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Abstract 
The Modulation Transfer Function (MTF) is a well-

established measure of camera system performance, commonly 

employed to characterize optical and image capture systems. It is a 

measure  based on Linear System Theory; thus, its use relies on the 

assumption that the system is linear and stationary. This is not the 

case with modern-day camera systems that incorporate non-linear 

image signal processes (ISP) to improve the output image. Non-

linearities result in variations in camera system performance, 

which are dependent upon the specific input signals.   

This paper discusses the development of a novel framework, 

designed to acquire MTFs directly from images of natural complex 

scenes, thus making the use of traditional test charts with set 

patterns redundant. The framework is based on extraction, 

characterization and classification of edges found within images of 

natural scenes. Scene derived performance measures aim to 

characterize non-linear image processes incorporated in modern 

cameras more faithfully. Further, they can produce ‘live’ 

performance measures, acquired directly from camera feeds. 

Introduction  
Ever since the transition from analog to digital imaging, the 

camera system has increasingly becoming more complex. The 

advancements within imaging science, computer vision and 

computational performance have allowed the digital camera 

system to produce imagery with higher quality. 

Consumer smartphone camera systems have been developed 

to increase resolution, sharpness, dynamic range and low light 

performance, whilst keeping the user experience simple. However, 

the system design is restricted by the size of the hardware, such as 

the size of the optics and sensor. Manufactures have released 

smartphones that contain multiple camera systems to increase 

output performance at various focal lengths, at additional monetary 

cost to the user. Parallel approaches, which come at a lower 

expense to the consumers, rely on developments related to camera 

Image Signal Processing (ISP). These include developments on 

non-linear sharpening, non-linear de-noising, High Dynamic 

Range (HDR) multi-image processing and super resolution zoom 

techniques. Modern mobile phone camera systems rely heavily 

upon this processing;  the user is given little control over it.  

For scientific and computer vison applications, the 

combination of hardware and ISP are optimized for a specific 

output and relevant tasks. For instance, in autonomous driving the 

highly characterized optical camera systems apply specific ISP to 

increase the detectability of the incoming signal. Measuring 

accurately the performance of a capture system, and its constituent 

components, is imperative for camera module and system 

optimization.  

The Modulation Transfer Function (MTF) [1–3] is the 

primary imaging performance measure used for sharpness and 

resolution evaluation, standardized in the ISO12233 [4]. It is equal 

to the modulus of the Fourier transform of the Point Spread 

Function (PSF), the latter being defined, for a continuous system, 

as the image of a point source. The one-dimensional MTF is equal 

to the modulus of the Line Spread Function (LSF), obtained from 

integrating the PSF over one orientation. The LSF is obtained by 

differentiating the one-dimensional edge profile, i.e. the Edge 

Spread Function (ESF). 

There are various methods for MTF evaluation, including 

imaging of point sources, slits (lines), ‘perfect’ edges, series of 

sinusoids, and stationary stochastic noise fields, or patterns of 

known spectral contents [3, 5, 6]. Each of these comes with several 

implementations, different advantages and disadvantages, as well 

as associated measurement errors. 

The standardized slanted-edge method [4, 7] derives the MTF 

from a well-characterized, edge input - typically a test chart with 

vertical and horizontal edges, on and off camera axis. The edge is 

captured tilted and a super-sampled ESF is derived through 

resampling a projection down the edge slope [8]; this is then 

differentiated and Fourier transformed. As this measure in not 

corrected for the target’s frequency content the result is referred to 

as the Spatial Frequency Response (SFR) [4, 7, 8]. A benefit of the 

SFR is that it is practical to implement in digital systems.  Since 

the ESF is resampled the MTF can be measured beyond the 

Nyquist frequency. 

MTF measurement is based on Linear System Theory [1, 2, 

7]. Modern-day cameras systems are non-linear and incorporate 

adaptive ISP. Thus, these non-linearities result in variations to the 

camera performance, which becomes dependent upon the specific 

input signal. 

