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Abstract
In this paper, we present a statistical characterization of tile

decoding time of 360◦ videos encoded via HEVC that considers
different tiling patterns and quality levels (i.e., bitrates). In par-
ticular, we present results for probability density function estima-
tion of tile decoding time based on a series of experiments carried
out over a set of 360◦ videos with different spatial and temporal
characteristics. Additionally, we investigate the extent to which
tile decoding time is correlated with tile bitrate (at chunk level),
so that DASH-based video streaming can make possible use of
such an information to infer tile decoding time. The results of this
work may help in the design of queueing or control theory-based
adaptive bitrate (ABR) algorithms for 360◦ video streaming.

Introduction
The traffic of virtual reality (VR) and augmented reality

(AR) applications is poised to grow considerably in the next few
years [1]. Most certainly, the streaming of 360◦ videos is one of
the main drivers for such traffic growth, especially with the pro-
liferation of affordable head-mounted displays (HMD) coupled
with the increasing popularity of 360◦ videos in platforms such as
Facebook and YouTube. However, the streaming of 360◦ videos
still faces many challenges to operate seamlessly while deliver-
ing high quality of experience to end users under varying network
conditions. This is because this type of video demands consid-
erable more network resources compared to standard 2D video
streaming. For this reason, intense research activity has been ob-
served in this field in the past few years.

Nowadays, the streaming of 360◦ videos mostly relies on the
system architecture developed for 2D video streaming. There-
fore, the whole video sphere needs to be first projected onto a
plane using some projection technique (e.g., equirectangular or
cubemap) before being encoded with a standard 2D-video en-
coder. Typically, the video is encoded in several qualities/bitrates
before it is segmented into “chunks” of fixed time length. For
streaming, the Dynamic Adaptive Streaming over HTTP (DASH)
protocol is usually employed, by which the client side of the ap-
plication can request video chunks from a remote server based
on some adaptive bitrate (ABR) algorithm. However, unlike 2D
videos, a user can only view a fraction of the whole sphere at
any given time through the viewport (or Field of View (FoV))
of an HMD, as shown in Figure 1(a). Typically, an HMD has a
FoV of 120◦× 90◦, which corresponds to only 16.6% of the en-
tire sphere [2]. Consequently, significant system resources can be
wasted if the whole spherical video is transmitted (a.k.a “mono-
lithic” streaming), especially because such videos are streamed
with very high definition.

To save resources (e.g., bandwidth and memory), a number

Figure 1. (a) Viewport in a monolithic streaming: waste of requested and

unseen pixels (red area). (b) A 4×4 tiling pattern with ROI and viewport.

of works [3, 4, 5, 6] have adopted a viewport-adaptive approach
to the streaming of 360◦ videos. In this case, the video projection
is spatially segmented into independently decodable tiles, so that
the client can request only the tiles from a given region of interest
(ROI) that encompass the viewports predicted for the next few
seconds (or, alternatively, request all tiles under different quality
levels). Figure 1(b) depicts a 4× 4 tiling pattern with a ROI and
corresponding viewport.

Along these lines, Qian et al. [7] have proposed a tile-based
solution that targets commodity mobile devices. Their proposed
ABR algorithm optimizes the number and size (i.e., quality) of
tiles to request based on a constraint that takes into account the tile
decoding time estimated from sample averages evaluated at run-
time, among other parameters. Consequently, the constraint on
which an optimal decision is made assumes that a single “typical”
value of tile decoding time is valid for all searchable sizes of tiles
(i.e., qualities). Such an assumption may render buffer occupancy
issues that can lead to undesirable playback stalls. Hence, while
the authors’ system solution delivers remarkable performance, we
believe that their work has also shed some light on the need to
investigate tile decoding time in more detail. Indeed, the status
of buffer occupancy is key in the design of ABR algorithms [8],
and understanding its behavior via queueing or control theory has
proven to be a powerful tool [8, 9, 10, 11]. To help on that, some
statistical knowledge of input/output traffic behavior of a client’s
buffer is needed. In fact, while considerable attention in the litera-
ture has been given to the characterization of network bandwidth,
no previous work has dealt with the characterization of tile decod-
ing time of 360◦ videos, to the best of our knowledge.

