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Abstract 

Shannon information capacity, which can be expressed as bits per 

pixel or megabits per image, is an excellent figure of merit for pre-
dicting camera performance for a variety of machine vision appli-

cations, including medical and automotive imaging systems. Its 

strength is that is combines the effects of sharpness (MTF) and 

noise, but it has not been widely adopted because it has been 
difficult to measure and has never been standardized.  

We have developed a method for conveniently measuring inform-

ation capacity from images of the familiar sinusoidal Siemens Star 

chart. The key is that noise is measured in the presence of the 
image signal, rather than in a separate location where image 

processing may be different—a commonplace occurrence with 

bilateral filters. The method also enables measurement of SNRI, 

which is a key performance metric for object detection. 

Information capacity is strongly affected by sensor noise, lens 

quality, ISO speed (Exposure Index), and the demosaicing algo-

rithm, which affects aliasing. Information capacity of in-camera 

JPEG images differs from corresponding TIFF images from raw 
files because of different demosaicing algorithms and nonuniform 

sharpening and noise reduction. 

Introduction 
In electronic communications systems, Shannon informa-

tion capacity C defines the maximum rate in bits per second that 
data can be transmitted through a channel without error. For 
additive white gaussian noise, it is given by the deceptively 
simple Shannon-Hartley equation. 

𝐶 = 𝑊 log2 (1 +
𝑆

𝑁
) = 𝑊 log2 (

𝑆+𝑁

𝑁
) (1) 

 While it is quite logical to extend this definition to imaging 
systems, where C has units of bits/pixel, a number of questions 
arise. How should bandwidth W (closely related to sharpness) be 
defined? What to use as signal S? Can we trust measurements 
from consumer camera JPEG images, which often have nonuni-
form image processing (bilateral filtering) [1] that reduces noise 
in smooth areas (lowpass filtering) but sharpens the image near 
contrasty features such as edges (high frequency boost)?  

Because nonuniform image processing is so commonly 
applied, it is highly desirable to measure signal and noise at the 
same location in the image, i.e., to measure noise in the presence 
of signal. We have developed a method to accomplish this with 
the well-known Siemens Star chart, which is a part of the ISO 
12233:2014/2017 standard [2].  

Measurement background 
To measure signal and noise at the same location, we use an 

image of a sinusoidal Siemens-star test chart consisting of ncycles 
total cycles, which we analyze by dividing the star into k radial 
segments (32 or 64), each of which is subdivided into m angular 
segments (8, 16, or 24) of length Pseg. The number sine wave 
cycles in each angular segment is 𝑛 = 𝑛𝑐𝑦𝑐𝑙𝑒𝑠/𝑚.  

 

 

Figure 1. 144-cycle Siemens star pattern. 

For radius r in pixels, the spatial frequency in Cycles/Pixel is 
𝑓 = 𝑛𝑐𝑦𝑐𝑙𝑒𝑠/2𝜋𝑟. This means that the Nyquist frequency, fnyq = 

0.5 C/P is located at r = 46 pixels for a 144-cycle star and 23 
pixels for a 72-cycle star [3]. 

We calculate the ideal (pure sine wave + second harmonic) 
signal sideal(𝜑) for each segment from the actual (noisy) input 
signal sinput(𝜑), using Fourier series coefficients aj and bj [4]. 

𝑠𝑖𝑑𝑒𝑎𝑙(𝜑) = ∑ 𝑎𝑗 cos (
2𝜋𝑗𝑛𝜑

𝑃𝑠𝑒𝑔
) + 𝑏𝑘 sin (

2𝜋𝑗𝑛𝜑

𝑃𝑠𝑒𝑔
)2

𝑗=1  (2) 

where 

𝑎𝑗 =
2

𝑃
∫ 𝑠𝑖𝑛𝑝𝑢𝑡(𝑥) cos (

2𝜋𝑗𝑛𝑥

𝑃𝑠𝑒𝑔
)

𝑃
𝑑𝑥  

𝑏𝑗 =
2

𝑃
∫ 𝑠𝑖𝑛𝑝𝑢𝑡(𝑥) sin (

2𝜋𝑗𝑛𝑥

𝑃𝑠𝑒𝑔
)

𝑃
𝑑𝑥 (3) 

The second harmonic term (j = 2) term improves results for 
JPEG images from cameras, which frequently have “shoulders” 
(regions of reduced contrast) in their tonal response curves, 
making them difficult to linearize with a simple gamma formula. 
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Figure 2. Illustration of 𝑠𝑖𝑛𝑝𝑢𝑡(𝜑) (blue), 𝑠𝑖𝑑𝑒𝑎𝑙(𝜑)) (brown), and noise 𝑁(𝜑) =

𝑠𝑖𝑑𝑒𝑎𝑙(𝜑) − 𝑠𝑖𝑛𝑝𝑢𝑡(𝜑)  (green). 