Current methods for deriving camera MTFs or SFRs are 

carried out in controlled conditions to attempt to reduce the impact 

the ISP has upon the result. For example, low contrast edge inputs 

are used, since high contrast edges are prone to heavy sharpening  

[4, 9]. With the output image quality becoming more and more 

dependent upon non-linear ISP,  should we continue measuring 

camera performance overlooking its effects? 

Recent work [10–15] have explored the possibilities for a 

noise-based MTF measure from pictorial test images. Although the 

input Noise Power Spectrum (NPS) must be known and thus the 

method is impractical to implement with any live input signal, the 

research demonstrated advantages over the traditional use of test 

charts. Fry et al. [12] have demonstrated the benefits of 

implementing such scene dependent performance measures in 

relevant Image Quality Metrics (IQM).  

In this paper we describe a novel framework, developed to 

measure the SFR from natural scene images through the adaptation 

of the standardized slanted edge method, ISO 12233 [4]. The 

framework was initially proposed in [16]. This publication 

presented key principles and initial techniques that formulated the 

framework. It discussed relevant edge detection requirements, the 

resilience of the measurements to image noise and issues resulting 

from measuring performance from “uncharacterized” natural 

scenes, compared to well characterized signals.  

This paper breaks down the components of the proposed 

framework and provides details on the edge isolation and 

verification techniques that we developed. Significant edge 

parameters that affect the measured SFR from imaged scenes are 

then discussed. It continues with presenting results from an initial 
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image database versus results from the standardized method. It 

closes with conclusions and further work. 

Framework 
To achieve a natural scene derived SFR, we developed an 

automated measuring framework that replaces a test chart capture 

with a real natural scene capture. The framework detects, isolates, 

and verifies step edges from pictorial images. The ISO 12233 

standardized algorithm is then applied to the extracted edges. 

The flowchart in Figure 1 describes the key stages of the 

framework. 

Edge Detection 
In our initial study [16] we compared two algorithms that are 

used to locate imaged scene edges, the Canny edge detector [17] 

and a matched filter [18] and found that the Canny edge detector is 

most appropriate for purpose. Unlike the matched filter that missed 

valid edges, the Canny detector returns both step and non-step 

edges alike. A series of logical stages are required to deselect 

edges that do not meet the criteria for SFR measurement. This 

approach ensures the maximum number of step edges are extracted 

from the scenes. 

Digital camera systems are non-isotropic; therefore, the 

Canny edge detector was adapted to keep the vertical and 

horizontal gradients separate. Note, once detected the horizontal 

edges were rotated 90 degrees allowing the same processing to be 

subsequently applied to both orientations.  

Edge Isolation 
The ISO12233 requires the isolation of a step edge within a 

Region of Interest (ROI). When using the traditional edge test 

charts, the automated edge extraction is a simple task, since the 

step edges are arranged at appropriate distances apart with uniform 

gray tones either side. Using natural scenes this task is not straight 

forward. 

Several factors that must be removed or minimized from the 

imaged scene ROIs. These include: 

• change in focus due to the optical Depth of Field, 

• scene texture and increased noise, 

• low gradient luminance changes, 

• intersecting edges 

• and other edges in close proximity. 

The use of smaller ROI dimensions reduces the likelihood of 

including these unwanted artifacts in the isolation process. 

However, there is a tradeoff, since with the reduction of ROI 

height the SFR error increases. This is seen in Figure 2, where 

Mean Absolute Error (MAE) was measured from the SFRs in 

comparison to the minimum recommended ROI size (64 width and 

128 height) [19]. As the ROI height increases the error decreases, 

as noise increases this decrease becomes more prominent. The 

decrease is due to the larger number of data points that formulate 

the resampled ESF. Following relevant evaluations, we have set a 

threshold of 128 pixels in ROI height. Longer ROIs are split into 

128 pixel segments, thus balancing this tradeoff. ROIs having 

height below this threshold are not deselected; the height data is 

stored with every ROI for further analysis. 