In this paper, we present a statistical characterization of tile
decoding time of 360◦ videos encoded via HEVC that considers
different tiling patterns and quality levels (i.e., bitrates). In partic-
ular, we present results for probability density function estimation
based on a series of experiments carried out over a set of 360◦

videos with different spatial and temporal characteristics. Addi-
tionally, we investigate the extent to which tile decoding time is
correlated with tile bitrate (at chunk level), so that DASH-based
video streaming can make possible use of such an information to
infer tile decoding time.
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Experimental Methodology
Figure 2 depicts the workflow adopted in this work to char-

acterize the decoding time of HEVC-encoded 360◦ video chunks
partitioned into different tiling patterns. The details of each step
are explained next.

Figure 2. Workflow for characterization of tile decoding time of 360◦ videos.

First, we selected twelve 360◦ videos from YouTube, all in
equirectangular projection1. Samples of 60 seconds duration of
each video were converted to 4K resolution (4320× 2160) at 30
fps. To guarantee a good representation of video content, we
chose the samples based on their Spatial Information (SI) and
Temporal Information (TI) [12]. Figure 3 shows the dispersion
of TI and SI values of the selected videos. The dots indicate the
median value, and the bars around the dots are limited by the first
and third quartile, computed over all frames. Notice that no videos
are represented in the upper-right corner of the graph because it
is hard to find videos that lead to high TI an SI values. Probably,
videos with high movement (i.e., high TI) tend to blur the scenes,
which leads to lower SI values.

Figure 3. SI and TI values for the selected videos. Large points indicate

the median values, and the endpoints of the bars indicate the quartiles.

Table 1 summarizes the SI and TI values of the videos, along
with their average bitrate when encoded with a constant rate fac-
tor (CRF) of 28 (default encoder value). For the selected videos,
the TI values have a Pearson correlation of 0.797 with the video
bitrates, while the SI values are practically uncorrelated with the
video bitrates (correlation of -0.011). Given that we are also inter-
ested in investigating whether the tile bitrate is strongly correlated
with tile decoding time, knowing that TI has a good correlation
with the tile bitrate may help to infer about tile decoding time, if
the correlation between these two are also found to be strong.

1Available at http://gpds.ene.unb.br/databases/2020-360videos/

Table 1. SI/TI median values and average bitrate of videos.

Video Rate (Mb/s) SI TICRF 28
om nom 0.589 17.3 1.85
super mario 0.804 91.9 1.16
pluto 1.737 14.7 1.82
ball 3.248 18.9 2.48
ski 9.631 22.5 14.2
elephants 11.16 90.5 2.74
lions 12.54 61.2 1.45
venice 13.01 49.1 9.54
manhattan 13.22 41.7 14.9
clans 15.50 17.3 14.3
surf 16.34 15.6 14.0
rollercoaster 19.76 41.8 23.3

For each original uncompressed video in Table 1, we cre-
ated nine new video sequences with specific frame tiling patterns:
3× 2, 4× 3, 6× 3, 6× 4, 6× 5, 6× 6, and 7× 6. This led to
videos with 6, 12, 18, 24, 30, 36, and 42 tiles per frame, re-
spectively. For reference purposes, we also considered the 1× 1
pattern (no tilling). In terms of number of pixels, the investi-
gated tiling patterns correspond to the following spatial resolu-
tions: 1440×1080, 1080×720, 720×720, 720×540, 720×432,
720× 360, and 617× 360, respectively. Then, we encoded each
tile with the HEVC x265 encoder in FFmpeg2, using six differ-
ent values for the Constant Rate Factor (CRF) to control the qua-
lity/bitrate: 16, 22, 28, 34, 40, and 46. The lowest (highest) CRF
value of 16 (46) corresponds to the highest (lowest) video qua-
lity. The default value of 28 is usually recommended for its good
trade-off between quality and compression ratio. It is worth not-
ing that each increment of 3 in the CRF value halves the bitrate,
i.e., the bitrate decreases fourfold for CRF values in our set.

