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Abstract 

To enhance images, one often has to apply a filtering operation 

(denoising). However, there are several issues within the denoising. 

One of them is that sometimes denoising can be not efficient. 

Another issue regards a selection of an appropriate filter and setting 

of its parameters. As a particular case, we consider a 2D DCT-

based filter with 8x8 pixel fully overlapping blocks where one of the 

parameters is a proportionality factor (PF) used in the threshold 

setup. We show that a performance of the considered filter in the 

sense of standard PSNR and visual quality metric PSNR-HVS-M can 

be predicted before applying image filtering procedure. This 

prediction is sufficiently faster than the denoising itself and accurate 

enough. We demonstrate that, having DCT statistics in a limited 

number of image blocks, such a prediction can be done for several 

values of PF. This allows deciding is it worth applying filtering to 

an image at hand. If the denoising is desired, it is also possible to 

select the PF optimal value for the considered image and noise 

intensity. Such a procedure, in some cases, can result in 

improvement of output PSNR or PSNR-HVS-M by up to 1 dB in 

comparison to the default parameters setup. 

Keywords: DCT, denoising, filtering performance prediction, 

parameter optimization. 

Introduction 
A lot of images are acquired nowadays. They are of different 

quality and some images are corrupted by noise that is clearly visible 

degrading an image quality [1,2]. Such images have to be denoised 

in order to improve their visual appearance [2-4]. 

Image filtering (denoising) has been a hot topic for several 

decades [4-6]. The filters proposed so far belong to different 

families [5-7], where nonlocal and transform based techniques are 

among the best performing ones [7-9]. Meanwhile, efficiency of 

image denoising depends not only on the used filter but also on noise 

type and intensity, complexity of an image to be processed, filter 

parameters (e.g. scanning window or block size) set by a default or 

adjusted by a user [5-9]. Sometimes a filtering is useless according 

to a chosen criteria or according to a visual appearance [5, 7]. If one 

can predict such a situation, then the filtering can be skipped [5, 10-

12]. This can save time and resources spent on image processing. 

Analysis of a potential efficiency of removal of additive white 

Gaussian noise (AWGN) for nonlocal filtering has been first 

presented in [7] for the case when a true image is available. Several 

important conclusions have been drawn. First, it has been shown that 

a potential efficiency of denoising is low for highly textured images 

corrupted by noise that is not intensive. Second, it has been 

demonstrated that this potential efficiency is practically reached by 

the best existing nonlocal filters, such as, e.g., BM3D [13]. 

Meanwhile, there is a large space to improve the performance of 

existing filters for the case of processing of simple structure images 

corrupted by an intensive noise. 

Later it has been shown [14, 15] that it is possible to estimate a 

potential efficiency of denoising without having the noise-free 

(reference) image. However, this requires considerable 

computations and, thus, its practical application is limited. Here it is 

worth recalling the main requirements to prediction of denoising 

efficiency. Prediction should be quite fast, i.e. sufficiently faster 

than the filtering itself. Prediction should be accurate enough, i.e. 

predicted values of an analyzed metric have to be close to the true 

values for each image. 

An approach that more or less meets these requirements has 

been proposed in [10]. It presumes that noise statistics are a priori 

known or pre-estimated with a high accuracy [16, 17] and noise is 

AWGN. A simple statistic (two statistics have been studied) is 

determined in a limited number of 8x8 pixel blocks in DCT domain 

and used for the prediction. Prediction is carried out using 

approximating curve obtained in advance by curve fitting into 

scatter-plot [10, 18]. The scatter-plot is obtained by filtering images 

from a quite large set of test images corrupted by AWGN with the 

variance values varying in wide limits. 

The approach [10] has been further advanced in [5, 11, 12, 19, 

20]. In particular, it has been shown that accuracy of prediction can 

be improved using two or more input parameters and more 

complicated approximators, such as, e.g., neural networks. It has 

been also demonstrated that a prediction can be carried out for other 

than AWGN types of noise under condition that its characteristics 

are known in advance [11, 20]. More important, a prediction can be 

performed not only for the DCT-based filters [8, 13, 21]. A 

prediction is possible not only for the widely used metrics such as 

MSE or improvement of peak signal-to-noise ratio (IPSNR) but also 

for the visual quality metrics [5] such as PSNR-HVS-M [22] and 

others, although prediction for visual quality metrics is usually less 

accurate. 