The ROI width can be as narrow as the edge angle permits, as 

long as the full ESF within the ROI is not affected. Figure 3 

demonstrates that with increasing noise levels, a narrower ROI 

reduces error in the SFR. This has also been demonstrated by 

Williams [19]. In addition, a narrow ROI will give the ability to 

isolate more edges from the imaged scene that are in close 

Figure 1. Natural scene derived SFR (NS-SFR) framework flowchart. 

Figure 2. The Mean Absolute Error (MAE) introduced by adjusting the Region 
of Interest (ROI) height at various Signal to Noise (SNR) levels.  
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proximity. The minimum separation that allows edges to be 

isolated is limited to half the ROI width and is determined by edge 

angle.  

 

 
Figure 3. The Mean Absolute Error (MAE) introduced by adjusting the Region 
of Interest (ROI) width at various Signal to Noise (SNR) levels.  

High angled edges require large ROI widths to isolate them, 

thus adjacent textures, artifacts and other edges within the ROI 

become an issue. We have therefore developed an effective method 

to isolate imaged scene edges at the desired height, at any angle 

and proximity. This method is effective as long as the neighboring 

ESFs do not overlap. Thus, a proximity filter is used to remove 

edges that are lower than 5 pixels apart. 

Our edge isolation process entails: 

1. Creating a ESF mask 

2. Taking a ‘T’ shaped median value 

3. Filling each row with the appropriate median value 

4. Giving the ROI a weighted Gaussian blur 

 
Figure 4. The visualization of the Edge Spread Function Mask 

The ESF mask is created by first measuring the horizontal 

gradient of the edge, i.e. the ESF for every row in the ROI. As the 

edge location is known, the ESF mask boundary is established 

when the gradient either side of the edge position becomes a 

uniform tone. A threshold is used to deem what is considered 

‘uniform’ tone, taking into account the image noise floor. This 

threshold is currently set as 0.04, which is equivalent to a pixel 

value change of 10 (for an 8-bit systems). This resultant mask 

covers the area of the ESF and remains untouched in all 

subsequent processing. Figure 4 demonstrates this principle.  

Once the ESF mask is obtained, the ‘T’ shaped median values 

are obtained. These values are taken for every pixel either side of 

the ESF mask and are calculated from four pixels in a shape of a 

‘T’, as seen in Figure 5. This median value is used to fill the row, 

from the ESF mask boundary to the ROI frame, creating the ‘pixel 

stretch’. However due to scene textures and high levels of image 

noise, the resulting ROIs may contain striped artifacts. Thus, a 

Gaussian blur is applied, weighted strongly in two opposite corners 

of the ROI, i.e. decreasing the blur intensity to zero as the filter 

approaches ESF mask. The diagram in Figure 6 illustrates our edge 

isolation technique for a noiseless and a noisy simulated ROI. 

 

 
Figure 5. A closeup of a ROI edge with a diagram to describe the concept of 
how the ‘T’ shaped median is obtained from 4 pixels either side of the ESF 
Mask. This median is then stretched across the entire row. 

 
Figure 6. This diagram demonstrates the edge isolation technique used in our 
framework. These are segments of two ROI; the left has no image noise and 
the right has a high noise level of SNR 4. The noise can create streaking 
artifacts in the isolated edge ROI, however, for lower noise levels the ‘T’ 

shaped median averages out these streaks.  
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This technique is similar to filtered tails procedure that 

Williams and Burns demonstrated [20]. The tail filtering is a 

method for obtaining reliable SFRs from noisy image captures, 

through blurring either side of the edge without touching the ESF 

transition.  

Testing our edge isolation technique using simulated edges 

with various noise levels indicated that the method reduces the 

effects of noise on the SFR measure in the same fashion as the tail 

filtering. This is shown in Figure 7, where the SFR was measured 

from i) a wide ROI, containing a simulated 21 degree slanted edge 

(yellow), ii) the same ROI cropped as narrow as possible (orange) 

and iii) the ROI passed through our edge isolation technique 

(gray).  

