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Abstract
Image quality assessment has been a very active research

area in the field of image processing, and there have been numer-
ous methods proposed. However, most of the existing methods
focus on digital images that only or mainly contain pictures or
photos taken by digital cameras. Traditional approaches evaluate
an input image as a whole and try to estimate a quality score for
the image, in order to give viewers an idea of how “good” the im-
age looks. In this paper, we mainly focus on the quality evaluation
of contents of symbols like texts, bar-codes, QR-codes, lines, and
hand-writings in target images. Estimating a quality score for this
kind of information can be based on whether or not it is readable
by a human, or recognizable by a decoder. Moreover, we mainly
study the viewing quality of the scanned document of a printed
image. For this purpose, we propose a novel image quality as-
sessment algorithm that is able to determine the readability of a
scanned document or regions in a scanned document. Experimen-
tal results on some testing images demonstrate the effectiveness of
our method.

Introduction
Nowadays, scanners are very commonly used both in the of-

fice and at home to digitize printed documents, drawings or hand-
written documents, for convenient distribution. In most cases,
these digitized documents will eventually be viewed on screens by
human beings or fed into other software or algorithms for recog-
nition. With a typical scanner, the user generally needs to select
a scanning resolution when scanning the document. With high
resolution such as 600 dpi or 300 dpi, the user may end up with
a file that is excessively large for distribution. With low resolu-
tion, such as 100 dpi or 75 dpi, the quality degradation can be
very severe, although the file is small. Therefore, choosing an ap-
propriate resolution can sometimes be a very tricky task, since it
depends on the purpose of the scanned document and the content
to be scanned. In this paper, we seek the minimum resolution pos-
sible that ensures reading quality, since it allows for the smallest
file size without losing too much information.

As pointed out in [1], for pictures and photos that will ulti-
mately be viewed by human beings, their visual quality can only
be correctly quantified by subjective evaluation. However, un-
like pictures or photos, our interest here is in structural contents
like texts, lines, bar-codes, QR-codes, and hand-writing. For such
content, we take readability to be the only and necessary factor
that determines the viewing quality. Therefore, a method that de-
termines readability would be a better measure for viewing quality
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of such information in images.

In this paper, we propose a document image quality assess-
ment algorithm that can be used to determine the readability of
document images at different scanning resolutions and a com-
pression system that segments a document image into different
regions and then determine the minimum readable resolutions for
text regions, before outputting a compressed digital file according
the minimum readable resolution. The system diagram is shown
in Figure 1.

In the following sections, we will introduce related work on
several popular image quality assessment methods. Then, we will
describe in detail our image readability assessment system, along
with its key building blocks. Finally, experimental results will be
presented, followed by a brief conclusion.

Related Work
Page Segmentation

Image segmentation has been a very active field of research,
and there have been a great number of methods proposed. Page
segmentation is a problem that is similar to image segmentation
with a more specific setting; and there are many published works
in this area. Page segmentation aims to segment a document page,
usually obtained by scanning a printed document, into regions
containing different types of content. The segmentation is usually
realized by classifying pixels, groups of pixels, or sub-images into
different categories such as vector, raster, symbol, or background.

In recent years, deep learning techniques and models have
enabled a series of powerful data-driven methods. [2] introduced
a method to segment document pages using a Convolutional Neu-
ral Network (CNN) with an encoder-decoder structure. In [3], a
hierarchical approach combining a cross-correlation method, the
Kolmogorov complexity measure, and a neural network classifier
is proposed.

Although deep learning based methods can be very powerful,
the amount of computational power required is not always avail-
able in a practical application. Conventional methods [4, 5] usu-
ally involve connected component analysis in combination with
a sliding window on the binary image of a scanned page. How-
ever, connected component analysis normally has a high computa-
tion complexity, which may not be acceptable when the document
page is scanned at high resolution. In [6], a memory-efficient
strip-based approach is introduced, which greatly reduces the time
and space complexity. But given the setting of our problem, we
can actually sacrifice some accuracy for an even simpler and faster
approach.
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Figure 1: System Diagram.

