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Abstract
Currently, a particular scan resolution has to be defined be-

fore a scanner starts working. Two problems arise from this pro-
cess. Firstly, no matter how different two pages contents are, they
will be scanned into the same resolution. For example, after scan-
ning, a blank page and a fine-detailed drawing will have the same
resolution. Secondly, for one scanned page, every part of its out-
put would have the same resolution, whatever their contents are.
These problems will cause unnecessary waste of memory used to
store scanned images. So a method to decide the minimum ac-
ceptable scan resolution is needed. But current image quality es-
timators are not suitable for estimating image quality at different
resolutions. This paper proposes four features to assess image
qualities at different resolutions, namely 75, 100, 150, 200 and
300 dpi. The features are tile-SSIM mean, tile-SSIM standard de-
viation, horizontal transition density, and vertical transition den-
sity. Tests on images containing different contents show that these
features are promising in evaluate image qualities across different
scan resolutions.

Introduction
Modern scan routines require a predefined scan resolution,

whether it is customer-selected or a default in the scanner's set-
tings. When the scanning process begins, the resolution cannot be
changed. This results in all scanned pages, no matter how much
their contents may vary, having output images of the same size.
For example, if one page has an image area of plain color and an-
other image has many details, as shown in Fig. 1, the two images
will have the same size after the scanning process. However, we
can clearly see in Fig. 1 that picture (b) needs a larger scan resolu-
tion than picture (a). If we scan both pages with a low resolution
like 75 dpi, picture (a) will have all the information but picture
(b) will lose some details. However, if we scan them both at a
high resolution like 300 dpi, picture (b) will have all the details,
but we also need more space to store picture (a). As a result, the
best strategy for us would be to scan images with different reso-
lutions according to their contents, so that we can still maintain
good image quality while lowering the total storage used.

In order to tackle this problem, different scan resolutions for
different contents must be chosen. Undoubtedly, higher scan res-
olutions would keep more details and yield higher-quality images.
The quality of scanned images degrades as the scan resolution de-
creases, which may cause blurriness. And this is quite obvious in
scanned text documents, since blurriness can cause a document to
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(a) flat image (b) cat image

Figure 1: Example of two pages with different contents. We can
see that picture (a) contains a plain blue area, while picture (b)
has more detail. So we can see that they need different scan reso-
lutions

be unreadable.
Image quality assessment (IQA) is a widely-researched area

topic [1] [2]. Typically, there are three categories of quality es-
timators (QEs): full reference (FR) QEs, reduced reference (RR)
QEs, and no reference (NR) QEs. FR QEs exploit the ”perfect”
reference image and examine the truthfulness that a new image
has with the reference image. The simplest measures are the mean
squared error (MSE) or peak signal-to-noise ratio (PSNR). But its
nature of heavily relying on pixel correspondences does not re-
flect human’s subject view. Other QEs, like structural similarity
index (SSIM) [3] [4], multi-scale structural similarity [5], visual
information fidelity (VIF) [6], most apparent distortion (MAD)
[7], can all reflect human’s perceptual assessment. But they all
require a reference image of the same resolution and size. As a
result, we cannot use these FR QEs directly.

Reduced reference (RR) approaches are used if the reference
image is available, but is too costly to get. Most RR QEs are
based on natural scene statistics (NSS) models [8]. For exam-
ple, the ”divisive normalization” QE [9] uses the Gaussian scale
mixture (GSM) model on the wavelet coefficients of the reference
image and the image to be tested. Also, the ”quality-aware image”
QE [10] exploits information on a general Gaussian distribution
(GGD) model. But since we actually have the reference image,
and some of the images under study may not be natural scenes,
RR QEs are not suitable for our study.

When there is not any information from a reference image,
IQA must be processed on the test image only. This is referred to
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as the no reference (NR) IQA. NR QEs exploit properties of test
images directly, like the blocking from JPEGs [11] [12], ringing
from JPEG 2000 [13] and blurring [14]. Some QEs exploit the
NSS properties like BRISQUE [15]. There are also some train-
ing based NR IQAs that learn the human judgements on a large
database of human opinion scores [6] Although our problem has
reference images, they cannot be used directly like FR QEs. We
could use some NR QEs to help.