 

 
Figure 7. The SFRs measured using noisy 21 degree edge inputs, at a) SNR 
10 and b) SNR 4. The data shows that our edge isolation technique reduces 
the effects of noise on the SFR at these high noise levels that are normally 
immeasurable. 

Step Edge Verification 
To verify that the isolated edges have the required step edge 

profile, the ROIs undergo a step edge verification. Once again, the 

horizontal gradient is taken for every row in the ROI. A step edge 

normally has a singular increase or decrease in gradient. Using this 

logic, unappropriated ROI are deselected. The uniformity threshold 

was, once again, set at 0.04.  

Figure 8 demonstrates this principle with seven ROIs. a), b), 

c) and d) all contain step edges.  c) is deselected, as the contrast is 

under the noise floor, also d) is deselected, since it only partially 

contains a step edge, the center portion contains a staircase edge 

profile. 

Region of Interest Verification 
In addition to verifying the presence of a step edge in the 

ROI, other processes were implemented to detect changes in the 

edge direction as well as unwanted tonal changes in the uniform 

areas around the edge profile. If such artifacts were detected, the 

ROI would, either be segmented into smaller more suitable ROIs 

when possible, or completely deselected. 

ISO12233 Algorithm 
The isolated and verified edges then pass through the 

standardized slanted edge algorithm, ISO 12233 [4]. We have used 

Burns’ sfrmat algorithm [21] for this purpose.  

In the latest iteration of sfrmat, sfrmat4, a higher polynomial 

fitting can be applied to the extracted edge profile, rather than a 

linear fitting. This reduces the error when measuring curved edges 

caused by lens distortion, [22] and is especially useful when 

measuring SFRs from edges in captured scenes, which are 

commonly curved. We currently use a 3rd order polynomial fitting 

function. 

Edge Parameters 
Unlike the standardized SFR measure, natural scenes are 

captured under uncontrolled conditions with uncharacterized edge 

inputs. Thus, several edge parameters must be considered and 

evaluated alongside each ROI, which are normally not considered 

in the ISO 12233 method, for a full analysis of results.   

Radial Distance  
The position of the edge within the image frame has an 

impact upon the output SFR. This is because the highest 

preforming region of an optical lens is the center of the imaging 

circle; lens performance decreases towards the edge of the imaging 

circle.  

This is seen in Figure 9, where the SFRs are extracted from a 

test chart input and color coded to indicate the radial location of 

the input edges. The color transitioning from green to red represent 

increase in the radial distance.  

Edge Angle  
The angle of the edge produces a variation on the SFR 

measure. This is well documented in several studies [9, 19, 23, 24]. 

Using a ROI size of 64 pixels width and 128 pixels height, and 

simulating noiseless edges ranging in angle from 0 to 45 degrees, 

we show this SFR variation, using the sfrmat4 algorithm, in Figure 

10. Edge angles at 0 or 45 degrees are deselected, since they 

cannot produce unique resampled data by the slanted edge 

technique.  

When using edges from captured scenes, the restriction on 

edge angles been between 2 and 7 degrees (recommended when 

using the ISO 12233) becomes a major data gathering constraint. 

Our framework measures the SFR with edge angles ranging 

between 2.5 and 42.5 degrees. When analyzing the output SFRs, a 

minimum and a maximum angle threshold can be applied to 

determine which SFRs are used in the performance measure, rather 

than restricting the data gathering stage.  

Edge Contrast 
Edge contrast impacts the SFR when images are subject to 

high image noise levels, and non-linear sharpening [9]. As a result, 

the ISO 12233 specifies that low contrast edges must be used for 

the SFR measure, since noise is not an issue under controlled 

conditions. Once again, this restricts our data gathering when using 

captured scenes. SFRs in our framework are measured from edge 

contrast levels 0.2 and above. Relevant metadata is then used in the 

analysis of results.  

 

241-4
IS&T International Symposium on Electronic Imaging 2020

Image Quality and System Performance



 

 

 
 

 Figure 9. SFRs from ISO 12233 test chart that filled the entire imaging frame. 
The SFRs have been color coded to demonstrate that the SFR output is 
dependent upon the frame positioning. 