Image Quality Assessment
There are numerous research papers and proposed methods

for image quality assessment. Based on whether a reference im-
age is used when assessing a target image, the methods can be
divided into three groups, namely full-reference (FR) image qual-
ity assessment, reduced-reference (RR) image quality assessment,
and no-reference (NR) image quality assessment. Full-reference
image quality assessment, or FR-IQA, estimates the quality score
by comparing the target image with a reference image that, in
most cases, has high quality. Representative works on FR-IQA
include [1, 7, 8]. At the opposite extreme, no-reference im-
age quality assessment, or NR-IQA, tries to estimate the qual-
ity score of the target image in the absent of a reference im-
age. Based on the purposes, NR-IQA can be further divided in to
two categories, distortion-specific NR-IQA (DS-NR) and general-
purpose NR-IQA (GP-NR). Representative works on DS-NR in-
clude [9, 10, 11]; and representative works on GP-NR include
[12, 13, 14]. Betweem FR-IQA and NR-IQA, RR-IQA tries to
use less information from the reference image, or only uses part
of the reference image, to achieve high accuracy in quality score
estimation. Representative works include [15, 16]. In this paper,
we propose a full-reference image quality assessment method de-
signed specifically for low resolution degradation. To the best of
our knowledge, no similar resolution-specific FR-IQA like ours
has been proposed before.

Proposed Method
As shown in Figure 1, the system consists of two parts. In

the first part, the image of a scanned document is segmented and
multiple rectangular regions will be located, which will then be
classified as symbol region, raster region, or vector region. In the
second part, feature vectors will be calculated from each symbol
region. With the calculated feature vectors, a trained support vec-
tor machine will then be used to classify these features as either
readable or not readable, from which the minimum readable res-
olution for the target region will eventually be derived.

Part 1. Page Segmentation and Region of Interest
In this section, we present a novel approach to segment a

scanned document and form regions of interest. The process can
be illustrated with the example in Figure 2. As the first step, the
image of the document will be resized to a smaller size to reduce
computation. In our implementation, we resized the source image
from 600 dpi to 100 dpi with size 1100× 850 for page segmen-
tation. Then, features will be calculated for every pixel, forming
three feature maps, each corresponding to one particular feature.
In these feature maps, every pixel represents the feature value for
the 5× 5 window centered at the corresponding location in the
input image. With the three feature maps, we then apply Otsu’s

method to convert them to binary masks. Note that for the average
saturation feature map, we only apply Otsu’s method to images
with obvious color regions. If the maximum value in the feature
map of average saturation is less than a preset threshold, for ex-
ample 15, we will consider the input image to be a gray-scale
image; and we will create an empty binary mask for this feature
map instead.

Combining information from the three binary masks, we can
classify pixels of the input image into three classes, namely sym-
bol, raster, or vector. After that, we separate symbol pixels and
raster pixels into two different masks, and apply morphological
dilation to the two masks, respectively. Finally, we draw bound-
ing boxes to bound all the connected component satisfying certain
conditions in the two dilated masks, with red boxes indicating
symbol regions and blue boxes indicating raster regions. Later in
the pipeline, symbol regions and raster region will be processed
separately, and treated differently.

Note that the proposed page segmentation algorithm is not
the only method that can be used to get bounding boxes here. In
fact, it can be replaced by other algorithms if they produce the
same output.

Features, Feature Maps and Binary Masks
In raster order, we calculate three feature values for a 5× 5

window centered at every pixel in the binary input image, gray-
scale input image, or RGB color input image. The calculated fea-
tures then form three feature maps that have the same size as the
input image. The calculated features are as follows:

1. Averaged Gray-scale Image: Gaussian weighted average of
all pixel values in a 5× 5 window in the gray-scale image,
which is equivalent to applying a 5×5 Gaussian filter to the
gray-scale image obtained from the input RGB color image.
We use σ = 1.1 for the 5×5 Gaussian kernel in our imple-
mentation.

2. Average Gradient: Gaussian weighted average of the abso-
lute value of the difference between every pair of neighbor-
ing pixels in a 5×5 window of the gray-scale image. We use
σ = 1.1 for the 5×5 Gaussian kernel in our implementation.

3. Average Saturation: For every pixel in a 5×5 window, cal-
culate their saturation values in the HSV color system. We
use the Gaussian weighted average of all saturation values in
the window as the feature value for the center pixel. We use
σ = 1.1 for the 5×5 Gaussian kernel in our implementation.

To understand how the pixel classification works, we need to
first understand what these features mean. Below is how we can
interpret the three features.

Averaged Gray-scale Image. Assuming a white or light-
colored background, which is much more common than dark-
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Figure 2: Page Segmentation and Regions of Interest Selection.

(a) (b) (c) (d)
Figure 3: Feature Maps: (a) Input Color Image; (b) Averaged

Gray-scale Image; (c) Average Gradient; (d) Average Saturation.