In this paper, we propose some QEs that could help perform
IQA of images at different resolutions. Although the reference
images cannot be used directly as in FR IQA, our QEs can use
their information to help assess qualities changes with different
resolutions. We also explore NR QEs since they can reflect image
qualities without reference images. Further, the image resolutions
in consideration are 300 dpi, 200 dpi, 150 dpi, 100 dpi, and 75
dpi. We chose these resolutions because after some research and
investigation, we found that 300 dpi can preserve image qualities
that are good enough for most scanned materials. Besides, most
scanners from the high-end to low-end all support these resolu-
tions. Tests on various kinds of images show that these QEs are
promising in predicting image qualities at different resolutions.

Methodology
Tile-SSIM

SSIM (structural similarity index) [3] is the most successful
FR QE and is widely used in estimating quality of images. It is
composed of three elements over small patches of two images x,
y: a luminance similarity term l(x, y), a contrast similarity term
c(x, y), and a structure similarity term s(x, y). Their computations
are [3]:

l(x,y) =
2µxµy + c1

µ2
x +µ2

y + c1
(1)

c(x,y) =
2σxσy + c2

σ2
x +σ2

y + c2
(2)

s(x,y) =
σxy + c3

σxσy + c3
(3)

Here µx, µy are averages of x and y, respectively. σx, σy are
standard deviations of x and y, respectively. σxy is the covariance
of x and y. And c1, c2 and c3 are variables to stabilize the division
with a weak denominator. The formula to calculate the SSIM
value is

SSIM(x,y) = l(x,y) · c(x,y) · s(x,y) (4)

SSIM is very powerful in predicting the structural similarity
of a test image to a reference image. After some research and
investigation, we find that the majority of images have good per-
ceptual quality at 300 dpi. So we can use 300 dpi images as the
reference to assess qualities of lower resolution (200 - 75 dpi)
images. But images of different resolutions have different sizes,

which cannot be assessed using SSIM directly. As a result, we
need to do some pre-processing steps before SSIM can be applied.

We noticed that for images of different resolutions, the ratio
of their sizes are the same as the ratio of their resolutions. As a
result, we can generate images of the same size by utilizing these
ratios. Then we can apply the SSIM to assess quality changes
across resolutions.

We propose a method called tile-SSIM. According to the size
ratios, we separate different resolution images into the same num-
ber of non-overlapping tiles. In each tile, we calculate the stan-
dard deviation of it. And then we combine all the standard devi-
ations to form a standard deviation map, as is shown in Figure 2.
We choose standard deviation to represent each tile because low
resolution images (200 - 75 dpi) can be approximated by area-
based downsampling from high resolution (300 dpi) images. The
number of grayscale levels decreases in this process, which could
result in a decrease of the activity in the corresponding tiles. At
the end of the preprocessing, since all images, whatever their reso-
lutions are, have the same number of tiles, their standard deviation
maps must be the same size.

Figure 2: Steps to generate standard deviation map. The above
block shows the original image and the tile size of 3×3. After
calculating the standard deviation of each tile, we form a new
standard deviation map, which has the same size across all reso-
lutions.

The image resolutions and their corresponding tile sizes can
be found in Table 1. The tile widths and heights are proportional
to their resolutions so that the images have the same number of
tiles regardless of their resolutions.

Table 1: Scan resolutions and their corresponding tile size.

Resolution (dpi) Tile width/height (pixel number)
300 12
200 8
150 6
100 4
75 3

Figure 3 shows the original 300 dpi and 200 dpi images, and
their standard deviation maps, respectively. We can see that al-
though the original images are of different sizes, their standard
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(a) Original 300 dpi image

(b) 200 dpi image

(c) 300 dpi standard devi-
ation map

(d) 200 dpi standard devi-
ation map

Figure 3: Original 300 dpi and 200 dpi images and their standard
deviation maps.

deviation maps have the same size, and keep most of the struc-
tural information.