Additional Parameters and Further Considerations 
Depth of field and ROI nonuniformity are two edge 

parameters that are currently not accounted for the framework but 

require consideration.  

Depth of Field 
When capturing three-dimensional natural scenes, some edges 

are out of focus due to the optical depth of field. Depending upon 

the intent of the user and the camera system, a shallow depth of 

field may be a decision intentionally made. For a comprehensive 

level of SFR analysis, the optical depth of field in the image from 

which edges are extracted must be known. 

 

 
 

Figure 10. A series of simulated noiseless ROI were created at various edge 

angles ranging from 2.5 to 44.5 degrees. Plotting the SFRs measured from 
these ROIs, it is clearly seen the Edge Angle impacts the SFR measure.  

From the lens focal length, f-number, the diameter circle of 

confusion, the hyperfocal distance and the focus distance, the far 

limit and near limit depth of field can be calculated [25–26]. The 

focal length and f-number can be extracted from the camera 

metadata, whilst the circle of confusion is calculated using the 

diagonal size of the imaging sensor. For a 35mm sensor format the 

circle of confusion diameter of 0.025-0.030 mm is commonly used 

[26].  

However, determining the focal distance solely from a single 

two-dimensional image is not a straight-forward operation. One 

potential solution is to use a neural network estimate of the depth 

map from a two-dimensional image [27–30]. From our framework 

we extract the location of the strongest edges in the frame; 

therefore, we can map the edge strengths to the predicted depth 

map to obtain the focus distance. Using the depth of field equations 

Figure 8. Seven ROIs that contain various edge profiles, including step edges, staircase edge, line edge, roof edge 
and a trough edge. This diagram describes how the measured gradient can successfully determine useable step 
edge ROIs.  
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[25, 26] we can then derive which regions of the frame are in 

focus. 

In the image database we use to validate the framework at this 

stage, the depth of field is not a factor impacting the study. Our test 

system has a circle of confusion diameter of 0.030 mm. This 

results in a depth of field that ranges from approximately 2.45 

meters (at 5 meters focal distance) to infinity (see Results section).  

ROI Nonuniformity 
In a natural scene the lighting is not uniform, resulting to low 

frequency gradients running through some extracted edges. The 

error in the measured SFRs from such edges is shown in Figure 11. 

Further work must take ROI nonuniformity into account, in a 

similar fashion to the ‘nonuniformity MTF correction’ that is 

employed  in the ImatestTM software [31].  

Results 
Unlike the traditional method of obtaining the SFR, the input 

edges from captured natural scenes are not ‘perfect’. The SFR 

relies on measurement from ‘perfect’ edges (with constant 

frequency content over the camera bandwidth) or characterized 

edges (with known/measured frequency content). Since our 

method does not produce SFRs from such inputs, we have named 

the resulting measure the captured scene derived SFR, or NS-SFR. 

For testing the outcomes from our framework, we used a 

Nikon D800 DSLR as our test camera system, equipped with a lens 

with focal length 24mm and its aperture set at f/4. All images were 

captured in 16-bit RAW format. They were then converted to TIFF 

uncompressed files, in Adobe RGB color space. Both sharpening 

and noise reduction were turned off in the RAW file conversion, 

thus we assume no, or minimal non-linear ISP. Due to the selected 

focal length, aperture and focal distances, image information was 

all in focus, thus blur resulting from shallow depth of fields was 

not an issue. 

The NS-SFRs derived from each captured scene form an 

envelope of varying performances, which are due to various factors 

relating to the system as well as the quality of edges extracted from 

the scene (see Edge Parameters section). In the traditional SFR 

measurements from test charts, variations in the SFRs are mainly 

due to the varying performance of the lens with radial distance 

from the center, as shown Figure 9.  