The spatial domain noise in each segment is 

𝑁(𝜑) = 𝑠𝑖𝑑𝑒𝑎𝑙(𝜑) − 𝑠𝑖𝑛𝑝𝑢𝑡(𝜑)  (4) 

The roughness of sinput and N(φ) in Figure 2, which is derived 
from all points in the segment (sorted), does not represent the 
actual frequency distribution of the noise, and does not affect the 
calculation of frequency domain noise power 𝑁(𝑓). The noise 
spectrum is more closely related to the noise image (with signal 
removed), illustrated in Figure 8. 

The mean signal power used to calculate C is 𝑆(𝑓) =
mean(𝑎𝑛

2 + 𝑏𝑛
2)/2 for all angular segments at radius r  (where 𝑓 =

𝑛𝑐𝑦𝑐𝑙𝑒𝑠/2𝜋𝑟). Frequency domain noise power 𝑁(𝑓) is the mean of 

the variance (σ2) of the middle 80% of N(φ) for each angular 
segment (there can be irregularities near the ends). 

We started the analysis the integral form of the Shannon 
information capacity equation [5], which is appropriate for one-
dimensional systems: 

𝐶 = ∫ log2 (1 +
𝑆(𝑓)

𝑁(𝑓)
)

𝐵

0
𝑑𝑓 = ∫ log2 (

𝑆(𝑓)+𝑁(𝑓)

𝑁(𝑓)
)

𝐵

0
𝑑𝑓  (5) 

Where C is the channel capacity in bits/pixel; B = Nyquist 
frequency 𝑓𝑁𝑦𝑞; 𝑆(𝑓) is the signal power spectrum, 𝑁(𝑓) is the 

noise power spectrum (which we interpret as broadband noise 
in the presence of signal 𝑆(𝑓)). 

The difficulty with this equation is that Information capacity 
applies to two-dimensional images, whereas all sharpness-rela-
ted measurements (MTF and 𝑆(𝑓)) refer to one dimension, for 
example, MTF in units of cycle/pixel actually means cycle per 
pixel length. To overcome this limitation, we express C as a 
double integral. 

𝐶 = ∬ log2 (
𝑆(𝑓𝑥,𝑓𝑦)+𝑁(𝑓𝑥,𝑓𝑦)

𝑁(𝑓𝑥,𝑓𝑦)
) 𝑑𝑓𝑥𝑑𝑓𝑦

𝐵

0
 (6) 

where 𝑓𝑥 and 𝑓𝑦 are frequencies in the x and y-directions, 

respectively. In order to evaluate this integral, we transform x 
and y into polar coordinates r and θ. 

𝐶 = ∫ ∫ log2 (
𝑆(𝑓𝑟,𝑓𝜃)+𝑁(𝑓𝑟,𝑓𝜃)

𝑁(𝑓𝑟,𝑓𝜃)
) 𝑓𝑟  𝑑𝑓𝑟 𝑑𝑓𝜃

𝐵

0

2𝜋

0
 (7) 

Since 𝑆(𝑓𝑟, 𝑓𝜃) and 𝑁(𝑓𝑟, 𝑓𝜃) are only weakly dependent on θ, 
(7) can be rewritten in one-dimension. 

𝐶 = 2𝜋 ∫ log2 (
𝑆(𝑓)+𝑁(𝑓)

𝑁(𝑓)
) 𝑓 𝑑𝑓

𝐵

0
 (8) 

The minimum star frequency is 𝑓𝑚𝑖𝑛 = 𝑛𝑐𝑦𝑐𝑙𝑒𝑠/2𝜋𝑟𝑠𝑡𝑎𝑟 

where rstar is the radius of the star in pixels. The contribution of 
frequencies below fmin is calculated by extrapolation— by assu-
ming that 𝑆(𝑓)  =  𝑆(𝑓𝑚𝑖𝑛) and 𝑁(𝑓)  =  𝑁(𝑓𝑚𝑖𝑛) for 𝑓 <  𝑓𝑚𝑖𝑛. 
This assumption is reasonable for 𝑁(𝑓) but somewhat pessi-
mistic for 𝑆(𝑓). However, the effect on C is minimal because of 
the presence of fr in the integrand of Equation (8). 