(a) (b) (c) (d)
Figure 4: Binary Masks: (a) Input Color Image; (b) Binary Image

(BI); (c) Average Gradient (AG); (d) Average Saturation (AS).

colored background, then foreground pixels will normally have
dark colors. Therefore, the gray-scale image itself can be an
effective feature map for a scanned document, and those dark-
color pixels can be a good indication for main contents or non-
background pixels. Since a raw scanned image may suffer from
scattered noise pixels, we apply a 5×5 Gaussian filter to the gray-
scale image in order to remove such noise.

Average Gradient. In a window in the gray-scale image, the
“gradient” for a pixel is calculated as the average absolute value
of the differences between that pixel and all its four direct neigh-
bors. Average gradient then means the Gaussian weighted aver-
age of all the gradients inside a window. The average gradient
will have greater value in regions where pixel values are alternat-
ing, which is often the case in high-frequency regions. Therefore,
greater feature values will be seen in windows full of symbols,
while smaller feature values will be seen in windows with vector
content. In other words, this feature behaves similarly to an edge
detector; and a higher average gradient can be a good indication
for symbol pixels or other high-frequency content in the image.

Average Saturation. Achromatic colors will have small sat-
uration values. As a result, any gray pixels will have a small
saturation (ideally 0). On the other hand, for a chromatic color
pixel, the saturation value will be greater. Therefore, assuming
that symbol pixels are usually black, a greater saturation can be a

good indication for raster pixels.
Figure 3 shows an example input color image, along with

the three corresponding feature maps for the input image, and
Figure 4 shows the example color image with the corresponding
binary masks from the three feature maps. We can see that they
coincide with our interpretation of the features. With the three
binary masks, we can then proceed to pixel classification.

Pixel Classification and Bounding Boxes
As we have discussed previously, the average gradient can be

a good indicator for symbol pixels, the average saturation can be
a good indicator for raster pixels, and foreground pixels can be a
good indicator for pixels related to the major content. Therefore,
we adopt the decision tree shown in Figure 5 to classify pixels into
one of the three categories. We use BI, AG, and AS to represent
the three binary masks, respectively. As for the class indices, we
use 2 for raster pixels, 1 for symbol pixels, and 0 for vector pixels.

Figure 5: Pixel Classification Decision Tree.

Now that we have classified every pixel in the image into one
of the three classes, namely, symbol, raster, and vector regions,
we then draw bounding boxes to get symbol regions and raster
regions. To find bounding boxes that fit our purpose, we first sep-
arate symbol pixels and raster pixels into two distinct masks, and
then perform dilation separately on the two masks. To combine
nearby texts or other symbol components, we apply one iteration
of dilation with a 7×7 square kernel to the text mask. After that,
we use bounding boxes to bound all connected components in
both masks, with red for symbol regions and blue for raster re-
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gions, respectively. After weeding out ineligible box candidates
by constraining their heights and widths, we keep the rest for the
following procedures.

Part 2. Image Quality Assessment
In this section, we present an approach to assess the quality

of symbol regions in a scanned image at various resolutions and
determine the minimum readable resolution for the image.

Because finding an exact resolution is not necessary for us,
we simplify the output for minimum readable resolution to 4 tiers:

1. Tier 0: Minimum readable resolution is the base resolution
(e.g. 600 dpi);

2. Tier 1: Minimum readable resolution is the base resolution
divided by 2;

3. Tier 2: Minimum readable resolution is the base resolution
divided by 4;

4. Tier 3: Minimum readable resolution is the base resolution
divided by 8.

In our implementation, we choose 600 dpi as our base res-
olution, so the following tiers are 300 dpi, 150 dpi, and 75 dpi,
respectively. In this section, we will use 600 dpi to represent the
base resolution without further mention.

The process for our symbol-oriented quality assessment is
presented in the second part of Figure 1. For an input image or
sub-image containing symbols at 600 dpi, we first obtain its low-
resolution versions at 300 dpi, 150 dpi, and 75 dpi. Then, we
convert them to binary images using Otsu’s method. After that,
we calculate a set of three feature vectors from the four binary
images by analyzing binary images at every pair of neighboring
resolutions. Since we have identified four tiers for our output,
we only need to consider images at four different resolutions, i.e.
600 dpi, 300 dpi, 150 dpi, and 75 dpi. Thus, a pair of neighbor-
ing resolutions means the two resolutions that are next to each
other, for example, 600 dpi and 300 dpi, where the higher resolu-
tion (600 dpi) will serve as the reference and the lower resolution
(300 dpi) will serve as the target. Then, we feed the feature vec-
tors to a trained support vector machine (SVM) one by one, from
higher resolutions to lower resolutions, until the SVM returns a
positive output, indicating that the corresponding resolution is not
readable for the input image. In this way, we are then able to
determine the minimum readable resolution for the input image.