In the analysis of the NS-SFRs, separation of system effects 

and scene content effects must be made. From individual captured 

edges it is impossible to determine whether the ESF degradation is 

due to the edge input profile, or the camera system blur. In 

preliminary results presented here, the stronger NS-SFRs have 

been given more weight when averaging results to obtain one 

measure. Further work in the framework must use the measured 

ROI edge parameters and neighboring edges to determine which 

are the ‘highest performing’ edges for a given radial distance and 

depth of field. This would allow a classification of edges and 

separation of the effects of the edge input quality and the system 

performance. 

To derive a single performance measure for the test camera 

system, a weighted mean is calculated from the SFR envelope for 

each captured scene. ISO 20462 [32] suggests different weights to 

be given to SFRs derived from on-axis edges (center edges, in 50% 

radial distance) and off-axis edges (corner edges),  0.43 and 0.57 

respectively. The horizontal and vertical oriented SFRs are then 

weighted by 0.33 and 0.66 respectively. 

The weighted means are kept to individual horizontal and 

vertical orientations for this study. The weights used are 1.00 for 

the center edges (0-30% the radial distance), 0.75 for edges part 

way (30-75% the radial distance) and 0.50 for edges in the corners 

(75-100% the radial distance). This follows the default weight 

settings in the slanted edge ImatestTM algorithm [33]. These 

weights can be altered for the intended purpose of the NS-SFR.  

We have then applied further weights to give more 

importance on the strongest NS-SFRs within each frame segment 

(center, part way and corners). A weighted median is used, rather 

than a weighted mean, to reduce the effect of anomalous NS-SFRs. 

This was achieved through:  

1. Taking the peak MTF50 (MTF50P) of all NS-SFRs in 

each frame segment. 

2. The strongest 1/3 in each individual segment is given a 

weight of 1.00, the intermediate 1/3 is given the 

weighting 0.75 and then the lowest 1/3 with 0.25.  

3. The median is then taken with these set weights for each 

frame segment.  

In addition, the 5th and 95th percentiles are identified for each 

of the NS-SFR envelopes. For the NS-SFRs that exceed the 95th 

percentile, or fall short of the 5th percentile, the weightings are 

decreased to 0.50 and 0.20 respectively. We have not completely 

deselected these outer NS-SFRs, since we have not identified the 

reason for their positioning within the envelope. 

Note: For the purpose of fair comparison, the standardized 

SFR measure derived from test charts and the NS-SFR are both 

formulated using the same weighted average procedure. 

Figure 11. This is a visualization of low-frequency nonuniformity that 
commonly present in natural scenes. The ESF and SFR demonstrate how 

these nonuniformities effect the result compared to the ground truth (GT). 
Adapted from ImatestTM [31]. 
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Framework Assessment Using a Test Chart  
To assess the accuracy of edge selection and processing in the 

framework a test chart was captured. From the image two 

measures were obtained: the first was the ISO 12233 traditional 

SFR with manual selection of edges; the second was the SFR 

obtained when the test chart image was passed through our 

measuring framework. 

Comparing these two methods, in Figure 12, it can be seen 

that the framework produces accurate results. The gray curves are 

output horizontal SFRs (from vertical edges), the red dashed 

curves correspond to the 5th percentile, the weighted average and 

the 95th percentile from these SFRs. The green dashed lines show 

the same results for ISO12233 method.  

The framework finds and isolates the correct edges. Our ROI 

processing, i.e. the ‘T’ shaped pixel stretching, has little influence 

on the result from perfect edge inputs. 

Natural Scene Envelopes 
Figure 13 shows the horizontal NS-SFR envelopes for two 

example natural scenes captured with our test camera system. 

There are several observations that can be made from these NS-

SFRs, which clearly demonstrate the measurement dependence on 

scene content (i.e. NS-SFR envelope shape, average and selected 

percentiles).  

In Image 1 the majority of selected ROIs are located to the 

left and right of the frame, the weakest performing segment of the 

optical imaging circle, and few in the higher performing center and 

part way regions. Thus, Image 1 produces NS-SFRs that yields a 

low average system performance. In contrast, in Image 2 the 

selected ROIs are evenly spread across the frame, giving a NS-

SFR spread and average SFR comparable to measures derived 

from a test chart. 