Figure 4 shows the workflow of tile-SSIM. First, color im-
ages of all resolutions are turned into grayscale images before be-
ing passed into a Gaussian filter to eliminate random noise. Then,
these images are separated into non-overlapping tiles according to
their resolutions (Table 1), so that the number of tiles will be the
same across all resolutions. In each tile, we calculate its standard
deviation value. In this way, we have standard deviation maps of
the same size. Then, we can calculate the SSIM values between
between low-resolution standard deviation map and the high res-
olution standard deviation map.

Figure 4: Tile-SSIM workflow.

(a) Full SSIM map of 300 and 200
dpi images

(b) Binary image of standard de-
viation map

Figure 5: Full SSIM map and the binary image of the standard
deviation map. From (a) and (b) we can tell that the binary map
provides a good mask to locate foreground pixels, so that back-
ground pixels will not affect the quality assessment.

On the standard deviation maps, the SSIM values are cal-
culated on 7× 7 image patches with stride equal to 1 pixel. We
then could use their average to assess the structural similarities of
low resolution images with their references. But when people are
looking at an image, we can see that they are mainly focused on
the foreground areas. The background areas, like the large white
area in a document image, or plain flat areas in a natural scene
image, usually attract much less attention. As a result, it would
not be reasonable to average over all these background areas.

In order to tackle this problem, we can locate the foreground
pixels by binarizing the 300 dpi standard deviation map through
some threshold algorithm like Otsu’s method [16]. By averaging
over foreground pixels only, we can eliminate the effect of back-
ground areas and better reflect the viewer's perception of image
quality changes at different resolutions, as is shown in Figure 5.
With the decreasing scan resolution, we should expect a continu-
ous drop in SSIM mean values.

In addition to SSIM average, we can also use its standard
deviation as a feature. As the scan resolution goes down, image
patches with high variations would see a lot of decrease in vari-
ation values, thus resulting in a decrease in SSIM values. In the
mean time, the smooth areas would not change much. They can
maintain relatively high values across all resolutions. As a result,
as the scan resolution goes down, the SSIM standard deviation of
image foreground patches would tend to increase. This could be
used as an indicator of the relation between scan resolution and
image quality.

Transition Density

While tile-SSIM mean and standard deviation may be good
QEs to assess the similarity between 300 dpi images and their low
resolution counterparts, these QEs cannot assess the quality of the
reference 300 dpi images. If the 300 dpi images are of relatively
low quality, no matter how good their SSIM value is relative to the
low resolution images, we cannot scale them down. So we also
need some NR QEs to independently justify the quality of images
at each resolution.
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(a) Original 300 dpi image and part of its enlarged area

(b) 75 dpi image with the same
area enlarged

Figure 6: Change of line drawing with decreasing resolution. The
300 dpi image in (a) has very good details with distinct lines,
while the 75 dpi image of (b) has very blurry edges. From the
enlarged area, we can even barely see any edges in the 75 dpi
image.

As the scan resolution decreases, we can clearly see that the
images become more and more blurred. Some sharp edges may
even disappear. This is much more obvious with document im-
ages or line drawings, as their distinct edges maybe very close
to each other. As the resolution decreases, two edges are likely
to merge into one edge or become visibly indistinguishable. All
of this would cause some of the characters to become unidentifi-
able, and drawings to become blurry, as shown in Figure 6. With
this motivation in mind, we define new features to reflect quality
changes at different scan resolutions.

Two features, horizontal and vertical transition densities are
defined based on the ideas mentioned above. These transition den-
sities can be used to characterize connected components proper-
ties [17]. Based on the discussion above, they may also can be
used to test image quality changes at different resolutions. Fig-
ure 7 shows the workflow for computing the horizontal and verti-
cal transitions.

Figure 7: Workflow for calculating horizontal transitions. Calcu-
lation of vertical transitions proceeds in a similar manner.

We start with color images which are first converted into
grayscale images. Then binary images are obtained through
Otsu’s binarization and foreground pixels are identified. To count
horizontal transitions we draw horizontal lines along with each
foreground pixels, as shown in Figure 8. The horizontal transition
density is defined as the ratio of total number of horizontal tran-
sitions over the number of horizontal lines containing foreground
pixels. Similarly, as shown in Figure 9, we draw vertical lines
along with each foreground pixels to obtain vertical transitions.
And vertical transition density is the ratio of vertical transitions
over vertical lines.