Merging Pixels, Breaking Pixels, and Hole-filling Pixels
In our method, the determination of readability of symbols is

based on the interactions among character glyphs exhibited in the
binary images at various resolutions. To be specific, as the reso-
lution decreases, we want to find some characteristic pixels that
reflect the changing readability of an image or sub-image contain-
ing symbols.

Our observations on the degradation of text have shown that
as we decrease the resolution, segments of the characters’ glyphs
start to merge or break, and holes and gaps between these seg-
ments will start to fill in in the binary image. Similar degradations
are observed in other text-like content. Such degradation can be
seen from the examples in Figure 7, which are the binary images
obtained by applying Otsu’s method to the samples shown in Fig-
ure 6.

(a)

(b)

(c)

(d)

Figure 6: Image Crop at Different Scanning Resolutions: (a) 600
dpi; (b) 300 dpi; (c) 150 dpi; (d) 75 dpi.

(a)

(b)

(c)

(d)

Figure 7: Binary Image Crop at Different Scanning Resolutions:
(a) 600 dpi; (b) 300 dpi; (c) 150 dpi; (d) 75 dpi.

As the first step towards our goal, we defined three types of
characteristic pixels that play important roles in the degradation:

1. Merging Pixel: In a binary image, pixels in different compo-
nents that become connected or overlapped with each other
as resolution decreases;

2. Breaking Pixel: In a binary image, pixels in the same com-
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ponent that disappear and result in a breaking stroke as res-
olution decreases;

3. Hole-filling Pixel: In the binary image, pixels that emerge
and fill holes (background surrounded by foreground pixels)
as resolution decreases.

Examples of the three types of pixels are shown in Figure 8,
where yellow represents merging pixels, cyan represents breaking
pixels, and magenta represents hole-filling pixels. The three bi-
nary images are at 600 dpi, 300 dpi, and 150 dpi respectively. We
investigated the impact of the number of merging, breaking, and
hole-filling pixels on the severity of the degradation, and found
a strong correlation. Such correlation can be observed from the
number of yellow, cyan, and magenta pixels in the binary images
across the different resolution tiers shown in Figure 8. In this ex-
ample, we see that the quality seriously degrads at 75 dpi.

(a)

(b)

(c)

Figure 8: Merging (yellow), Breaking (cyan), and Hole-filling
(magenta) Pixels: (a) Between 600 dpi and 300 dpi; (b) Between

300 dpi and 150 dpi; (c) Between 150 dpi and 75 dpi.

Feature Vectors and Minimum Readable Resolution
With the definitions of the three types of characteristic pix-

els, we want to count the numbers of these pixels between binary
images at a pair of neighboring resolutions. We use m j, b j, and f j
to represent the numbers for the three types of pixels, respectively,
with j ∈ {0,1,2} representing the index of the image pairs.

To find m j, b j, and f j, we proceed in the following way. We
use two sliding windows of different sizes and different strides
to scan through the reference binary image and the target binary
image. The window sizes and strides for different resolutions are
summarized in Table 1. Note that each stride is chosen to be half
of its corresponding window size, so that we have overlapping
windows. Using the window sizes and strides for the binary im-
ages at the corresponding resolutions, we will be able to get image
patches matching the same contents in the two binary images. We
can then find the three values m j, b j, and f j, by comparing the
two binary image patches.

With the two binary image patches, we then scale up the one
at the lower resolution by pixel replication, so that the two image
patches have the same size. For convenience, we name the scaled-
up binary patch the “target patch”, and the higher resolution bi-

Resolution Window Size Stride
600 dpi 48 24
300 dpi 24 12
150 dpi 12 6
75 dpi 6 3

Table 1: Window Sizes and Strides for Different Resolutions.

nary patch the “reference patch”. Overlaying the target patch and
the reference patch, we will have three types of pixels, based on
their existence in the two image patches. We name these pixels
vanishing pixels, emerging pixels, and anchor pixels, as defined
below:

1. Vanishing Pixels: Foreground pixels in the reference patch
that become background pixels in the target patch;

2. Emerging Pixels: Background pixels in the reference patch
that become foreground pixels in the target patch;

3. Anchor Pixels: Foreground pixels in the reference patch that
remain foreground pixels in the target patch.

Intuitively, emerging pixels are very likely merging pixels
or hole-filling pixels, depending on whether they emerge on gaps
between foreground lines or fill out isolated background blocks.
In contrast, vanishing pixels are very likely breaking pixels, since
they can cause breakages of lines or character strokes. Below, we
describe how we find merging, breaking, and hole-filling pixels in
a moving window.