After encoding each tile, of each video, they were tempo-
rally segmented into 1-second chunks that correspond to a whole
GOP of 30 frames. This choice resides in the fact that, in order
for a chunk to be independently decoded, it must contain a num-
ber of frames that is a multiple of a GOP. We chose a 1-second
chunk because this is the most likely chunk length that ABR al-
gorithms would pick to work with DASH, considering that head
movement prediction works well only within prediction windows
of about 1 second [13]. The chunks were then encapsulated into
an MP4 file so they could be decoded individually, which caused
an overhead of about 100 bytes for an extra MP4 “box moov”
header by chunk. Hence, each tile of each video contains 60 de-
codable chunks under six different qualities, which gives us a total
of 725,760 chunks to work with.

Video decoding was performed on a 3.4-GHz i7-4770 desk-
top computer with 16 GB RAM, running Linux Ubuntu 18.04 us-
ing the FFmpeg native decoder with only one thread. The col-
lected time measurements correspond to “user time,” also known
as “process time,” which is the amount of CPU time used by a
process on user mode. In other words, it is the time spent on non-
kernel operations with decoding operations only. Each chunk of a
given tile was decoded three times to obtain an average decoding
time representative of that particular tile/chunk (a slight variation
in measured decoding time was observed for about 17% of mea-
surements, most probably due to the multitasking nature of the

2https://ffmpeg.org/
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operating system). Additionally, we measured the bitrate of each
chunk, as we are interested in understanding its correlation with
tile decoding time. To compute that, each chunk file size (in bits)
was divided by its duration (1 second).

For statistical analysis, we used the SciPy library and con-
sidered the following possibilities for positive continuous prob-
ability distribution fitting (the names in parentheses are used
in the graphs): Burr type XII (burr12), Birnbaum-Saunders
(fatiguelife), Gamma (gamma), Inverse Gaussian (invgauss),
Rayleigh (rayleigh), Log Normal (lognorm), Generalized Pareto
(genpareto), Pareto (pareto), Half-Normal (halfnorm), and Expo-
nential (expon)3. The fitting was based on a maximum likelihood
parameter estimation, and the best results are given in terms of
root-mean-square error (RMSE). In the results, the parameter val-
ues loc and scale must be applied to the normalized distribution
to obtain the fitted one, according to

fitted pdf(x) =
(

1
scale

)
normalized pdf

(
x− loc
scale

)
. (1)

Also, where it is applicable, the parameters c, µ , s, and d refer to
specific distribution parameters, as defined in the SciPy library.

Experimental Results
First, we present an analysis of tile decoding time for each

tiling pattern, when all videos and quality levels are considered
altogether. Then, we look at specific quality levels and tiling pat-
terns. Finally, we present the results for chunk decoding time, i.e.,
when all tiles of a chunk are decoded sequentially (for instance,
to render the whole frames onto the sphere).

Statistics per Tile Pattern with All Quality Levels
Table 2 contains the average and standard deviation values

of both tile decoding time and tile bitrate for each tiling pattern,
including the correlation coefficient between both measurements.
As expected, both tile decoding time and tile bitrate decrease as
the tile size decreases (i.e., tile segmentation increases). The mag-
nitude of the standard deviation, with respect to the mean value,
increases as the tile size decreases. Such ratio is higher for the bi-
trate than for the decoding time. It is worth noting that the range
of CRF values considered here (16 through 46) implies a 20-fold
variation in bitrate. As we can see, the correlation between de-
coding time and bitrate is not very high, when all quality levels
are considered, and it decreases as the tile size decreases.

Table 2. Mean and standard deviation for tile decoding time and
tile bitrate by tiling pattern for all qualities.