C is strongly dependent on noise 𝑁(𝜑), which is calculated 
from the difference between the input signal (which includes 
noise) and the perfect sine wave signal. This causes C to decrease 
in the presence of artifacts such as aliasing and saturation. 
Aliasing has little effect on standard MTF measurements, and 
saturation (or clipping) actually improves measurements even 
though it degrades system performance. We will discuss aliasing 
in more detail. 

Measurement method 
A key challenge in measuring information capacity is how to 

define mean signal power S. Ideally, the definition should be 
based on a widely-used test chart. For convenience, the chart 
should be scale-invariant (so precise chart magnification does 
not need to be measured). And, as we indicated, signal and noise 
should be measured at the same location. For different observers 
to obtain the same result the chart design and contrast should be 
standardized. 

To that end we recommend a sinusoidal Siemens star chart 
similar to the chart specified in ISO 12233:2014/2017, Annex E. 
Contrast should be as close as possible to 50:1 (the minimum 
specified in the standard; close to the maximum achievable with 
matte media). Higher contrast can make the star image difficult 
to linearize. Lower contrast is acceptable, but should be reported 
with the results. The chart should have 144 cycles for high resolu-
tion systems, but 72 cycles is sufficient for low resolution sys-
tems. The center marker (quadrant pattern), used to center the 
image for analysis, should be 1/20 of the star diameter. 

 Acquire a well-exposed image of the Siemens star in even, 
glare-free light. Exposures should be reasonably consistent when 
multiple cameras are tested. The mean pixel level of the linea-
rized image inside the star should be in the range of 0.16 to 0.36. 
(The optimum has yet to be determined.) 

The center of the star should be located as close as possible 
to the center of the image to minimize measurement errors 
caused by optical distortion (if present). 

The size of the star in the image should be set so the 
maximum spatial frequency, corresponding to the minimum 
radius rmin, is larger than the Nyquist frequency fNyq, and, if 
possible, no larger than 1.3 fNyq, so sufficient lower frequencies 
are available for the channel capacity calculation. This means that 
a 144-cycle star with a 1/20 inner marker should have a diameter 
of 1400-1750 pixels and a 72-cycle star should have a diameter 
of 700-875 pixels. For high-quality inkjet printers, the physical 
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diameter of the star should be at least 9 (preferably 12) inches 
(23 to 30 cm). 

Other features may surround the chart, but the average 
background should be close to neutral gray (18% reflectance) to 
ensure a good exposure (it is OK to apply exposure compensation 
if needed). Figure 3 shows a typical star image in a 24-megapixel 
(4000×6000 pixel) camera. 

 

 

Figure 3. Typical image of Siemens star, scaled to the maximum frequency is 
slightly above fNyq. 

Information capacity results 
We tested three cameras with excellent lenses that produced 

both raw and JPEG output for information capacity as a function 
of Exposure Index (ISO speed setting).  

 
1. Panasonic Lumix LX5. An older (2010) compact 10.1-

megapixel camera with a 2.14 µm pixel pitch and a Leica f/2 

zoom lens set to f/4. 

2. Sony A6000. A 24-megapixel micro four-thirds camera with a 

3.88 µm pixel pitch and a 60mm Canon macro lens set to f/8. 
3. Sony A7Rii. A 42-megapixel full-frame camera with a 

backside-illuminated (BSI) sensor with 4.5 µm pixel pitch and 

a 90mm Sony macro lens set to f/8.  

 
We captured both JPEG and raw images, which were con-

verted to 24-bit sRGB TIFF images with no sharpening or noise 
reduction (designated as raw/TIFF) and gamma ≌ 2.2. Results 
with 48-bit Adobe sRGB conversion were nearly identical. 

Figure 4 illustrates typical results for the camera 2 raw/TIFF 
image at ISO 100. The noise spike near the Nyquist frequency (0.5 
C/P) is primarily caused by aliasing from the raw converter (the 
highest quality algorithm in dcraw). It disappears when the lens 
is stopped down. 

The signal S(f) (which is proportional to MTF), noise N(f) 
(scaled the same as signal), and (Signal+Noise)/Noise ratio in 
Figure 4 are all calculated from the same sinusoidal star pattern. 
Noise measurements are more accurate than for flat patches 
(found in standard test charts such as ISO 14524, ISO 15739, and 
others) in the presence of widely-used bilateral filtering, which 
reduces noise more aggressively in smooth areas (see the upper-
left of Figure 8). 