Meanwhile, design of prediction methods and tools has been 

performed under assumption that filter parameters are fixed (set 

according to some recommendations by default). In particular, 

threshold value for the DCT-based filter [8] is set equal to 2.7σ 

where σ is an AWGN standard deviation assumed to be known in 

advance. At the same time, it is known that filter parameters can be 

varied for some particular goal, e.g., to provide a better visual 

quality of output images [23]. Such a variation can be both local and 

“global” where proportionality factor is set fixed but different than 

2.7 for processing of all image blocks. 

Below we consider a way to determine this proportionality 

factor in advance, at the stage of a prediction of image denoising 

efficiency. We show that no essential modifications into prediction 

procedure are needed under condition that a preliminary work for 

obtaining approximating curves is done in advance. Meanwhile, a 

sufficient positive effect is possible. 

Image filtering and metrics used 
Let’s consider the following general image/noise model: 
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n t t
ij ij ij ij Im ImI I n (I ),i 1,..., I , j 1,...,J    , (1) 

where 
t
ijI  denotes the true image ij-th pixel value, 

t
ij ijn (I )  is the 

zero mean AWGN in the ij-th pixel, Im ImI ,J  define the processed 

image size. 

The 2D DCT-based filter has several modifications and 

parameters. It performs in square shape blocks [8] where the block 

size 8x8 pixels is preferable due to the several reasons. Filtering can 

be done in non-overlapping, partly overlapping, and fully 

overlapping blocks where the last setting is the most efficient in the 

sense of the provided efficiency of noise removal but it is the most 

time consuming (this drawback is usually not crucial since the DCT-

based filter is among the fastest denoisers). Hence, below we 

consider the fully overlapping blocks. For each block position (each 

image pixel except 7x7 lower rightmost ones serves as the left upper 

corner of the corresponding block), 3D DCT is performed. Then, 

thresholding is done for all DCT-coefficients except the DCT-

coefficient responsible for the block mean. Thresholding can be 

carried out in different manner where there are soft, hard, and 

combined thresholding algorithms. Below we consider hard 

thresholding which is more efficient than soft [21] but simpler than 

the combined thresholding. After the thresholding, inverse 2D DCT 

is performed and initial filtered values are, thus, obtained for all 

pixels that belong to a given block. Since a given pixel belongs to 

several block positions (excluding image pixels at four corners), 

initially filtered values “coming” from different blocks are then 

aggregated by averaging. 

The threshold value is set equal to βσ where the default setting 

for β is 2.7 [21, 23]. This is done according to the analysis performed 

for many test image corrupted by AWGN with different σ. 

Moreover, this analysis shows the following: 1) optimal value of the 

parameter β (βopt) depends on a quality metric used to characterize 

the filtering efficiency; it is usually larger for IPSNR compared to 

the visual quality metrics (for example, IPHVSM (improvement of 

PSNR-HVS-M due to the filtering determined as the difference 

between PSNR-HVS-M for the filter output and PSNR-HVS-M for 

original (noisy) image)); 2) βopt also depends on image complexity 

and noise intensity; βopt increases for simpler structure images and 

larger noise intensity (smaller input PSNR and PSNR-HVS-M). It 

is worth recalling here that the metric PSNR-HVS-M is expressed 

in dB, varies in a wide range (close to the range of PSNR variation). 

PSNR-HVS-M takes into account two important features of human 

vision – less sensitivity to distortions in higher spatial frequencies 

and masking effect (noise is masked by textures). By default, βopt 

can be set to 2.4 if PSNR-HVS-M is used as a quality metric [23]. 

Analysis also shows that βopt can vary in the wide limits. For 

example, according to the maximized IPSNR, it is possible that βopt 

is in the limits 2.7±1. Similarly, according to maximized IPHVSM, 

βopt varies in the limits 2.4±1. 