Tile Decoding Time (s) Bitrate (Mbps) Corr.Pattern Mean Deviation Mean Deviation
1×1 0.795 0.356 9.73 14.0 0.763
3×2 0.130 0.076 1.67 3.02 0.691
4×3 0.061 0.039 0.850 1.58 0.688
6×3 0.039 0.026 0.574 1.07 0.684
6×4 0.030 0.021 0.437 0.859 0.675
6×5 0.024 0.017 0.352 0.698 0.648
6×6 0.021 0.015 0.297 0.595 0.631
7×6 0.018 0.012 0.258 0.513 0.625

3https://docs.scipy.org/doc/scipy/reference/stats.html

Figure 4 depicts, for each tiling pattern, the three best prob-
ability density functions fitted to the empirical distribution of tile
decoding time. The estimated values of distribution parameters
are shown in Table 4 in the Appendix. From the results, the Log-
Normal distribution is among the three best fitted distributions in
100% of the patterns, while the Inverse Gaussian and Birnbaum-
Saunders distributions appears in 87.5% and 75% of the cases,
respectively.

Statistics per Quality Level and Tile Pattern
Figure 5 presents the average tile decoding time and average

bitrate per quality level, for each tiling pattern. As we can see,
the decrease in bitrate as video quality decays is also followed by
a decrease in tile decoding time, but it is less pronounced. For
instance, in the 6 × 3 case, while the bitrate decays by 97.5%
(1.91 Mbps to 47.6 Kbps) if the CRF varies from 16 to 46, the
tile decoding time decreases by only 63.1% (0.067 to 0.025 sec-
onds) for the same CRF range. The fitting parameters for the
48 distributions (6 quality levels and 8 tiling patterns), are given
in Tables 5, 6, 7, 8, 9, 10, 11, and 12, shown in the Appendix.
From the results, the three best fitted distributions vary by tiling
pattern, resulting in the following frequency with which they ap-
pear among the top three: Birnbaum-Saunders (79.2%), Inverse
Gaussian (72.9%), Log-Normal (70.8%), Burr Type XII (41.7%),
Gamma (8.33%, Generalized Pareto (8.3%), Half-Normal (6.3%),
Exponential (3.08%), and Rayleigh (2.1%).

Table 3 presents the results for the correlation between tile
decoding time and average bitrate for all the 48 cases. For a
given tiling pattern, the correlation increases if the quality level
increases, while for a given CRF value, the correlation decreases
if the number of tiles per frame increases. Considering the tiling
pattern of 6×4, the correlation is about 0.728 for CRF = 28 (this
tiling pattern was shown to achieve high bandwidth savings [4]).

Table 3. Correlation between tile decoding time and tile bitrate.

Pattern Quality (CRF)
16 22 28 34 40 46

1×1 0.893 0.839 0.803 0.786 0.704 0.554
3×2 0.857 0.781 0.735 0.684 0.610 0.479
4×3 0.846 0.782 0.744 0.674 0.584 0.497
6×3 0.848 0.788 0.734 0.683 0.581 0.471
6×4 0.843 0.789 0.728 0.673 0.566 0.451
6×5 0.827 0.761 0.703 0.636 0.537 0.424
6×6 0.814 0.748 0.687 0.617 0.520 0.403
7×6 0.808 0.743 0.688 0.605 0.505 0.398

Chunk Statistics with All Quality Levels
Now, we consider the time to decode all tiles of a chunk

sequentially, considering all videos and quality levels altogether.
Figure 6 shows the chunk’s average decoding time and average bi-
trate for each tiling pattern. Error bars indicate the standard devi-
ation. As expected, the bitrate increases as the number of tiles per
frame increases, since the segmentation in tiles limits the search
space of the encoder’s motion prediction. Surprisingly, however,
the average chunk decoding time benefits from tiling segmenta-
tion, as their average values are generally smaller than for the
1× 1 case. In fact, the average decoding time decreases as the
number of tiles per frame increases, until it reaches a minimum at
the 6×3 pattern that is 10.8% smaller than the 1×1 pattern (at the

IS&T International Symposium on Electronic Imaging 2020
Image Quality and System Performance 285-3



Figure 4. Probability density functions fitted to measured tile decoding times according to tiling pattern. This case considers video chunks with all quality levels.