Merging Pixels. We begin by finding all connected com-
ponents in the reference patch and assigning each component a
distinct label. After that, we copy the labels of all anchor pix-
els, leaving other pixels unlabeled, and form a new labeled map
named LM1. We then group the emerging pixels by connected
components. For each emerging component, we look for labels
of anchor pixels in LM1 that are direct neighbors to the compo-
nent, and collect their labels, forming a set S1. If there are at least
two labels in S1, meaning that this component is linking two dif-
ferent strokes or lines in the reference patch, then pixels in this
component are potential merging pixels.

Breaking Pixels. We begin by finding all connected compo-
nents in the target patch and assign each component a distinct la-
bel. Similar to LM1, we copy the labels of all anchor pixels, leav-
ing other pixels unlabeled, and form a new labeled map named
LM2. We then group the vanishing pixels by connected compo-
nents. For each vanishing component, we look for labels of an-
chor pixels that are direct neighbors to the components in LM1,
and collect their labels, forming a set S1. Similarly, we also look
for labels of anchor pixels that are direct neighbors to the compo-
nents in LM2, and collect their labels, forming a set S2. If there is
at most one label in S1 and at least two labels in S2, meaning that
this component is breaking a stroke or a line from the reference
patch into two or more parts in the target patch, then pixels in this
component are potential breaking pixels.

Hole-filling Pixels. Hole-filling pixels can be found with
merging pixels in a similar way. After we group the merging pix-
els by connected component, for each emerging component, we
look for labels of anchor pixels in LM1 that are direct neighbors to
the component, and collect their labels, forming a set S1. If there
is at most one label in S1 and there is no background pixel that is a
direct neighbor to the component, meaning that this component is
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filling a hole in the reference patch, then pixels in this component
are potential hole-filling pixels.

Once we locate the potential merging, breaking, and hole-
filling pixels in an image patch, we add 0.25 to all corresponding
locations of these pixels in the corresponding accumulation map.
We use the value 0.25 since every pixel will appear in four im-
age patches using our choice of window sizes and strides. We
will have three accumulation maps, each for one type of pixels
among merging, breaking, and hole-filling pixels; and they will
be initialized with zeros. After we iterate through all the image
patches with the sliding window, we threshold the three accumu-
lation maps and only keep those with values equal to 1 as valid
merging, breaking, or hole-filling pixels. Finally, we count the
total number of merging pixels, breaking pixels, and hole-filling
pixels, respectively, and thus obtain values for m j, b j, and f j .

Based on our calculation of m j, b j, and f j, we designed three
features as follows:

1. Merging Pixel Percentage Mi: The cumulative total of merg-
ing pixels between the base resolution and the target resolu-
tion, over the total number of foreground pixels at the base
resolution;

2. Breaking Pixel Percentage Bi: The cumulative total of
breaking pixels between the base resolution and the target
resolution over the total number of foreground pixels at the
base resolution;

3. Filling Pixel Percentage Fi: The cumulative total of between
the base resolution and the target resolution hole-filling pix-
els over the total number of foreground pixels at the base
resolution.

In the above definition, i is the index for feature vectors or
target resolutions. Since we have three tiers of resolutions for ev-
ery input image (300 dpi, 150 dpi, and 75 dpi), every input image
will have three feature vectors. We use i ∈ {0,1,2} to represent
the three tiers of resolutions accordingly, ordered from high to
low. The expressions for computing Mi, Bi and Fi are listed in
Equation 1. In these expressions, m j, b j, and f j represent the
number of merging, breaking, and hole-filling pixels detected in
the jth pair of binary images at neighboring resolutions. N rep-
resents the total number of foreground pixels in the base resolu-
tion binary image, and 4 j represents a weight given to the number
of pixels at different resolutions to account for the fact that the
number of pixels at lower resolutions is less than that at higher
resolutions for the same image.