 

 

Figure 4. Signal, 10x noise, and (S+N)/N plot for Camera 2, TIFF from raw, 
ISO 100, 32 frequencies, 32 radial segments. Summary results are shown 
below the plot. Note that signal S(f) is proportional to MTF(f). 

Figure 5 shows results from raw/TIFF images (solid lines) 
and JPEG images (dotted lines) as a function of ISO speed. 
Raw/TIFF results are consistent for the three cameras. Results 
for camera 2 are similar to camera 1 at 2.5× the ISO speed (2000 
vs. 800), and results for camera 3 are similar to camera 2 at 3× 
the ISO speed (6000 vs. 2000). The improvement between 
cameras 1 and 2 is somewhat lower than the ratio of the pixel 
areas, but the improvement between cameras 2 and 3 is much 
greater because camera 3 has a BSI sensor (a greatly improved 
technology). 

 

 

Figure 5. Information capacity for the three cameras as a function of 
Exposure Index: solid lines for TIFFs derived from raw images; dotted lines for 
JPEGs. 

Using the results in Figure 5, we can compare images from 
two different cameras with similar information capacities (1.7 
bits/pixel): camera 1 (2.14 µm pixel pitch) at ISO 1600 and 
camera 3 (4.5 µm BSI pixel pitch) at ISO 12800.  
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Camera 1, ISO 1600                Camera 3, ISO 12800 

Figure 6. Comparison of raw/TIFF images from two different cameras with 
similar information capacity (≌1.7), significantly degraded from ISO 100. 

Noise appears very similar in the upper images, and sharp-
ness and artifacts are similar in the lower images. Note that since 
the star chart is scale invariant, sharpness at the same position of 
the two lower images can be directly compared, even though the 
center pattern differs in size. 

Sharpening and noise reduction 
Unsurprisingly, we found no combination of linear shar-

pening and noise reduction (lowpass filtering) that improved 
information capacity C. 

In Table 1, the baseline image (Camera 2, raw/TIFF, ISO 
100) has no sharpening or noise reduction. USM is Unsharp 
Mask; Rn = sharpening radius; An = sharpening amount. 
Gaussian g is Gaussian filter parameter g. 

Table 1. Capacity losses for sharpening & noise reduction 

Image C MTF50 (c/p) MTF50P(c/p) 

Baseline 3.69 0.22 0.229 

USM R2 A1 3.65 0.345 0.323 

USM R1 A2 3.63 0.407 0.397 

Gaussian 0.7 2.99 0.162 0.168 

Gaussian 1.0 2.25 0.138 0.143 

USM R2A1, 
Gaussian 0.7 

3.06 0.241 0.239 

 
Sharpening increases both bandwidth and noise. The noise 

increase with sharpening (RMS noise voltage = 0.01 for the USM 
R1A2 image vs. 0.004 for the baseline: 8 dB difference) was 
consistent with measurements in gray regions just outside the 

star circle.  The USM R1A2 (sharpened) image had SNR = 30.0 = 
29.6 dB. The baseline image had SNR = 70.2 = 36.9 dB. 

JPEG behavior 
Calculated information capacity (Figure 5) is lower for 

camera JPEG images than for raw/TIFF images at low ISO speeds, 
but it decreases more slowly as ISO speed increases, and can be 
higher at high ISO speeds.  

The reasons are twofold. (1) JPEG images tend to have 
strong sharpening at low ISO speeds, which boosts noise, but less 
sharpening at high ISO speeds, as illustrated by MTF50P—the 
spatial frequency where MTF drops to 50% of its peak value— in 
Figure 7. By comparison, raw/TIFF images maintain relatively 
constant MTF50P, except at the highest ISO speeds.  

 

 

Figure 7. MTF50P as a function of Exposure Index (ISO speed). Relatively 
constant for raw/TIFF images, except at the highest ISO speeds. 

(2) Additional noise reduction (bilateral filtering) [1] is 
often applied to JPEG images, especially at high ISO speeds. 
Information capacity measurements are not reliable in the 
presence of bilateral filtering because low contrast detail is 
smoothed (lowpass filtered). This increases measured values of 
information capacity, while decreasing the actual capacity. For 
this reason, measurements of C from JPEG images should always 
be treated with caution. Bilateral filtering is not an issue with raw 
images. 