Figure 5. Tile average decoding time (blue bars) and average bitrate (red lines) according to tiling pattern and tile quality level.

expense of an increase of just 6.26% in bitrate). From this point
on, decoding time values start increasing again. The explanation
of this specific behavior deserves further investigation that is out
of scope of this work.

Figure 6. Chunk decoding time and average bitrate by tiling pattern.

From our measurements, the chunk’s average decoding time
is highly correlated with its average bitrate across all tiling pat-
terns: the measured correlation coefficient is above 0.96 in all
cases (not shown here due to lack of space). Figure 7 depicts the
three best probability distributions fitted to the gathered data for

each tiling pattern. The Inverse Gaussian and Birnbaum-Saunders
distributions are among the top 3 in 100% of the patterns, while
the Log-Normal is among the top 3 in 87.5% of the patterns. The
Burr Type XVII distribution is a candidate for the 1×1 case. The
values of distribution parameters for this case are not shown due
to lack of space.

Conclusions

This paper presented a statistical characterization of tile de-
coding time of HEVC-encoded 360◦ videos that considered dif-
ferent tiling patterns over a significant range of video quality lev-
els (i.e., bitrates) and SI/TI properties. From the results, the distri-
butions Log-Normal, Inverse Gaussian, and Birnbaum-Saunders
best fitted experimental data in most cases. Such distributions
are very flexible and interesting for mathematical modeling pur-
poses (e.g., application to queueing models). Tile decoding time
(at chunk level) is strongly correlated with chunk bitrate only if
the video quality is high, and the degree of correlation decreases
if the number of tiles per frame increases (i.e., high tiling seg-
mentation). The 6× 3 tiling pattern delivered the best trade-off
between tiled decoding time and average bitrate, while presenting
good correlation properties between both metrics if high quality
levels are used. Such an information may possibly be used by
DASH-based ABR algorithms to infer tile decoding time.
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Figure 7. The histogram of density of the decoding time for all tile pattern and the three best distribution with the minor RMSE, for the complete tiled video.
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Appendix

Table 4. Fitted distribution parameters for each tiling pattern.
Format Distribution RMSE Parameters Loc Scale

1x1
Inverse Gaussian 0.581 µ = 1.577 0.461 0.212
Log-Normal 0.660 s = 1.035 0.465 0.196
Birnbaum-Saunders 0.809 c = 1.115 0.462 0.207

3x2
Pareto 6.880 c = 3.108 −0.072 0.140
Birnbaum-Saunders 7.322 c = 1.142 0.068 0.038
Log-Normal 7.355 s = 1.037 0.068 0.035

4x3
Inverse Gaussian 23.38 µ = 1.198 0.026 0.029
Birnbaum-Saunders 24.37 c = 0.983 0.026 0.024
Log-Normal 24.87 s = 0.907 0.026 0.022

6x3
Inverse Gaussian 67.28 µ = 0.891 0.015 0.028
Log-Normal 75.70 s = 0.809 0.015 0.017
Birnbaum-Saunders 97.38 c = 0.867 0.015 0.019

6x4
Inverse Gaussian 84.10 µ = 0.888 0.011 0.022
Log-Normal 94.83 s = 0.804 0.011 0.013
Birnbaum-Saunders 124.8 c = 0.865 0.011 0.015

6x5
Log-Normal 372.3 s = 0.750 0.008 0.012
Inverse Gaussian 404.2 µ = 0.749 0.008 0.022
Birnbaum-Saunders 508.4 c = 0.804 0.008 0.013

6x6
Burr Type XII 597.1

c = 8.358
d = 0.179 0.006 0.006

Log-Normal 638.7 s = 0.737 0.007 0.010
Inverse Gaussian 707.7 µ = 0.711 0.007 0.020

7x6
Burr Type XII 546.9

c = 14.095
d = 0.126 0.457 0.209

Log-Normal 1518 s = 0.695 0.006 0.009
Inverse Gaussian 1586 µ = 0.624 0.006 0.020
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Table 5. Distribution parameters for 1×1 pattern by quality
CRF Distribution RMSE Parameters Loc Scale

