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Abstract
Subjective quality assessment remains the most reliable way

to evaluate image quality while being tedious and money consum-
ing. Therefore, objective quality evaluation ensures a trade-off by
providing a computational approach for predicting image quality.
Even though a large literature exists for 2D image and video qual-
ity evaluation, 360-degree images quality is still under-explored.
One can question the efficiency of 2D quality metrics on such a
new type of content. To this end, we propose to study the possible
improvement of well-known 2D quality metrics using important
features related to 360-degree content, i.e. equator bias and vi-
sual saliency. The performance evaluation is conducted on two
databases containing various distortion types. The obtained re-
sults show a slight improvement of the performance highlighting
some problems inherently related to both the database content and
the subjective evaluation approach used to obtain the observers’
quality scores.
Keywords: Omnidirectional images, quality metrics, performance
evaluation.

1. Introduction
In recent years, virtual reality (VR) has experienced an im-

pressive growth. 360-degree images represent an important part
of the VR content, in which the users are provided with real world
scenes to live an immersive experience. With commercial head
mount displays (HMDs), the viewer is allowed to freely focus
on the desired content thanks to his head movements (HM) mak-
ing the interactive and the immersive experience more interest-
ing. Accordingly, to achieve good quality of experience (QoE),
immersive contents with high visual quality should be provided.
Thus, 4K or even higher resolutions are required. Based on this,
quality assessment of omnidirectional images becomes crucial to
control QoE.

No doubt that images Quality Assessment (IQA) is an im-
portant aspect for numerous applications. There are two types of
IQA, objective and subjective assessment. In the former, the aim
is to find an algorithm that evaluates the quality of image/video as
a human observer would do. Hence, the computed quality scores
have to be well correlated with those given by human observers,
since the user is the ultimate receiver of the image/video. As for
the latter, it is considered as the most reliable method to obtain
the quality score where subjects are asked to rate the viewed im-
age/video [20]. Unfortunately, subjective experiments are time-
consuming, expensive and require a lot of effort to provide reli-
able results [6]. Hence, developing objective quality metrics is
perceived as a good tradeoff. Depending on the availability of
the reference image, objective IQA can be classified into : 1)Full-

Reference (FR) which are used when the reference image is avail-
able, 2)Reduced-Reference (RR) using partial information from
the reference image, and 3)No-Reference (NR) where the refer-
ence image is not needed [1].

IQA has been extensively studied for 2D images in the past
few decades resulting in a large number of quality metrics. There-
fore, it seems typical to use these metrics directly on omnidirec-
tional images, as they are generally processed, encoded and trans-
mitted using in a 2D plane representation. Meanwhile, it has been
highlighted in [13] that, sampling density from sphere to plane
projection is not uniform at every pixel location, leading thus to
a modification of the impact of the different regions on the final
quality. Therefore, an objective metric for omnidirectional images
that mitigates the aforementioned limitation is needed.

Motivated by the large number of quality metrics dedicated
to 2D images, we present in this paper an extensive evaluation
of the performance of these metrics when applied to on omnidi-
rectional images. This evaluation is made using two databases
containing multiple degradation. In this work, our aim is not to
review these metrics. Rather, we aim to understand and analyze
their behavior when applied directly on omnidirectional images
and possibly propose some tuning using: 1) equator bias weight-
ing which correspond to the way the human gaze is biased towards
the equatorial line when watching 360-degree images, 2) percep-
tual weighting such as the one obtained by a saliency model ded-
icated to such image type. By adding these features to existing
2D IQA metrics, the performance could be improved when as-
sessing omnidirectional image quality. Finally, we provide a sta-
tistical evaluation of the used IQA metrics. The provided results
aim to bring insight for readers for a better understanding of the
current issues regarding QA of omnidirectional images. Further-
more, the provided discussions based on the evaluation results are
expected to motivate and inspire new thoughts for designing new
IQA algorithms or rethinking the way the QA is performed for
this emerging type of media.