Having this knowledge at our disposal, we have to analyze is it 

possible to predict the filter performance for the different values of 

β. Our idea is that if it is possible and if the difference in 

performance is sufficient, then it is possible to carry out prediction 

for several values of β and to choose the best value. 

Prediction approach 
The simplest way to carry out prediction is to use one input 

parameter [10]. Based on the results presented in [19], let us further 

use the probability P0.5σ – probability that absolute values of AC 

DCT coefficients do not exceed 0.5σ. Theoretically, P0.5σ varies in 

the limits from 0 to 0.38 where the upper limit is reached for fully 

homogeneous images (or images approaching to them as simple 

structure images corrupted by intensive AWGN). 

An important preliminary stage needed to be passed once 

before using the efficiency prediction procedure is to get 

approximating dependences (curves). This can be done using 

scatter-plots and regression [18]. Examples are presented in Fig. 1. 

 

 

a 

 

b 
Figure 1. Scatterplots and the fitted curves for IPSNR (a) and IPHVSM (b) on 
P0.5σ for three values of β 

Each point of the scatterplot corresponds to one grayscale 

image corrupted by AWGN with one value of noise variance 

(standard deviation) and then filtered by 2D DCT-based filter with 

hard threshold set as βσ. Points for all three considered values of β 

are presented (they are marked by different colors and shapes). The 

curves are fitted by traditional tools available in Matlab or Excel 

separately for each value of β. The curves are marked by blue for 

β=2.3, green for β=2.7 and red for β=3.1. Color components of 15 

first test images from the database TID2013 [24] have been used as 

the test images. Eight values of AWGN variance, namely, 4, 8, 16, 

0.1 0.15 0.2 0.25 0.3 0.35
0

5

10

15

P
0.5

IP
S
N
R

 

 

=2,3

=2,7

=3,1

0.1 0.15 0.2 0.25 0.3 0.35
-2

0

2

4

6

8

10

P
0.5

IP
H
V
S
M

 

 

=2,3

=2,7

=3,1

319-2
IS&T International Symposium on Electronic Imaging 2020

Image Quality and System Performance



 

 

32, 64, 128, 256, and 512 have been employed to obtain noisy 

images. 

A preliminary analysis of the plots in Fig. 1 shows the 

following: 

1. There is an obvious tendency of filtering efficiency increase  

according to both metrics for P0.5σ increase; moreover, for 

P0.5σ smaller than 0.15…0.2, the improvement of quality due 

to filtering is negligible and filtering seems to be useless with 

any setting of β; 

2. Scatter-plot points are placed in a compact manner around the 

fitted curves; the points in the second scatter-plots are placed 

less compactly; this means that IPSNR can be predicted better 

(with higher accuracy) than IPHVSM; 

3. For the scatter-plots presented in Fig. 1 several functions can 

be used for fitting; analysis of opportunities is done in [5]. 

We have obtained the following approximations: 

  0.5 0.59.858 52.58

2.3 0.5IPSNR P 0.2493 18.06
P P

e e 


  
     (2) 

  0.5 0.564.4 9.30111

2.7 0.5IPSNR P 9.874 10 0.2898
P P

e e 


       (3) 

  0.5 0.566.06 10.0811

3.1 0.5IPSNR P 6.103 10 0.2102
P P

e e 


       (4) 

  0.5 0.560.44 8.23810

2.3 0.5IPHVSM P 3.008 10 0.2484
P P

e e 


        (5) 

  0.5 0.560.55 8.5910

2.7 0.5IPHVSM P 3.71 10 0.2127
P P

e e 


      (6) 

  0.5 0.562.48 10.0110

3.1 0.5IPHVSM P 2.015 10 0.1146
P P

e e 


        (7) 

Additional analysis of the fitted curves allows drawing the 

following conclusions: 

1. All three curves in Fig. 1,a are close to each other for almost 

all values of P0.5σ; only for P0.5σ about 0.27 filtering with 

β=2.3 and β=2.7 provides certain benefits compared to 

denoising using β=3.1; meanwhile, for P0.5σ>0.35 the use of 

β=2.7 or even β=3.1 provides benefit up to 1 dB compared to 

processing with β=2.3; 

2. According to the plots in Fig. 1,b, the use of β=3.1 is 

undesired for any images and noise intensities; the use of 

β<2.7, e.g., β=2.3 can be a reasonable choice. 