16
Generalized Pareto 0.350 c =−0.480 0.503 1.101
Half-Normal 0.361 − 0.503 0.919
Gama 0.365 a = 2.65E +02 -6.514 0.029

22
Half-Normal 0.434 − 0.516 0.527
Exponential 0.476 − 0.516 0.438
Generalized Pareto 0.483 c = 1.66E +07 -7.05E+06 7.05E+06

28
Burr Type XII 0.634

c = 1.554
d = 6.22E +01 0.483 4.417

Gama 0.649 a = 2.001 0.482 0.140
Half-Normal 0.658 − 0.484 0.332

34
Burr Type XII 0.737

c = 9.18E +08
d = 0.017 -2.20E+06 2.20E+06

Gama 0.879 a = 1.671 0.495 0.094
Birnbaum-Saunders 0.884 c = 0.748 0.477 0.136

40
Burr Type XII 0.971

c = 5.47E +08
d = 0.046 -2.00E+06 2.00E+06

Birnbaum-Saunders 1.098 c = 0.554 0.459 0.107
Inverse Gaussian 1.108 µ = 0.313 0.457 0.401

46
Burr Type XII 1.260

c = 5.81E +08
d = 0.152 -3.83E+06 3.83E+06

Inverse Gaussian 1.483 µ = 0.190 0.448 0.494
Birnbaum-Saunders 1.484 c = 0.432 0.449 0.085

Table 6. Distribution parameters for 3×2 pattern by quality.
CRF Distribution RMSE Parameters Loc Scale

16
Birnbaum-Saunders 0.854 c = 1.080 0.069 0.091
Log Normal 0.972 s = 1.035 0.071 0.092
Inverse Gaussian 0.980 µ = 1.146 0.063 0.132

22
Birnbaum-Saunders 1.395 c = 1.043 0.069 0.057
Inverse Gaussian 1.441 µ = 1.290 0.068 0.070
Log Normal 1.578 s = 0.996 0.070 0.057

28
Inverse Gaussian 1.887 µ = 1.112 0.069 0.051
Birnbaum-Saunders 1.923 c = 0.982 0.069 0.037
Log Normal 2.129 s = 0.949 0.070 0.037

34
Burr Type XII 2.473

c = 4.42E +06
d = 0.047 -6.16E+03 6.16E+03

Inverse Gaussian 2.501 µ = 0.805 0.068 0.046
Birnbaum-Saunders 2.617 c = 0.837 0.069 0.028

40
Inverse Gaussian 4.301 µ = 0.488 0.067 0.053
Birnbaum-Saunders 4.527 c = 0.667 0.067 0.021
Log Normal 4.553 s = 0.660 0.068 0.020

46
Log Normal 6.111 s = 0.576 0.068 0.015
Inverse Gaussian 6.154 µ = 0.341 0.067 0.055
Birnbaum-Saunders 6.363 c = 0.569 0.067 0.016

Table 7. Distribution parameters for 4×3 pattern by quality.
CRF Distribution RMSE Parameters Loc Scale

16
Burr Type XII 1.145

c = 0.996
d = 5.75E +07 0.030 4.49E+06

Exponential 1.151 − 0.030 0.072
Generalized Pareto 1.252 c = 2.510 -0.105 0.135

22
Birnbaum-Saunders 1.855 c = 1.046 0.028 0.030
Inverse Gaussian 2.095 µ = 1.196 0.027 0.040
Log Normal 2.139 s = 1.003 0.029 0.030

28
Birnbaum-Saunders 2.940 c = 0.886 0.027 0.022
Inverse Gaussian 2.960 µ = 0.907 0.027 0.034
Log Normal 3.481 s = 0.852 0.028 0.022

34
Burr Type XII 2.432

c = 1.15E +02
d = 0.071 -0.084 0.117

Inverse Gaussian 3.396 µ = 0.613 0.027 0.035
Birnbaum-Saunders 3.526 c = 0.744 0.027 0.017