2. IQA ALGORITHMS
In the past few decades, several IQA metrics have been pro-

posed for 2D images,where the perceived quality measurement
has been and still the main focus of researchers. These metrics are
widely used in image quality evaluation, benchmark, image/video
databases creation and evaluation. Hence, we select for this study
fifteen metrics from the literature, for which source code is made
available by their original authors. This way, one can avoid any
doubts with regards to the original algorithm. The selected met-
rics include signal-based and perception-based algorithms. In the
following section, the selected metrics are described. For the rest
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this paper, I and Î denote the reference and distorted image re-
spectively, M and N represent the width and the height of images
respectively.

Peak Signal-to-Noise Ratio (PSNR) is a widely used distor-
tion measurement based on pixel-to-pixel error to estimate the
quality of an image. The PSNR is expressed as :

PSNR(I, Î) = 10log10(
MAX2

MSE(I, Î)
), (1)

where MSE denotes the mean squared error and can be obtained
as follows:

MSE =
∑

M−1
i=0 ∑

N−1
j=0 (I(i, j)− Î(i, j))2

MN
. (2)

The Mean Absolute error (MAE) is a simple mathemati-
cal measurement of the error between two images. In [11], a
Perceptual-fidelity aware MSE (PAMSE) is proposed based on a
linear structure extraction resulting to the structural MSE. Struc-
tural similarity (SSIM) proposed in [22] is based on the assump-
tion that the HVS is substantially adapted to extract the structural
information from a scene. In SSIM, the similarity measurement in
performed in three steps: luminance (3), contrast (4) and structure
comparison (5). These steps are denoted as l, c, s respectively and
formulated as:

l(I, Î) =
2µI µÎ +C1

µ2
I +µ2

Î
+C1

, (3)

c(I, Î) =
2σIσÎ +C2

σ2
I +σ2

Î
+C2

, (4)

s(I, Î) =
σIÎ +C3

σIσÎ +C3
, (5)

where C1, C3 and C2 are constants. Finally, the SSIM index is
defined as:

SSIM(I, Î) =
[
l(I, Î)

]α [c(I, Î)]β [s(I, Î)]γ , (6)

α , β and γ are positive weighting factors used to tune the impor-
tance of each component. The Universal Quality Index (UQI) [21]
is the predecessor of SSIM and is considered as a special case of
this latter where α = β = γ = 1 and C1 =C2 =C3 = 0 [10].

Later, a Multi-scale version of the structural similarity met-
ric namely MS-SSIM is proposed in [10], where the image details
at different resolutions and viewing conditions are incorporated.
First, a low-pass filter is applied. Then, the contrast comparison
(eq. 4) and the structure comparison (eq. 5) are calculated at dif-
ferent scales (1, . . . ,M). Finally, luminance comparison (eq. 3) is
computed, but only at the last scale M. The overall SSIM evalu-
ation is obtained by combining the measurement at the different
scales as follows:

MS−SSIM(I, Î) =
[
l(I, Î)

]αM
.

M

∏
i=1

[
c(I, Î)

]β i [s(I, Î)]γi
. (7)

Visual information fidelity (VIF) proposed in [7] measures
the information fidelity between two images. The fidelity is quan-
tified based on the amount of mutual information between I and

Î by modeling the images in the wavelet domain using Gaussian
scale mixture. In [19], the feature similarity (FSIM) index is pro-
posed based on the assumption that the HVS is attracted by low-
level characteristics. FSIM is based on two features to measure lo-
cal similarity,i.e. phase congruency (PC) and gradient magnitude
(GM). The former is also used at the pooling stage as a weighting
factor. An extended version of FSIM to color channels (FSIMc)
through pixel-wise fidelity over chroma channels was also pro-
posed. Riesz Transform based Feature Similarity (RFSIM) [18] is
based on the fact that the HVS is attracted to image edges. There-
fore, the RFSIM is computed using the 1st and 2nd-order Riesz
transforms to extract the image’s local structure and compare the
feature maps at key locations marked by a feature mask generated
using an edge detection algorithm.

