accuracy, we need to project the ground truth in the depth

map space, and therefore estimate this function.

The four markers in the corners of the chart enable us to

know its position in the RGB image with an error of less than two

pixels, even in noisy conditions. It is therefore possible to extract

the foreground pixels of the depth map and fit a parametric model

to the surface. However, a trade-off needs to be found : an overly

complicated model would risk over-fitting, and we would not be

able to detect defects on the surface ; on the other hand, another

extreme solution would be to consider that the chart is perfectly

parallel to the sensor and use a single depth value for the chart,

but this would leave too much room for human error during the

shooting sessions.

A reasonable solution would have been to try several para-

metric models (e.g. linear, logarithmic, inverse...), but we ob-

served that the variations were too small and noisy to extract any

meaningful tendency since the chart was almost parallel to the

sensor. As an illustration, Fig. 3 displays a plot of the gray levels

along the width of the chart. Therefore, we chose a simple linear

model for this fitting.

To reduce the impact of outliers, we use the robust Huber re-

gression distance [9]. This parametric model enables us to infer

Figure 4. Error map displaying the error for each pixel, relative to the pixel

dynamic.

Figure 5. Artifact due to a high frequency pattern.

an expected depth value for every foreground pixel. That way, we

can compute a difference between the expected background and

foreground values for every pixel, and use this difference to adapt

the thresholds in our measures. We will refer to this difference

as the pixel dynamic. When computing metrics on areas, we use

the maximal pixel dynamic in the area and refer to it as area dy-

namic. Depending on the encoding, the value of the foreground

pixels may be lower (darker) than the background, or the oppo-

site : henceforth, we shall assume that the lowest depth values

correspond to positions closer to the camera.

The only global metric of this work is called error areas, and

corresponds to the proportion of the pixels where the difference

between the expected value and the actual value is superior to

10% of the pixel dynamic. It is computed similarly for the back-

ground and the foreground, on a cropped area to avoid errors due

to framing. The second output of this measurement is an error

map (Fig. 4), which enables the user to see at a glance where the

problematic areas are.

In addition to this metric, we introduce the planarity error.

It is basically the same metric, applied to a specific part of the

chart of Fig. 2. Those areas are the face, the checkerboard (seen

in Fig. 5) and the two textured strips, enabling us to quickly see

which part is most challenging for the device.

Edge segmentation
We define an ideal edge as a sharp transition between two

depth levels corresponding to the background and foreground.

This transition should happen on a single pixel and be perfectly

aligned with the ideal position of the edge. The first step of our

process is to apply an homography on the depth map, using bilin-

ear interpolation, to re-align the four markers of the target, which

means that the edges of the chart are perfectly parallel to the edges
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Figure 6. Regions of interest for the measurements on the edges (in red).

of the image. We chose to define twelve regions of interest along

the edges of the chart (shown in Fig. 6), three on each side.

Gradient-based measurements. The first half of our metrics

are gradient-based metrics, aimed at spatial characteristics of the

edges. The preliminary step to these metrics is to convolve the

depth map of the region of interest with a Sobel [10] filter. This

will allow to precisely compute the position of the edges and the

value of the edge gradient. Starting from there, we define the

following three metrics. In all the following formulas, n stands for

the length of the edge and xedge is the position of the depth map

edge along the perpendicular axis. This position should ideally be

constant, because the ideal edges are aligned with the edges of the

image. xt is the ideal position of the edge, and is constant.

The Pixel Shift (PS) metric is the average distance between

the detected edge and the ideal edge. It is expressed as PS =
1

n+1 ∑
n
i=0

(

xedge(i)− xt

)

.

This metric, being an average, does not tell us if the shift

is global or if the average is biased by a few outliers. This

is the purpose of our next metric, which consists of the stan-

dard deviation of the edge position (σedge), defined as σedge =
√

1
n+1 ∑

n
i=0

(

xedge(i)− xedge

)2
.

Finally, our third spatial metric is the Relative Gradient

(RG). It is a measurement of the edge gradient value, rather than

its position. As explained before, the expected behavior is a

sharp transition between the background value and the foreground

value. The gradient at each point of the edge should then be equal

to the pixel dynamic. The value computed is an average result

over the region of interest, expressed as a proportion of the pixel

dynamic. Fig. 7 gives a visual representation of some of the pro-

posed metrics.