Using Equation (4) we created complete noise images (with 
signal removed) and examined them for appearance with the 
intent of detecting and compensating bilateral filtering. Figure 8 
shows a portion of the noise images for raw/TIFF and JPEG 
images from camera 2 at ISO 25600.  
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Figure 8. Noise-only images near center of star for camera 2 at ISO 25600. 
Raw/TIFF (above) and JPEG (below). 

The appearance is strikingly different, especially in the cen-
ter marker, where noise has been effectively removed in the JPEG 
image and is greatly reduced just outside the center marker. The 
spectra for the two images are also different (as expected), but 
this difference was not seen consistently when comparing 
RAW/tiff and JPEG images from other cameras. 

 

 

Figure 9. Noise-only image near the edge of star for camera 2 JPEG at ISO 

25600. 

Careful examination of Figure 9 shows that noise is largest 
at angles where the brightness gradient is largest. We tried 
measuring information capacity using only these regions, but 
results were inconsistent, apparently because the noise variation 
did not continue in the interior of the star. 

At this time, we have found no reliable means of detecting 
bilinear filtering. On a positive note, the errors caused by bilateral 
filtering are not extremely large. For cameras 1-3 set to their 
highest ISO speeds (for extremely poor lighting), the discrepan-
cies for C are 0.2, 0.5, and 0.3 bits/pixel, respectively. 

Ideal image 
The Information capacity of an “ideal” image is of more than 

passing interest. We used a small version of the image used to 
print test charts (which would have been about 2 cm high if 
printed).  

The “ideal” image has not passed through a Bayer color filter 
array, has not been demosaiced, and has not been processed in 
any way other than gamma encoding. 

 

 

Figure 10. Signal, 10X noise, and SNR for “ideal” image. 

C = 8.23 bits/pixel is slightly above the expected maximum 
of 8 bits/pixel due to undetermined numerical causes. It’s twice 
the highest value we’ve seen from the best camera images, all of 
which have been passed through Bayer color filter arrays, then 
demosaiced. We were not able to test a Foveon sensor (where all 
colors are at the same location) in time for the paper. The signal 
rolloff above 0.25 cycles/pixel is caused by anti-aliasing filtering 
intended to smooth jagged features. 

RGB channels 
Most of the results in this paper are from the luminance (Y) 

channel, where Y = 0.2125∙R + 0.7154∙G +0.0721∙B. Many 
authors recommend measuring C separately for the R, G, and B 
channels. For the Camera 2 raw/TIFF image, which has C = 3.69 
bits/pixel for the Y-channel, CR = 2.90, CG = 3.53, and CB = 3.07 
for the R, G, and B channels, respectively. C is higher for the Y-
channel because combining the uncorrelated noise from the R, G, 
and B channels reduces the Y-channel noise. 

Total 𝐶 = 𝐶𝑅 + 𝐶𝐺 + 𝐶𝐵 is nearly triple when the R, G, and B 
color channels are analyzed separately. But we can now think of 
a pixel as having 24 bits instead of 8. 

The undemosaiced version of this image has information 
capacities of 5.62, 5.95, 5.14, and 5.81 bits/pixel for the R, GR, B, 
and GB channels, respectively. The mean of the four undemo-
saiced channels, 5.63, is well above the mean of the R, G, and B 
channels, 3.17. Likely causes include (1) the strong correlation 
between demosaiced channels, where the contents of each color 
channel is strongly influenced by the contents of neighboring 
channels, and (2) the lack of aliasing from demosaicing. Further 
study is required to fully characterize the effects of demosaicing 
on information capacity. 

In the future we plan to analyze chroma channels for 
information capacity. The most likely candidates are B-Y and R-
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Y, which are used for chroma noise. CB and CR (from YCBCR) are 
derived from B-Y and R-Y, and should have similar SNR and 
information capacity C. We will need special charts (most likely 
stars with R-G and B-G patterns).  

Aliasing and demosaicing 
There has recently been increased interest in aliasing—low 

frequency artifacts such as moiré fringing that can appear when 
the signal reaching the image sensor has significant energy above 
the Nyquist frequency, 𝑓𝑁𝑦𝑞 (0.5 Cycles/Pixel) [3]. Images from 

Bayer sensors can have significant aliasing because the Nyquist 
frequency of the red and blue channels is half that of the sensor 
as a whole.  

The amount of aliasing is strongly dependent on the 
demosaicing algorithm used by the raw converter.  Simple algo-
rithms such as bilinear demosaicing have severe aliasing. Most 
modern cameras use sophisticated algorithms that use detail 
from all color channels to construct the image in each individual 
channel. 