Based on the important role played by the image gradient for
the HVS, reflecting the contrast and the structure information of
an image, the Gradient Magnitude Similarity Deviation (GMSD)
is proposed in [12]. GMSD computes the horizontal and vertical
gradients for both I and Î by convolving Prewitt filter along the
two directions. The image gradient maps at pixel i are obtained as
follows:

G(i) =
√

Gx(i)2 +Gy(i)2 (8)

where Gx and Gy represents the horizontal and vertical gradients
respectively. With c a positive constant for numerical stability, N
the number of pixels, the final score of GMSD is computed using
the standard deviation of the Gradient Magnitude Similarity map,
as follows:

GMSD =

√√√√ 1
N

N

∑
i=1

(GMS(i)−GMSM)2 (9)

where

GMS(i) =
2GI(i)GÎ(i)+ c

GI(i)2 +GÎ(i)
2 + c

(10)

The Mean Deviation Similarity Index (MDSI), proposed in
[23], benefits from the important role of the image gradient for
the HVS and uses two similarity maps. The gradient map and the
color distortion map are pooled by a deviation pooling strategy
based on the measure of central tendency (MCT).

Visual Saliency-based Index (VSI) [17] and Spectral Resid-
ual based Similarity (SR-SIM) [16] use visual saliency and gra-
dient magnitude. VSI exploits visual saliency as a feature when
computing the local quality map of the distorted image as well as
a weighting factor at the pooling stage so as to reflect the impor-
tance of a local region. SR-SIM extracts the residuals of the image
in the spectral domain and constructs its corresponding spatial do-
main saliency map using a Fourier transform-based approach. In
[5], the Haar Wavelet-based Perceptual Similarity Index is pro-
posed based on local features to construct similarity map using
the coefficients of a discrete Haar wavelet transform.

2.1 Omnidirectional IQA
Regarding omnidirectional IQA, a very few objective IQA

metrics have been proposed. Most of them are simply derived
from traditional PSNR, SSIM or MSE [2]. For instance, Weighted
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Spherical PSNR (WS-PSNR) uses the scaling factor w(i, j) from
2D plane to the sphere as a weighting factor for PSNR computa-
tion. For each pixel (i, j) in I and Î the WS−PSNR is obtained by
Eq.11.

WS−PSNR = 10log10(
MAX2

WMSE
), (11)

where,

WMSE =
∑

M−1
i=0 ∑

N−1
j=0 (I(i, j)− Î(i, j))2.w(i, j)

∑
M−1
i=0 ∑

N−1
j=0 w(i, j)

, (12)

and,

w(i, j) = cos(
π

N
( j+

1
2
− N

2
)). (13)

Other PSNR-based metrics were also proposed, particularly
in [14], Zakharchenko et al. proposed to compute PSNR on the
projection plane of Craster parabolic projection (CPP). It is named
as CPP-PSNR, where PSNR is computed after re-mapping pixels
of the original and distorted images from the spherical domain to
the CPP projection. Yu et al. [13] proposed Spherical PSNR (S-
PSNR) in which, the PSNR is computed in the spherical domain.

3. Improvement of 2D IQA for omnidirectional
images

3.1 Equator Bias
Unlike 2D images, omnidirectional images can be viewed in

a 360-degree range. However, when using Head Mounted Display
(HMD), viewers tend to focus on the region near the equator as
reported in [8]. In this study, eye fixations data was collected us-
ing an eye tracker combined with an HMD during the conducted
experiment. Therefore, the regions around the equator are consid-
ered as regions of interest (RoI) in omnidirectional contents and
may have a higher impact on the global perceived quality. Con-
sequently, we believe that adding more importance to the equator
region and incorporate the equatorial bias as a weighting factor
can perceptually improve existing 2D IQA for omnidirectional
images. We will refer to it as E−Metric. To this end, we modeled
the equator bias as a Gaussian function depending on the image
latitude (α). Hence, for an M ×N image at latitude i the equator
bias is denoted as E(i).An Illustration is given in Fig. 1(b).

E(i) = exp(
−(i− N

2 )
2

αN
) (14)

Similarly, we use the scaling factor from 2D plane to the
spherical domain used in [2] as a weighting factor and, as a special
case the weights in the Equirectangular projection are given in
Eq.13. Therefore, we incorporated this weighting factor to 2D
metrics and refer to it as W −Metric.

3.2 Visual Attention Weighting
In this part, we propose to incorporate visual attention in-

formation into existing 2D metrics so as to give more importance
to RoIs and add perceptual properties. As for human attention
modeling, we chose to use saliency features for omnidirectional
contents. For this matter, we select the model described in [15] in

order to produce the saliency maps because of its efficiency and
availability. Hence, every element of the obtained saliency map
is used as weighting factor wi, j for the corresponding pixel of the
image. This will be refered to as Sal −Metric. An illustration of
the obtained weighting map is given in Fig. 1.