Histogram-based measurements. The second half of our met-

rics are based on the distribution of depth values in the region of

interest of the edges, previously defined. They complement the

first three ones with a fine analysis of the depth levels in the en-

tire region of interest, rather than just along the main edge. Their

purpose is to detect defects such as background details appearing

in the depth map or depth steps effects.

The first metric we define is the Pixel Repartition (PR) met-

ric. We first find the two main peaks of the histogram of depth

Figure 7. Graph of the gray levels along a line orthogonal to an edge of

the chart, with visual representations of the relative gradient and pixel shift

metrics.

Figure 8. Histogram of a region of interest (in orange) and the Gaussian

windows (in blue). We can see a small peak on the left, caused by some

artifact.

values, corresponding to the background and foreground values,

and then multiply the histogram with a bimodal gaussian distri-

bution centered on the peaks. The PR metric is the sum of this

weighted histogram, divided by the total number of pixels in the

area. The gaussian windows have a height of 1, which means that

the metric cannot exceed 1, and their standard deviations are nor-

malized proportionally to the dynamic. A visual representation is

given in Fig. 8.

The use of a Gaussian window makes it so that only a perfect

device can obtain a perfect PR of 1, but devices that show slight

depth variations will not be too penalized. However, the larger the

variations, the lower the PR will be.

This metric works well as a single indicative value, how-

ever it does not show which part of the depth map is most prob-

lematic. As a complement, we also compute the background and

foreground standard deviation in the region of interest, using the

average of the two main peaks as the separation threshold.

The last metric is the base-2 entropy of the depth histogram,

defined as H =−∑k pk · log2(pk), where pk is the probability cor-

responding to the k-th bin of the normalized histogram. This has

the advantage of showing whether all pixels have the same or dif-

ferent depth values, thus enabling the user to differentiate a step

effect and a gradient effect.

Holes detection and dynamic
The main metric regarding the holes of the chart is the Dy-

namic Proportion (DP). Since the background of our experimen-

tal setup is flat, the expected behavior is that the value in every
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DP 78.0 77.3 77.8 76.5 14.4 −27.8 −31.1 −32.6 −31.5 −30.4

CC 90.4 99.8 83.6 92.4 0 0 0 0 0 0

Figure 9. Visualisation of the gradual holes of the chart, with visible depth

estimation defects. The values for Dynamic Proportion (DP) and Contour

Coverage (CC) are given in the table.

Figure 10. Example of incomplete triangular hole, with the ideal shape and

its bisector.

hole should be equal to the background value around the chart.

However, due to filtering issues and imprecision of depth sensors,

this is often not the case in real depth map images. This metric

is computed as follows on a given region: DP = maxi, j

Di, j−D̂fg
D̂bg−D̂fg

,

with Di, j the value of the depth map at coordinates i, j, D̂fg the

maximum estimated depth of the chart using the parametric model

defined earlier, and D̂bg the depth of the background. Using the

parametric model makes the metric robust to defects that could ap-

pear inside or around the hole. In some cases, holes are detected

closer rather than farther by devices, in which case the metric may

be negative.

For gradual holes (see Tab. 1), we implement the Contour

Coverage (CC), which measures the detected area of the hole as a

proportion of the ideal area. Depending on the size of the hole and

the background elements behind it, it is frequent that devices only

detect some part of the holes. The threshold used is the average

between the expected background value and foreground values.

The metric is the proportion of pixels in the hole area whose value

is greater than the threshold. An example is given in Fig. 9.

For the two triangular holes, this metric would not be as in-

teresting because their area is much larger. The most interesting

aspect of those is that their tip is often wrongly filtered out, as

shown in the example in Fig. 10. Hence, we define the Visible

Height metric, which is computed as the proportion of visible pix-

els along the bisector of a triangle.

Tab. 2 summarizes the proposed metrics along with the tar-

geted defects. All of the metrics are repeatable, with no stochastic

aspect. They are also invariant to the resolution of the depth maps.

The metrics that are based on the dynamic are normalized, making

them invariant to the encoding of the depth.