40
Inverse Gaussian 4.191 µ = 0.380 0.027 0.039
Log Normal 4.255 s = 0.604 0.028 0.012
Birnbaum-Saunders 4.428 c = 0.600 0.027 0.012

46
Log Normal 6.185 s = 0.416 0.026 0.012
Inverse Gaussian 6.449 µ = 0.171 0.025 0.078
Birnbaum-Saunders 6.613 c = 0.407 0.025 0.012

Table 8. Distribution parameters for 6×3 pattern by quality.
CRF Distribution RMSE Parameters Loc Scale

16
Exponential 1.597 − 0.018 0.049
Generalized Pareto 1.607 c = 6.11E +02 -2.93E+01 2.94E+01
Generalized Pareto 1.661 c =−0.181 0.018 0.058

22
Birnbaum-Saunders 3.341 c = 0.902 0.015 0.024
Log Normal 3.832 s = 0.865 0.016 0.023
Gama 4.742 a = 1.582 0.016 0.021

28
Birnbaum-Saunders 4.401 c = 0.891 0.017 0.015
Inverse Gaussian 4.438 µ = 0.880 0.017 0.024
Log Normal 4.962 s = 0.869 0.017 0.014

34
Inverse Gaussian 5.989 µ = 0.408 0.015 0.040
Birnbaum-Saunders 6.299 c = 0.613 0.015 0.014
Log Normal 6.434 s = 0.604 0.015 0.013

40
Log Normal 5.642 s = 0.543 0.017 0.009
Inverse Gaussian 5.725 µ = 0.303 0.016 0.036
Birnbaum-Saunders 6.073 c = 0.537 0.016 0.010

46
Burr Type XII 3.900

c = 6.081
d = 0.660 0.015 0.008

Log Normal 7.804 s = 0.334 0.014 0.010
Inverse Gaussian 8.261 µ = 0.108 0.014 0.101

Table 9. Distribution parameters for 6×4 pattern by quality.
CRF Distribution RMSE Parameters Loc Scale

16
Birnbaum-Saunders 1.652 c = 1.066 0.012 0.025
Inverse Gaussian 1.825 µ = 1.293 0.012 0.031
Log Normal 1.917 s = 1.004 0.013 0.025

22
Birnbaum-Saunders 3.121 c = 0.999 0.012 0.016
Log Normal 3.490 s = 0.945 0.013 0.016

Burr Type XII 4.207
c = 1.504
d = 1.698 0.013 0.027

28
Burr Type XII 4.689

c = 4.13E +02
d = 0.040 -0.191 0.206

Inverse Gaussian 5.291 µ = 0.858 0.012 0.019
Birnbaum-Saunders 5.713 c = 0.864 0.012 0.012

34
Burr Type XII 8.025

c = 6.76E +03
d = 0.144 -7.585 7.601

Inverse Gaussian 8.758 µ = 0.435 0.011 0.029
Log Normal 9.199 s = 0.617 0.011 0.010

40
Inverse Gaussian 10.45 µ = 0.265 0.011 0.035
Birnbaum-Saunders 10.87 c = 0.501 0.011 0.008

Burr Type XII 18.98
c = 3.85E +08

d = 0.614 -9.17E+05 9.17E+05

46
Log Normal 10.00 s = 0.342 0.010 0.008
Inverse Gaussian 10.76 µ = 0.114 0.010 0.076
Birnbaum-Saunders 10.95 c = 0.333 0.010 0.008

Table 10. Distribution parameters for 6×5 pattern by quality.
CRF Distribution RMSE Parameters Loc Scale

16
Birnbaum-Saunders 2.314 c = 1.062 0.010 0.020
Log Normal 2.656 s = 1.004 0.010 0.020
Exponential 2.752 − 0.010 0.031

22
Burr Type XII 4.619

c = 1.46E +03
d = 0.027 -0.655 0.668

Birnbaum-Saunders 5.521 c = 0.851 0.008 0.016
Log Normal 6.106 s = 0.816 0.009 0.015