In addition, we investigate the combination of the equator
bias and scaling factors with visual saliency in order to study the
possible additivity of improvements. It will refered to as ESal −
Metric and WSal −Metric respectively.

(a) Original image

(b) Equator Bias

(c) Saliency map
Figure 1: Illustration of the equator bias and the saliency predic-
tion.

3.3 Omnidirectional Image Datasets
To date, IQA of omnidirectional content is suffering from the

unavailability of large and reliable datasets. Very few work have
been done to this end due to its complexity and difficulty. Indeed,
building a dataset requires subjective experiments to gather hu-
man opinions represented as the Mean Opinion Score (MOS), in
addition to an appropriate environment and test conditions. As
a special case, for omnidirectional subjective tests, the observers
view the images through commercial HMDs. The latter presents
some shortcomings that may affect the effectiveness of the ob-
server’s quality rating as the screen door effect. Neglecting such a
phenomena may result in an unreliable evaluation. Another com-
mon issue with subjective scores in general is the non-linear na-
ture of the obtained scores requiring a non-linear regression using
a five parameter logistic function, as recommended in the ITU-R
recommendations [4], prior to the performance evaluation. How-
ever, it is to be recalled that the use of the logistic function cannot
be done if the native correlation is below 0.7. Otherwise the cor-
relation value cannot be considered as reliable because regression
quality is very low.

For instance, Fig. 2 depicts the scatter plot of a given objec-
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tive scores against the subjective scores MOS. One can notice that
scores are widely spread and do not show a consistent correlation
confirmed by the Pearson correlation coefficient of PLCC = 0.42.
By applying the aforementioned regression, the correlation score
improves artificially (PLCC = 0.48). In some cases, this may pro-
vide a significant improvement that is totally inconsistent.

(a) Without regression

(b) With regression
Figure 2: Illustration of inconsistent regression.

For this study, we chose two publicly available datasets. and
. Huang et al. [3] proposed a dataset of 12 omnidirectional
source images down-sampled to four different spatial resolutions
and compressed using three JPEG quality factors of 20, 60, 100,
resulting in a total of 144 omnidiretional images. The HTC VIVE
was used as the test device. As for the test method, the Absolute
Category Rating (ACR) Single Stimulus was adopted. 98 subjects
participated to the subjective experiment, 53 males and 45 females
with ages of 18 to 25. The subjects were standing and had to give
their scores verbally. The range of this latter was divided to 100
levels, from 0 (Bad) to 100 (Excellent). Each subject observed
three different image contents at four different spatial resolutions
and three quality factors. A transition of 5 seconds between every
two image samples was implemented.

Sun et al. [9] proposed the CVIQD2018 datatset containing
16 original omnidirectional, compressed using JPEG compression
with quality factors ranging from 50 to 0 with an interval of -5,
H.264/AVC and H.265/HEVC with factors from 30 to 50 with
an interval of 2, leading to 528 compressed images for a single
source image. As for the subjective test, the recommendations
in ITU-RB500-11 were followed to validate the proposed dataset
with the participation of 20 subjects including 15 males and 6
females. The adopted method is a Single Stimulus one and the
HTC VIVE was used as the test device where an interaction sys-

tem developed using Unity3D software was designed to facilitate
the display and the collection of the subjective scores. The rating
was scaled into 10 levels from the lowest to the highest quality.
The experiment was conducted in an empty room and subjects
were sitting on a swivel chair so they can only turn around.

Table 1 summarize both datasets’ characteristics in terms of
quality distortion types, number of reference/distorted images and
the number of subjects. All the images in the datasets are provided
in equirectangular projection.