We examined the effects of demosaicing using the four algo-
rithms available in dcraw [6]: bilinear (well-known for poor 
quality), VNG, PPG, and AHD (in order of increasing quality) and 
the recommended AMaZE algorithm in RawTherapee [7], which 
offers many additional algorithms. 

Table 2. Comparison of demosaicing algorithms 

Demosaicing algorithm C (bits/pixel) MTF50P 
(C/P) 

dcraw bilinear 1.8 0.191 

dcraw VNG 2.51 0.219 

dcraw PPG 3.14 0.229 

dcraw AHD 3.69 0.229 

RawTherapee AMaZE 3.95 0.236 

 
Information capacity C is a far more sensitive measure of 

demosaicing quality than MTF50P. 
The enlarged images below compare three of the algorithms. 

The orange circle is 𝑓𝑁𝑦𝑞. The two visible cyan circles are at 

0.75𝑓𝑁𝑦𝑞 and 0.5𝑓𝑁𝑦𝑞.  

Severe aliasing in bilinear demosaicing (Figure 13; a very 
simple form of linear interpolation) is plainly visible.  

To summarize, these results show that information capacity 
C is an excellent measurement for evaluating demosaicing 
quality, which strongly affects aliasing. Unfortunately, we pre-
sently have no easy way of separating the effects of aliasing from 
noise and other artifacts. 

 

 

Figure 11. RawTherapee AMaZE demosaicing. 

 

Figure 12. dcraw Adaptive Homogeneity-Directed (AHD) demosaicing. 

Both AMaZE and AHD demosaicing are high quality, but 
AMaZE has subtly lower aliasing and fewer artifacts near 𝑓𝑁𝑦𝑞. 

The differences are difficult to see. 
 

 

Figure 13. Bilinear demosaicing (famously low quality) 

Data compression 
We used Information capacity measurements to study data 

compression by taking a high quality raw/TIFF image acquired at 
ISO 100 from camera 2, loading it into Irfanview [8], then saving 
it as JPEG and JPEG 2000 (JP2) files at quality levels from 10 to 
100. Information capacity is a strong function of quality level for 
both file types. We treat both types of compression as “black box” 
image processing. We have not examined their inner workings. 

347-6
IS&T International Symposium on Electronic Imaging 2020

Image Quality and System Performance



 

 

 

Figure 14. Information capacity C vs. quality level. 

[9] lists several metrics used to evaluate JPEG data com-
pression, then states, “Of all measures applied to the compression 
system, the JPEG ‘quality factor’, used to specify the compression 
level, was found to have the best performance when predicting 
the results of subjective tests.” 

More significant is information capacity as a function of file 
size. JPEG 2000 seems to be the clear winner here. 

 

Figure 15. Information capacity C vs. file size in MB. Original file size = 
72 MB (4000×6000×3). 

Figure 15 may be compared with results in [9].  
MTF50P, the spatial frequency in Cycles/Pixel where MTF 

drops to half its peak value, muddies the comparison somewhat. 
It is calculated for both from the star and a slanted-edge adjacent 
to the star. MTF50P numbers for the star may be biased slightly 
high because of the limited low frequencies for normalization. 

 

 

Figure 16. MTF50P vs. quality level. Biased slightly high for the star. 

JPEG 2000 has greater MTF50P loss at quality levels below 70%. 

These results illustrate the potential of using information 
capacity for evaluating image compression algorithms. Low con-
trast and colored stars may be needed to complete the analysis, 
and information capacity needs to be correlated with perceptual 
image quality. 

Figures 17 and 18 show JPEG image degradation at quality 
levels of 70 and 50%. Note that these images have a similar 
appearance to the original in Figure 11, in part because the spa-
tial frequencies in the star are inversely proportional to the 
radius, hence half the information capacity C comes from the 
small region between 𝑓𝑁𝑦𝑞/2 (the strong cyan circle) and 𝑓𝑁𝑦𝑞 

(the orange circle) near the center of the star.  
 

 

Figure 17. 70% JPEG quality level. Compare with Fig. 9. Some contrast loss 

is observed near the Nyquist frequency. 

 

Figure 18. 50% JPEG quality level. Significant contrast loss is observed 
above 0.75 Nyquist (inside the thin cyan circle). 