Mi =
∑

i
j=0 4 jm j

N

Bi =
∑

i
j=0 4 jb j

N

Fi =
∑

i
j=0 4 j f j

N

, f or i ∈ {0,1,2} (1)

With these three feature vectors, we then use a trained SVM
to classify each feature vector, from the feature vector of the high-
est target resolution to the feature vector of the lowest target res-
olution. The SVM will take a feature vector as input, and re-
turn either 1 or 0, with 1 indicating unreadable and 0 the oppo-
site. Therefore, getting a 0 from the SVM means that the current
target resolution is a readable resolution for the input image or
sub-image. When we get a 1, we stop the process, and claim
that the previous readable resolution is the minimum we can get.

For example, if the SVM returns 1 for the first feature vector,
i.e. (M0,B0,F0), then we say that the minimum readable resolu-
tion tier is Tier 0, or 600 dpi in our implementation. If we get 0
for all 3 feature vectors, the minimum readable resolution tier is
then Tier 3, or 75 dpi in our implementation. These correspon-
dences are summarized in Table 2, where Pi represents output for
each feature vector, i ∈ {0,1,2}, from the SVM. In the table, “x”
means “don’t care”.

Output (P0,P1,P2) Minimum Readable Resolution Tier
(1,x,x) Tier 0
(0,1,x) Tier 1
(0,0,1) Tier 2
(0,0,0) Tier 3

Table 2: From SVM Predictions for Feature Vectors to Minimum
Readable Resolution.

Training the Support Vector Machine
In our method, a support vector machine (SVM) is used to

discriminate feature vectors of images at readable resolution from
feature vectors of images at unreadable resolution. Note that
“readable” and “unreadable” here are subjective opinions ideally
given by language experts or by a group of study subjects. For
this paper, the opinions were rendered by the first co-author. The
SVM in our system takes in a feature vector each time and re-
turn either 0 or 1 as output, with 0 indicating “readable” and 1
indicating “unreadable”.

To gather training samples, we first generated 100 pages of
MS Word documents containing random horizontal English texts
in different typefaces and sizes. After that, we printed the docu-
ments and scanned them at 600 dpi without any post-processing.
We than sliced the scanned documents horizontally into smaller
pieces, each containing several lines of text. This gave us ap-
proximately 1000 image slices. Using the method we introduced
previously, we computed a set of three feature vectors for each im-
age slice. As a result, we had 3000 feature vectors as our training
samples. To get ground truth labels for these feature vectors, we
scanned the printed documents again, but at all four tiers of res-
olutions this time and with post-processing like denoising, sharp-
ening, and JPEG compression. We then examined the processed
scanned documents at various resolutions one by one and made
a judgement of the minimum readable resolution for every image
slice based on its actual viewing quality on a screen. Based on
our judgements, we then assigned ground-truth labels 0 or 1 to
every feature vector accordingly, according to Table 2. Finally,
we fitted an SVM model using the training feature vectors with
their ground truth labels.

Experimental Results
Page Segmentation

To qualitatively demonstrate the effectiveness of our page
segmentation algorithm, we show some examples of segmented
images from our testing set in Figure 9. For visualization, we use
red bounding boxes for symbol regions and blue bounding boxes
for raster regions.

To quantitatively evaluate the performance, we built a page
segmentation dataset containing 100 pages scanned at 100 dpi.
The ground-truth bounding boxes were obtained by manually
drawing on the images with a bounding box drawing software
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tool. The resulting average intersection over union (IoU) is 0.81
for symbol regions and 0.60 for raster regions.

(a) (b) (c)
Figure 9: Page Segmentation Results.

Minimum Readable Resolution Determination
To test the effectiveness of our designed features, we built

two separate dataset that contains images of English text and Chi-
nese text. From each dataset, we extracted 3000 feature vectors,
each with an associated ground-truth value of either 0 or 1 based
on our judgements of the minimum readable resolutions of images
in the dataset.

From each dataset, among the 3000 feature vectors and
ground truth we generated, we selected one fifth of them as testing
data, and the rest as training data for 5 times. The 5-fold valida-
tion accuracy are 95.1% for English text dataset and 91.6% for
Chinese text dataset.

Conclusion
In this paper, we proposed a novel document image quality

assessment method to determine the minimum readable resolution
of scanned documents or regions in scanned documents. Our ex-
periments successfully demonstrated the effectiveness of our pro-
posed methods. For now, our system is only tested with English
and Chinese texts. But the same idea can be easily expanded and
applied to text in other languages, as well as other symbol con-
tents that share similar characteristics with texts.
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