4. Results and Discussion
In order to assess the performance of the pre-selected met-

rics and the improved versions, we used four common metrics
including Spearman Rank Order Correlation Coefficient (SRCC),
Pearson Linear Correlation Coefficient (PLCC), Kendal Rank Or-
der Correlation Coefficient (KRCC) and the Root Mean Squared
Error (RMSE). A metric is considered having a perfect prediction
when LCC = SRCC =KROOC = 1 and RMSE = 0. We computed
the predicted scores using a five parameters non-linear logistic
function as given below :

f (x) = β1

(
1
2
− 1

1+ expβ2(x−β3)

)
+β4x+β5 (15)

where x denotes the objective score and, f (x) represents the corre-
sponding mapped score. βi(i = 1,2,3,4,5) correspond to the lo-
gistic function parameters to be fitted. Next, the obtained mapped
scores are compared to the subjective scores (DMOS) in order to
measure the performance of the selected IQA metrics using the
aforementioned metrics. Furthermore, we adopted the regression
criterion discussed previously; so Eq. 15 is applied only if the
native PLCC ≥ 0.7.

4.1 Performance of 2D IQ metrics
With the intent of giving a comprehensive evaluation of

state-of-the art 2D IQA metrics on omnidirectional images, we
first evaluated fifteen FR IQ metric designed for 2D content on
two public databases (see Table 1), and we compared them with
two PSNR-based IQA metrics designed for omnidirectional con-
tent. Tables 2 and 3 provide the LCC, SRCC, KRCC and RMSE
results without using the non-linear regression on Huang et al. and
CVIQD2018 datasets, respectively. The best three performance
are highlighted in each column. This evaluation is performed with
the aim to inspect 2D metrics’ behavior when applied directly to
omnidirectional images. As we know, QA metrics designed for
2D images do not take into account omnidirectional content char-
acteristics, but since the original and the impaired images are both
with geometric distortion, 2D metrics may assess the similarity
effectively. Also, an overview of the scatter plots for Huang et
al. and CVIQD2018 is given in Fig. 3 and Fig. 4 respectively
in order to visualize the relation between predicted and subjective
scores.

From Tables 2 and 3, one can observe that globally, the pre-
dicted scores exhibit better consistency with CVIQD2018’s sub-
jective score unlike Huang et al’s. Fig. 4 supports this observa-
tion, where one can see that the scatter plots depict a concentra-
tion of the dots around the diagonal. This is mainly related to
the subjective scores nature, since both datasets used the same
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Table 1: Description of the used omnidirectional image datasets.

Datasets Ref Images Dis Images Dis Types Subjects

Huang et al. [3] 25 300 JPEG with different QFs/Different resolution 98
CVIQD2018 [9] 16 528 JPEG with different QFs/H.264 and H.265 with different QPs 20

methodology and same equipment(HMD). An other interesting
observation is that, some metrics outperform WS-PSNR and S-
PSNR, PSNR-based quality metrics that are designed for omni-
directional content. This is due to the fact that PSNR does not
always agree with human judgment. Although, the behavior of
PSNR compared to S-PSNR and WS-PSNR is quite interesting,
we can clearly see that PSNR outperformed S-PSNR and WS-
PSNR in both datasets. An explanation to this behavior may be
the way we computed PSNR. Specifically for this latter, we mea-
sured PSNR as the log of the sum of the three channels’ MSE.

From Table 2, we can observe that VSI, SR-SIM and RF-
SIM achieved the best three performance. Specifically, VSI and
SR-SIM, visual attention based metrics, outperformed the other
metrics. As for CVIQD2018, Table 3 reveals that structure sim-
ilarity based metrics such as MDSI, SSIM and HaarPSI have the
best performance. This may be related to the nature of the im-
ages and the impairment types. The use of multiple datasets bring
more accuracy to the evaluation of QA models, in the same time,
its makes the comparison among datasets difficult, since they con-
tain different scenes and may use different tools. From Figs. 3 and
4, one can see that the distribution is consistent with the perfor-
mance score given in Tables 2 and 3 where each of VSI, SR-SIM
and RF-SIM scatter are more concentrated and correlated. This
justifies the values of PLCC i.e. 0.755, 0.756 and 0.747 respec-
tively. On the other hand, from the scatter plot of UQI, we can
observe almost no relationship between the objective and the sub-
jective scores which justify the PLCC value of 0.328.