Another reason Figures 17 and 18 have a similar appearance 
is that information capacity C is an informational rather than a 
perceptual metric. SSIM (structural similarity) [10] may be more 
appropriate when perceptual differences need to be emphasized. 
The SSIM plot below clearly emphasizes where image appea-
rance differs. (SSIM = 1 for no difference.) 
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Figure 19. SSIM results, comparing 100% and 50% images. Regions where 
the images differ visually are strongly emphasized. 

SNRI and Object Detection 
The measurements described above enable the calculation 

of SNRI, which is a key figure of merit for the task of detecting 
small objects in an image. Reference [11], Equation (3) defines 
SNRI for detecting a “difference object” whose Fourier transform 
is G(ν), where ν is spatial frequency.  

𝑆𝑁𝑅𝐼2 =  𝐾2 ∫
|𝐺(𝜈)|2𝑀𝑇𝐹𝑠𝑦𝑠

2 (𝜈)

𝑁𝑃𝑆(𝜈)
𝑑𝜈 (9) 

Noting that 𝐾2𝑀𝑇𝐹𝑠𝑦𝑠
2 (𝜈) is equivalent to 𝑆(𝑓) and 𝑁𝑃𝑆(𝜈) 

is equivalent to 𝑁(𝑓) in Equation (5), 

𝑆𝑁𝑅𝐼2 = ∫
|𝐺(𝑓)|2 𝑆(𝑓)

𝑁(𝑓)
𝑑𝑓 (10) 

For simplicity we assume that the difference object is a one-
dimensional rectangle of amplitude h and width w, with Fourier 
transform, 

𝐺(𝑓) = ℎ 
sin(𝜋𝑤𝑓)

𝜋𝑤𝑓
  (11) 

If necessary, we could change this to a two-dimensional rec-
tangle used in [11], but for now one dimension should be 
sufficient because object detection is limited by the smaller 
rectangle dimension. We could also calculate 𝐺(𝑓) for different 
types of objects. 

[11] has an excellent discussion of the uses of SNRI, which 
will not be discussed further here. 

Noise Equivalent Quanta (NEQ) 
Equations (6) and (7) lead directly to the definition of Noise 

Equivalent Quanta [12-14]. 

𝑁𝐸𝑄(𝑓) =
𝑆(𝑓)

𝑁(𝑓)
 (12) 

NEQ is the number of quanta that would result in measured 

Signal-to-Noise Ratio 𝑆𝑁𝑅(𝑓) = √𝑁𝐸𝑄(𝑓) where SNR is a vol-
tage ratio. In the future we plan to use NEQ to calculate Detective 
Quantum Efficiency 𝐷𝑄𝐸(𝑓) = 𝑁𝐸𝑄(𝑓)  𝑞⁄  where 𝑞 is the ave-
rage number of input quanta per unit area.  This will require care-
ful calibration involving the illumination level and spectrum. DQE 

is of particular interest for applications where available light is 
limited. 

Reference [12] discusses several uses of NEQ. 

Total camera capacity from slanted-edges 
The next step after finding the information capacity of a pixel 

is to find the total capacity, Ctotal, for the camera. Unfortunately, it 
can’t be reliably obtained by multiplying C by the number of 
megapixels because lens sharpness (MTF response) tends to be 
nonuniform, typically decreasing with distance from the image 
center.  

Although the preferred method of measuring Ctotal is to use 
an array of Siemens stars, we have developed a fast and conve-
nient alternative method using an array of slanted-edges. The 
calculation is called “star-equivalent information capacity,” CstarEq 
— the approximate information capacity that would have been 
calculated from a Siemens star. The procedure sounds complex, 
but it is fast and easy to preform, and it is quite effective because 
CstarEq tracks the star measurement Cstar (designated as C, above). 

CstarEq is only recommended for minimally-processed images 
converted from raw capture because it is strongly affected by 
sharpening and noise reduction (problematic because sharpness 
and noise are measured at separate locations for slanted edges). 
It is not recommended for in-camera JPEG images, and it should 
not be used as a primary information capacity measurement. 

To measure CstarEq, begin by linearizing the image (if re-
quired), then measure 𝑀𝑇𝐹(𝑓) from low contrast slanted-edges. 
(4:1 contrast ratio, specified in ISO 12233, is recommended.) Be 
sure the edge is exposed well, i.e., not saturated. Note that the 
edge contrast doesn’t directly affect the results.  