Figure 8: Horizontal transition.

Figure 9: Vertical transition.

Experiment Results
We selected 6 images to test our QEs. The images ”cricket”

and ”elephant” are natural images of a cricket and an elephant,
respectively. The image ”form” is the picture of a form, which
contains only text and lines. The images ”map purdue” and
”map nanjing” are two map images. And the image ”mix” is one
with both text and pictures.

Tile-SSIM
There are 2 features in tile-SSIM: tile-SSIM mean values and

tile-SSIM standard deviations. The tile-SSIM mean values con-
tain 4 elements: between 300 dpi and 200 dpi s 200; between
300 dpi and 150 dpi s 150; between 300 dpi and 100 dpi s 100;
and between 300 dpi and 75 dpi s 75. So the feature vector of
tile-SSIM mean values s value is:

s value = (s 200,s 150,s 100,s 75) (5)

Similarly, the tile-SSIM std values contain 4 elements: be-
tween 300 dpi and 200 dpi std 200; between 300 dpi and 150 dpi
std 150; between 300 dpi and 100 dpi std 100; and between 300
dpi and 75 dpi std 75. So the feature vector of tile-SSIM std val-
ues s std is:

s std = (std 200,std 150,std 100,std 75) (6)

Figure 10 shows the result of applying the tile-SSIM algo-
rithm to the 6 different images. In order to provide a better com-
parison, we also put the tile-SSIM value between 300 dpi and
itself in the figure, and that value is always 1. From Figure 10
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we can see that although these images differ a lot in content, their
SSIM mean values behave the same way. They slightly decrease
at 200 and 150 dpi, then drop quickly at 100 and 75 dpi. These
plots reflect the quality of these images as their resolutions de-
crease. So the tile-SSIM mean can be used as a feature to estimate
image quality.

Figure 10: Tile-SSIM mean value.

Figure 11 shows how the standard deviation changes with
different resolution pairs. Note that the standard deviations be-
tween the 300 dpi images and themselves are always 0. Except for
some minimal decreases (form and mix decrease a little bit from
the 300-100 dpi pair to the 300-75 dpi pair), the standard devi-
ations for all images keeps increasing with increasing difference
between the pair of resolutions. We could also use this feature to
predict image quality.

Figure 11: Tile-SSIM standard deviation.

Transition Density
Figure 12 and Figure 13 show the results for horizontal and

vertical transition densities, respectively. Note that since these
are NR QEs, and each image has 5 resolutions, each feature has 5
elements. The horizontal density hd can be denoted as

hd = (hd 300,hd 200,hd 150,hd 100,hd 75) (7)

where hd 300, hd 200, hd 150, hd 100, and hd 75 denote
the horizontal density of the 300 dpi, 200 dpi, 150 dpi, 100 dpi,
and 75 dpi images, respectively.

Similarly, the vertical density vd can be denoted as

vd = (vd 300,vd 200,vd 150,vd 100,vd 75) (8)

where vd 300, vd 200, vd 150, vd 100, and vd 75 denote the
vertical density of the 300 dpi, 200 dpi, 150 dpi, 100 dpi, and 75
dpi images, respectively.

We can see in these two figures that the numbers all de-
crease with decreasing resolution. As expected, the text document
(form) has the largest horizontal transition density. The sudden
decrease at 100 dpi indicates a significant drop in image quality.
The cricket picture has the least intensity variation among all im-
ages. Thus, it has the least number of transitions. The big drop
from 300 dpi to 200 dpi might indicate an image quality drop.

Figure 12: Horizontal transition result.

Figure 13: Vertical transition result.

Conclusion
To assess image quality at different scan resolutions, this pa-

per proposes four QEs: tile-SSIM mean, tile-SSIM standard devi-
ation, horizontal transition density, and vertical transition density.
Our tests on different content images show that they change con-
sistently with decreasing resolution. With labeled ground truth
data, and a machine learning method like support vector machine,
we expect to be able to predict the image quality at different res-
olutions and thus decide the optimal resolution for different scan
contents.
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