Table 2: Performance evaluation (LCC, SRCC, KRCC and
RMSE) of the selected 2D-IQA metrics on Huang et al. [3].
Metric LCC SRCC KRCC RMSE
WS-PSNR 0.419 0.465 0.325 28.973
S-PSNR 0.419 0.466 0.325 27.798
PSNR 0.449 0.481 0.338 30.324
MAE 0.39 0.453 0.317 64.162
SSIM 0.634 0.671 0.496 65.17
MS-SSIM 0.455 0.42 0.284 65.174
PAMSE 0.445 0.479 0.332 64.081
HaarPSI 0.477 0.451 0.305 65.221
RF-SIM 0.747 0.707 0.526 65.199
GMSD 0.493 0.474 0.326 66.133
FSIM 0.696 0.668 0.49 65.168
FSIMc 0.72 0.684 0.503 65.169
MDSI 0.672 0.683 0.504 66.022
UQI 0.328 0.323 0.216 65.398
VIF 0.411 0.422 0.286 65.456
VSI 0.755 0.693 0.513 65.167
SR-SIM 0.756 0.705 0.528 65.167

Table 3: Performance evaluation (LCC, SRCC, KRCC and
RMSE) of the selected 2D-IQA metrics on CVIQD2018 [9].

Metric LCC SRCC KRCC RMSE
WS-PSNR 0.741 0.724 0.52 18.025
S-PSNR 0.741 0.724 0.52 19.073
PSNR 0.783 0.751 0.551 18.343
MAE 0.763 0.735 0.535 48.554
SSIM 0.854 0.887 0.698 50.28
MS-SSIM 0.853 0.876 0.683 50.295
PAMSE 0.718 0.789 0.583 46.931
HaarPSI 0.923 0.905 0.728 50.444
RF-SIM 0.84 0.846 0.648 50.362
GMSD 0.854 0.845 0.643 51.17
FSIM 0.845 0.911 0.735 50.274
FSIMc 0.844 0.913 0.738 50.274
MDSI 0.914 0.903 0.721 51.036
UQI 0.809 0.836 0.633 50.837
VIF 0.841 0.851 0.655 50.814
VSI 0.77 0.893 0.709 50.263
SR-SIM 0.814 0.885 0.696 50.264

4.2 Performance on Individual Distortions

Performance evaluation over different types of impairment
gives a hazy idea about quality metrics behavior. Therefore, it
is important to analyze their performance on individual impair-
ments. For example, structural similarity-based metrics detect
structural changes which is the main distortion existing in the
used dataset. Hence, in this section, we provide an in-depth anal-
ysis of the selected 2D metrics on individual impairment types
(spatial resolution for Huang et al. and AVC, HEVC, JPEG for
CVIQD2018). The performance is evaluated using LCC and
SRCC and the results are given in Tables 4 and 5 for huang et
al. and CVIQD2018 respectively. From these tables, several
observations could be made based on the obtained performance
results. For instance, from Table 4 we can observe that all the
metrics achieved better performance on single distortions than on
the overall dataset. With the increase of spatial resolution, the
performance drops, which may means that, 2D QA metrics are
not suitable for high resolution content in this case. Additionally,
PSNR performed poorly compared to S-PSNR and WS-PSNR un-
like when evaluated globally. As for the best performance, SR-
SIM still outperforms the rest. GMSD and MS-SSIM achieved
quite impressive performance on content-independent distortions
compared to their performance on the overall datasets. This con-
firms that heterogeneous resolutions may affect the performance
of quality metrics. From Table 5, we can observe that struc-
tural distortions measurement-based metrics still outperform the
other metrics; HaarPSI and MDSI performed the best on content-
independent distortion. Meanwhile, SSIM performs worst than
VIF, but its performance improved compared to the overall one,
this conclusion holds for the other metrics.
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Table 4: Performance evaluation (LCC, SRCC) of the selected
2D-IQA metrics on individual impairments for Huang et al. [3].