28
Inverse Gaussian 7.967 µ = 0.548 0.008 0.028
Birnbaum-Saunders 8.316 c = 0.701 0.008 0.012

Burr Type XII 9.747
c = 5.24E +08

d = 0.191 -1.03E+06 1.03E+06

34
Burr Type XII 5.805

c = 3.43E +02
d = 0.105 -0.215 0.228

Inverse Gaussian 9.599 µ = 0.363 0.008 0.030
Log Normal 9.913 s = 0.573 0.009 0.009

40
Burr Type XII 4.650

c = 4.46E +02
d = 0.165 -0.267 0.280

Log Normal 11.71 s = 0.407 0.008 0.008
Inverse Gaussian 12.23 µ = 0.167 0.008 0.056

46
Log Normal 10.71 s = 0.294 0.007 0.008
Inverse Gaussian 11.32 µ = 0.081 0.007 0.106
Birnbaum-Saunders 11.42 c = 0.283 0.007 0.008

Table 11. Distribution parameters for 6×6 pattern by quality.
CRF Distribution RMSE Parameters Loc Scale

16
Inverse Gaussian 2.991 µ = 1.107 0.008 0.025
Birnbaum-Saunders 3.105 c = 0.959 0.008 0.019
Log Normal 3.533 s = 0.908 0.008 0.019

22
Birnbaum-Saunders 5.657 c = 0.798 0.007 0.014
Log Normal 6.151 s = 0.771 0.007 0.014

Burr Type XII 7.617
c = 1.842
d = 1.578 0.007 0.020

28
Burr Type XII 6.987

c = 2.76E +02
d = 0.055 -0.119 0.130

Inverse Gaussian 7.920 µ = 0.621 0.008 0.020
Birnbaum-Saunders 8.373 c = 0.743 0.008 0.010

34
Log Normal 13.64 s = 0.528 0.007 0.009
Birnbaum-Saunders 13.93 c = 0.533 0.007 0.009
Rayleigh 20.68 − 0.007 0.008

40
Log Normal 13.42 s = 0.405 0.007 0.007
Inverse Gaussian 13.92 µ = 0.165 0.007 0.050
Birnbaum-Saunders 14.21 c = 0.399 0.007 0.008

46
Burr Type XII 8.363

c = 1.44E +08
d = 0.326 -9.47E+04 9.47E+04

Log Normal 11.68 s = 0.294 0.006 0.007
Inverse Gaussian 12.41 µ = 0.081 0.006 0.095

Table 12. Distribution parameters for 7×6 pattern by quality.
CRF Distribution RMSE Parameters Loc Scale

16
Inverse Gaussian 3.249 µ = 1.175 0.007 0.020
Birnbaum-Saunders 3.302 c = 0.991 0.007 0.016
Log Normal 3.764 s = 0.935 0.007 0.015

22
Inverse Gaussian 6.717 µ = 0.886 0.007 0.017
Birnbaum-Saunders 7.237 c = 0.868 0.007 0.011
Log Normal 7.921 s = 0.829 0.007 0.011

28
Inverse Gaussian 11.12 µ = 0.468 0.006 0.025
Birnbaum-Saunders 11.58 c = 0.651 0.006 0.010
Log Normal 11.60 s = 0.635 0.006 0.009

34
Burr Type XII 11.56

c = 2.18E +08
d = 0.147 -1.52E+05 1.52E+05

Log Normal 16.15 s = 0.509 0.006 0.008
Birnbaum-Saunders 16.45 c = 0.513 0.006 0.008

40
Log Normal 16.36 s = 0.435 0.006 0.006
Inverse Gaussian 17.13 µ = 0.188 0.006 0.036
Birnbaum-Saunders 17.48 c = 0.426 0.006 0.006

46
Log Normal 22.61 s = 0.272 0.005 0.007
Inverse Gaussian 23.15 µ = 0.070 0.005 0.104
Birnbaum-Saunders 23.20 c = 0.262 0.005 0.007
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