Metric Targeted defect

Error Areas Global errors
Planarity Error Depth estimation inconsistencies, on

surfaces, artifacts due to high frequency
patterns or texture variations

Pixel shift (PS) Misalignment of depth map and image,
wrong detection of edges

Edge standard devi-
ation

Alteration of the shape of contours, due
to background elements or filtering

Relative gradient
(RG)

Wrong depth estimation around edges

Pixel repartition
(PR)

Stepping effect around edges, generally
due to background elements

Background / Fore-
ground standard
deviation

Inconsistencies of depth estimation
around discontinuities

Entropy Gradient effect around edges, some-
times added by devices to blur potential
defects

Dynamic proportion
(DP)

Wrong depth estimation in small discon-
tinuities

Contour coverage
(CC)

Incomplete or no detection of small dis-
continuities

Visible height Filtering issues and hardware limitations

Table 2. Implemented metrics and targeted defects.

Validation and results
Computing the correlation coefficient between our metrics

and a perceptual evaluation is difficult because our metrics are

local and focus on very specific features of the depth maps. Our

work provides building blocks, upon which aggregated metrics

could be designed to match human perception. In its current state,

this is more intended to be a tool for the tuning devices rather than

a perceptual quality evaluation. Nevertheless, the obtained results

are very promising. The strengths and weaknesses of the different

technologies are easily visible, as in the example of Fig. 5, which

was created by a stereoscopic device. Many of the artifacts caused

by filtering algorithms are also easily measurable. Examples are

given in Tab. 3.

Our measures also work when the chart is not perfectly par-

allel to the sensor. Our tests included pictures with a target tilted

up to 10◦ around the vertical axis. On some devices, we observed

a smoothing of depth levels on tilted surfaces, revealing a heavy

filtering. We also see different segmentation issues and artifacts.

The only metric in our set which was easily correlated with

perceptual measurements was the error areas, because it is global.

We used the aggregated results of the perceptual analysis per-

formed on the Bokeh chart as reference. Using seven uniformly

distributed devices in our database, we find a 78% correlation.

The monotonicity is overall preserved, and we can expect a top

device to have a low value for the error areas. However, our

metric is more sensitive to small depth variations than perceptual

measurements, which explains some outliers. Moreover, the per-

ceptual evaluation takes into account the Bokeh simulation output,

which does not entirely rely on the depth map.

Conclusion
We have presented a full measurement protocol and objective

metrics to evaluate the quality of depth maps for photographic

applications. Our method is based on a single scene, containing

a specifically designed chart and a backdrop. It is designed to

be challenging for all commonly used technologies and aims to

reproduce and measure some common defects. Eleven metrics
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σedge = 1.72 px

RG = 82.1%
PR = 85.0%

σedge = 0.52 px

RG = 51.1%
PR = 87.2%
H = 4.33bits

σedge = 20.84 px

RG = 36.0%
PS = 18.43 px

σedge = 3.45 px

RG = 19.8%
PS = 2.45

σedge = 3.12 px

RG = 78.4%
PS = 1.66 px
PR = 56.9%

R
e

m
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rk
s

Sharp transition. The
σedge is slightly higher

because of shifts at the
top and bottom ends of
the edge.

Linearity is very good,
while RG is lower be-
cause the transition is
unsharp.

Obvious stepping ef-
fect, causing a high
σedge and PS, and a

low RG.

The depth transition
is barely visible, caus-
ing a very low RG.
However, linearity and
alignment are fairly
good.

The defect here is
poorly detected be-
cause the maximal
gradient is linear even
though the depth level
varies. This is an edge
case.

Table 3. Examples of results obtained for multiple regions of interest of the edges. Only the most relevant metrics are displayed.

The regions of interest considered are the areas enclosed in a white rectangle, the corresponding areas in the reference image are

enclosed in magenta.

are used (mostly local) to characterize precisely defined regions

of interest. Those regions of interest are located on the edges of

the chart, on flat surfaces or around holes. In total, 148 values are

computed for each image, providing a very fine-grained analysis.

Considering that we work on the depth maps, which are not

visible to the user, our work is oriented to provide a tool for tuning

of devices and for selecting hardware and software components.

In the case of computational bokeh, the background blur simu-

lation rely on different parameters that affect the quality of the

bokeh independently of the depth map. This explains the diffi-

culty to correlate our metrics with perceptual evaluation. How-

ever, with respect to the depth maps, the results are relevant.

The proposed metrics are designed to be easily understand-

able, and could be used as building blocks in future works to ex-

tract higher level metrics. In the future, the possible adoption of

an uniformized depth map format [5] would facilitate its compar-

ison across devices.
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