Metric LCC SRCC
4k 2k 1k 720p 4k 2k 1k 720p

WS-PSNR 0.52 0.625 0.683 0.616 0.513 0.671 0.707 0.636
S-PSNR 0.52 0.625 0.684 0.616 0.513 0.672 0.71 0.636
PSNR 0.426 0.553 0.601 0.53 0.476 0.631 0.655 0.562
MAE 0.401 0.483 0.577 0.556 0.52 0.662 0.693 0.614
SSIM 0.534 0.682 0.705 0.773 0.701 0.8 0.815 0.758
MS-SSIM 0.748 0.812 0.836 0.817 0.704 0.797 0.812 0.749
PAMSE 0.568 0.649 0.741 0.735 0.625 0.762 0.794 0.719
HaarPSI 0.735 0.808 0.844 0.823 0.628 0.759 0.78 0.705
RF-SIM 0.696 0.76 0.805 0.817 0.603 0.762 0.78 0.761
GMSD 0.742 0.832 0.871 0.848 0.656 0.765 0.795 0.694
FSIM 0.657 0.759 0.793 0.833 0.692 0.786 0.8 0.745
FSIMc 0.677 0.78 0.818 0.846 0.664 0.772 0.778 0.721
MDSI 0.667 0.762 0.789 0.72 0.613 0.764 0.779 0.687
UQI 0.646 0.686 0.684 0.68 0.603 0.734 0.716 0.651
VIF 0.629 0.694 0.732 0.684 0.663 0.752 0.769 0.725
VSI 0.736 0.839 0.86 0.795 0.62 0.767 0.783 0.692
SR-SIM 0.757 0.836 0.862 0.853 0.688 0.799 0.81 0.73

Table 5: Performance evaluation (LCC, SRCC) of the selected
2D-IQA metrics on individual impairment for CVIQD2018 [9].

Metric LCC SRCC
AVC HEVC JPEG AVC HEVC JPEG

WS-PSNR 0.738 0.712 0.828 0.748 0.717 0.722
S-PSNR 0.738 0.712 0.828 0.747 0.717 0.722
PSNR 0.754 0.678 0.871 0.765 0.682 0.779
MAE 0.738 0.641 0.839 0.762 0.677 0.765
SSIM 0.896 0.884 0.853 0.945 0.922 0.933
MS-SSIM 0.836 0.818 0.889 0.879 0.86 0.914
PAMSE 0.71 0.669 0.757 0.843 0.803 0.873
HaarPSI 0.924 0.916 0.947 0.924 0.912 0.93
RF-SIM 0.89 0.874 0.844 0.916 0.895 0.912
GMSD 0.84 0.847 0.908 0.866 0.869 0.913
FSIM 0.893 0.89 0.837 0.947 0.934 0.928
FSIMc 0.896 0.89 0.839 0.948 0.934 0.933
MDSI 0.942 0.915 0.96 0.941 0.911 0.937
UQI 0.848 0.804 0.89 0.878 0.84 0.867
VIF 0.913 0.913 0.945 0.924 0.924 0.887
VSI 0.86 0.835 0.799 0.919 0.882 0.931
SR-SIM 0.861 0.863 0.8 0.929 0.911 0.923

4.3 Performance of improved 2D IQ metrics
In this section we discuss the performance evaluation of im-

proved IQ metrics based on the improvement mentioned in Sec-
tion 3. To understand existing 2D IQ metrics limits for omnidi-
rectional IQA, we applied the mentioned adjustments to eight 2D
metrics namely PSNR, MAE, SSIM, MS-SSIM, PAMSE, UQI,
SR-SIM and VSI. Tables 8 and 9 list the performance evalua-
tion results (LCC and SRCC) on individual distortions for Huang
et al. and CVIQD2018, respectively, after applying regression.
Cells containing dashes represent the performance that did not fit
the condition of PLCC ≥ 0.7. We first observe the improvements
over standard versions, for Huang et al. Improvement could be
noticed for SSIM, MS-SSIM, PAMSE and UQI with the five dif-
ferent tunings. In the mean time, the performance dropped for
VSI and SR-SIM. From this latter observation, one can conclude
that the incorporation of omnidirectional properties with visual
attention-based 2D metrics may drop the performance. But, the

Table 6: Performance evaluation (LCC, SRCC) of the selected
2D-IQA metrics on individual impairment for Huang et al.”With
Regression”