Taking these conclusions into account, a procedure for setting 

a proper β can be as follows. Suppose we have approximating curves 

for several values of β. Then, for a given image, it is needed to 

determine P0.5σ and to calculate predicted IPSNR or IPHVSM for all 

values of β. After this, find the largest improvement and use β that 

corresponds to it. Note that input parameter is calculated only once, 

approximating curves are simple, and so it is easy to choose the best 

β according to a considered quality metric. 

Some filtering examples 
In fact, there are some practical situations when filtering is not 

needed at all. Fig. 2 presents such an example. The test image (Fig. 

2,a) is corrupted by AWGN with the variance equal to 4. Such a 

noise is practically invisible (Fig. 2,b) and, thus, there is no need to 

suppress it. The filtered image (Fig. 2,c) looks practically the same 

as two other ones. Both IPSNR and IPHVSM are smaller than 1 dB 

and this additionally confirms that filtering is useless. Thus, we can 

recommend skipping filtering if P0.5σ does not exceed 0.15…0.17. 

 

 

a 

 

b 

 

c 

Figure 2. Noise-free (Test image TID#08) (a), noisy ( 2 4  ;
0.5 0.13P  

) (b) 

and filtered ( 2.3  ; IPSNR 0.78 dB; IPHVSM 0.46 dB) (c) images 
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Consider now another example presented in Fig. 3. 

 

 

a 

 

b 

 

c 

Figure 3. Noise-free (Test image TID#04) (a), noisy ( 2 512  ;
0.5 0.37P   ) 

(b) and filtered ( 2.7  ; IPSNR=11.48 dB, IHVSM=6.86 dB) (c) images 

Noise is intensive and it is clearly visible in the noisy image 

(Fig. 3,b) including the textured fragments. Noise is considerably 

suppressed by the filter (Fig. 3,b) but the details originally masked 

by the noise are not restored (note that other filters applied for this 

test image corrupted by such an intensive noise do not perform much 

better). Both metrics show that filtering is efficient (their values are 

quite large) but the filtering result might be unsatisfactory for some 

users. 

Fig. 4 presents an example of “middle” situation. A noise-free 

test image (Fig. 4,a) is corrupted by middle intensity noise (Fig. 4,b) 

that is visible in homogeneous image regions and practically 

invisible in textural regions where the noise is masked. 

Two filtered versions are given in Fig. 5. According to 

approximations in Fig. 1, it is better to apply β=2.7 than β=3.1. Both 

visual comparison of output images and quantitative data (metrics’ 

values) confirm this. The image in Fig. 5(a) looks less smeared 

(edges and details are sharper) while noise is suppressed equally 

well. 

 

 

a 

 

b 

Figure 4. Noise-free (Test image TID#09) (a), noisy ( 2 32  ;
0.5 0.31P   ) 

(b) images 
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a 

 

b 
Figure 5. Filtered images with β=2.7 (IPSNR=5.27 dB, IHVSM=4.34 dB) (a) 

and β=3.1 (IPSNR=5.00 dB, IHVSM=4.07 dB) (b) 

Conclusions 
This paper considers the problem of filtering efficiency 

prediction for 2D DCT-based filter and optimal parameter selection 

for this filter. It is shown that some metrics including visual quality 

ones can be predicted. Moreover, optimal parameter can be chosen 

without essential additional calculations. Prediction also shows 

situations when filtering can be skipped, saving time and resources. 

To further improve the prediction performance, it is possible to 

use several input parameters. To our opinion, the proposed method 

can be also used for other filters in setting their parameters to decide 

is it worth to apply denoising. 
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