Measure the pixel levels of the light and dark parts of the 
slanted-edge region (away from the edge), Pxlt  and Pxdk , and the 
noise voltages in the two regions, 𝑁𝑙𝑡 = 𝜎(𝑃𝑥𝑙𝑡) and 𝑁𝑑𝑘 =
𝜎(𝑃𝑥𝑑𝑘). The mean values of the pixel levels and noise are Pxmean 
and Nmean, respectively. Pxmean should be close to the mean pixel 
level of the star measurement. 

Because CstarEq is extremely sensitive to saturation, which 
reduces the measured values of Ndk or Nlt, it should not be calcu-
lated if  𝑃𝑥𝑙𝑡 > 0.95 or 𝑃𝑥𝑑𝑘 < 0.03. 

For assumed equivalent star contrast Contraststar, the modu-
lation (Michelson contrast) is 

𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑃𝑥𝑚𝑒𝑎𝑛
𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑠𝑡𝑎𝑟−1

√2 (𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑠𝑡𝑎𝑟+1)
 (13) 

The √2 factor causes modulation to have units of RMS vol-
tage: useful because modulation2 has units of mean power. The 
signal power for calculating CstarEq is 

𝑆(𝑓) = (𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛 × 𝑀𝑇𝐹(𝑓))2  (14) 

The noise power of the assumed star is 

𝑁(𝑓) = 𝑁𝑚𝑒𝑎𝑛
2  (15) 

CstarEq is calculated by substituting (14) and (15) into (8). 
The total camera information capacity is 

𝐶𝑡𝑜𝑡𝑎𝑙 =
𝐶𝑠𝑡𝑎𝑟(center) × mean(𝐶𝑠𝑡𝑎𝑟𝐸𝑞)

𝐶𝑠𝑡𝑎𝑟𝐸𝑞(center)
× megapixels (16) 
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mean(𝐶𝑠𝑡𝑎𝑟𝐸𝑞) is the mean of CstarEq taken over a large num-

ber of slanted-edges distributed over the image. This formula 
also applies to arrays of Siemens stars, where it simplifies to 
𝐶𝑡𝑜𝑡𝑎𝑙 = mean(𝐶𝑠𝑡𝑎𝑟) × megapixels. 

Summary and future work 
Information capacity is of great interest as a figure of merit 

for evaluating camera image quality because it combines sharp-
ness with noise. But until now it hasn’t been easy to measure. We 
have presented a method for conveniently measuring informa-
tion capacity, signal S(f) (proportional to MTF), and noise N(f) 
from images of Siemens star test charts.  

We have shown that information capacity behaves as expec-
ted for cameras with different sensors and ISO speed settings, 
that visual comparisons of images with similar information capa-
cities are similar in appearance, and that it is sensitive to losses 
from aliasing and data compression.  

Although information capacity is still unfamiliar to most 
engineers in the imaging industry, its units— information bits 
per pixel (or total image)— are intuitive and easy to understand. 
In short, we believe that it is a better indicator of a camera’s 
potential performance (after tuning) than plain megapixels.  

In the future we would like to see information capacity — 
either megabits per pixel or megabits total at specified ISO 
speeds (exposure indices) or light (lux) levels — become an inte-
gral part of a standard camera specifications. 

For information capacity to become widespread, the mea-
surement procedure must be standardized. That means that 
chart contrast (which determines signal level), exposure, chart 
size in the image, and other factors that affect the results need to 
be specified in a recognized standard. 

The basic signal and noise parameters measured with the 
Siemens star, 𝑆(𝑓) and 𝑁(𝑓), can be used to calculate additional 
measurements used in detection theory, such as SNRI and Noise 
Equivalent Quanta (NEQ), which are discussed elsewhere 
[12,13].  

In the near future we plan to calculate color channel capacity 
using U and V (from YUV) (chroma) channels with special color 
star charts. 

Future work includes 
• additional correlation of information capacity C with 

visual appearance for a variety of images, without and 
with additional image processing (sharpening, noise 
reduction, color correction, etc.), 

• correlating C with performance of machine vision and 
Artificial Intelligence systems, 

• evaluating the quality of cameras with non-traditional 
color filter arrays (RCCC and RCCB, where C designates 
“Clear”), 

• extending the model of C to include viewing conditions 
and the human visual system (contrast sensitivity func-
tion) to obtain a “visual information capacity” analogous 
to visual noise or acutance. 

• verifying the suitability of SNRI for performing specific 
tasks (determining the detectability of features of vari-
ous sizes), 

• using NEQ as the basis for Detective Quantum Efficiency 
(DQE) calculations. 
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