Metric LCC SRCC
4k 2k 1k 720p 4k 2k 1k 720p

WS-PSNR - - - - - - - -
S-PSNR - - - - - - - -
PSNR - - - - - - - -
MAE - - - - - - - -
SSIM - - 0.849 0.865 - - 0.819 0.758
MS-SSIM 0.758 0.825 0.862 0.864 0.704 0.797 0.812 0.749
PAMSE - - 0.772 0.86 - - 0.794 0.604
HaarPSI 0.746 0.819 0.86 0.86 0.628 0.759 0.78 0.705
RF-SIM - 0.76 0.846 0.817 - 0.762 0.777 0.761
GMSD 0.742 0.832 0.871 0.861 0.656 0.765 0.795 0.738
FSIM - 0.839 0.857 0.866 - 0.794 0.805 0.745
FSIMc - 0.835 0.863 0.868 - 0.775 0.777 0.721
MDSI - 0.762 0.789 0.72 - 0.764 0.779 0.687
UQI - - - - - - -
VIF - - 0.753 - - - 0.769 -
VSI 0.736 0.839 0.86 0.859 0.62 0.767 0.783 0.692
SR-SIM 0.757 0.836 0.862 0.864 0.688 0.799 0.81 0.73

Table 7: Performance evaluation (LCC, SRCC) of the selected
2D-IQA metrics on individual impairment for CVIQD2018.”With
Regression”

Metric PLCC SRCC
AVC HEVC JPEG AVC HEVC JPEG

WS-PSNR 0.748 0.725 0.853 0.747 0.717 0.722
S-PSNR 0.751 0.73 0.86 0.748 0.719 0.732
PSNR 0.767 0.687 0.89 0.766 0.682 0.779
MAE 0.769 0.677 0.888 0.763 0.678 0.765
SSIM 0.946 0.884 0.853 0.945 0.922 0.933
MS-SSIM 0.881 0.861 0.963 0.879 0.86 0.914
PAMSE 0.78 0.808 0.938 0.843 0.804 0.873
HaarPSI 0.926 0.918 0.971 0.924 0.912 0.93
RF-SIM 0.916 0.898 0.96 0.916 0.895 0.912
GMSD 0.84 0.847 0.908 0.866 0.869 0.913
FSIM 0.95 0.936 0.972 0.947 0.934 0.928
FSIMc 0.951 0.935 0.973 0.948 0.934 0.933
MDSI 0.942 0.915 0.96 0.941 0.911 0.937
UQI 0.888 0.845 0.922 0.877 0.839 0.863
VIF 0.927 0.927 0.952 0.924 0.924 0.887
VSI 0.922 0.89 0.969 0.919 0.882 0.931
SR-SIM 0.931 0.914 0.8 0.929 0.911 0.923

opposite can be observed in Table 9, where VSI and SR-SIM out-
performed the their native version, specially for JPEG compres-
sion. Although, SSIM and MS-SSIM, performed better than their
native version for Huang et al. and their performance dropped for
CVIQD2018.

The observation mentioned before regarding the relationship
between spatial resolution and quality metrics performance ob-
served for Huang et al. still hold even with the proposed tunings.
For instance, MS-SSIM performed the best among the eight met-
rics and, we can observe from Table 8 that its performance is in-
creasing for lower resolutions. The same observation applies to
the rest of the metrics.

5. Conclusion
In this work, we evaluated fifteen state-of-the art IQA mod-

els designed for 2D images on two 360-degree image databases
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with the aim to understand their behavior for this emerging me-
dia. The main contributions of this work consist of an exploration
of the existing 2D QA metrics’ limit when assessing the quality of
360-degree images and, the possibility to tune them according to
the characteristics and the nature of this type of content. To this
end, we proposed to incorporate in selected metrics perceptual
properties such as equator bias and visual attention weightings in
addition to the scaling factor to account for the spherical nature of
the image. Results showed some improvement in comparison to
standard 2D metrics. However, this improvement is relatively lim-
ited depending on the metric and the content. These results ques-
tion about the reliability of both available databases and existing
2D metrics when it comes to 360-degree image quality evaluation.
This opens several future work such as the development of dedi-
cated quality metrics and the construction of reliable databases.
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Table 8: Performance evaluation (LCC, SRCC) of the improved
2D-IQA metrics on individual impairment for Huang et al.
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Table 9: Performance evaluation (LCC, SRCC) of the improved
2D-IQA metrics on individual impairment for CVIQD2018.
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Figure 3: Scatter plots of predicted quality scores by 2D metrics against subjective scores (MOS) for Huang et al. [3].
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Figure 4: Scatter plots of predicted quality scores by 2D metrics against subjective scores (DMOS) for CVIQD2018 [9].
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