In both example images, the 95th percentile curve is higher 

than that of the test chart in the high spatial frequencies. In Image 

1, the low performing edge inputs cause the NS-SFRs to drop 

rapidly, but for many of the edges the NS-SFR plateaus off at 0.2 

modulation and below. This is due to high frequency scene 

textures (noise).  

 

 
Figure 12. The horizontal SFR envelope from a test chart, measured using our 
Framework, colored in red. In comparison is the traditional ISO 12233 method, 
colored in green.  

  
Figure 13. The horizontal natural scene derived SFRs, NS-SFRs, from two 
example test scenes taken with the same system. The selected ROI are 
shown in green boxes within the scenes. The gray SFRs show the direct 
measures from the scenes, the dashed functions describe the 5th percentile, 
the weighted median and the 95th percentile, where the red is calculated from 

the NS-SFRs and the green from the ISO12233 traditional method. 

Figure 14 combines results by processing a small database of 

30 captured scenes. The gray dashed NS-SFRs are the weighted 

averages from each scene, the green is the average SFR derived 

from the test chart and the red curve is the mean NS-SRF from 30 

scenes. All 30 captured scenes comprised of well-lit subjects.   

The mean NS-SFR follows closely the mean SFR curve,  with 

high and low frequencies being only slightly overestimated, and 

mid-frequencies underestimated. From these preliminary results it 

is clear that, the NS-SFR derived from each scene is highly 

dependent on the scene content (edge location, contrast, noise, etc.) 

which result to the NS-SFR distribution in Figure 14. We expect 

that, with the proposed improvements to the framework,  as well as 

the inclusion of a larger set of scenes, the low and mid-frequency 

overestimation in the mean NS-SFR of the system will improve.  

High frequencies will probably remain overestimated due to image 

noise and texture in the extracted ROIs. 
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Figure 14. This NS-SFR graph shows the amalgamation of an initial 30 image 
database of natural scene captures taken with identical camera and settings. 
The gray dashed functions are the weighted average SN-SFRs, the red is the 
mean of those NS-SFRs, and the green is the weighted median from the ISO 

12233 test chart.  

Conclusions 
We have demonstrated a novel approach that adapts the ISO 

12233 slanted edge method to obtain camera system performance 

measurements directly from images of natural scenes. The input 

edges extracted from the captured scenes are not perfect step edge 

inputs, nor are they characterized in terms of spatial frequency 

content.  The resulting measures are therefore no longer SFRs; we 

refer to them as natural scene derived SFRs, or NS-SFRs. These 

measurements do not solely describe the system, but they also 

relate to the input scene characteristics. This paper has outlined the 

key steps developed to identify, isolate and verify step edges from 

an image of a natural scene and has tested this framework with a 

small image dataset, captured from a test capturing system. 

The results clearly describe how the scene content influences 

the output NS-SFR envelope, containing an NS-SRF from each 

extracted edge in the captured scene. Parameters affecting the 

resulting SFRs in the envelope are the edge location, edge contrast, 

edge angle, texture and noise within the selected ROI and the 

frequency content of the input edges.  

The images used for this study were all captured in well-lit 

conditions. They contain low image noise, subjects with large 

number of edges, they have a large depth of field and have been 

subjected to little or no non-linear ISP. All these are advantageous 

conditions for our measuring approach. Further work will test less 

suitable images, i.e. scene captures that contain fewer step edges, 

high amounts of texture, shallow depth of field, poorly lit/high 

image noise and subjected to non-linear ISP.  

In addition, further studies must analyze the NS-SFRs using 

the measured edge parameters in order to estimate the system 

performance. Additional work will include the use of  Natural 

Scene Statistics (NSS) and seek correlation between specific scene 

types and the NS-SFR outputs.  

The preliminary results obtained using the proposed 

measuring framework look promising. They build a foundation for 

deriving live system performance SRF measurements, as well as 

providing scene content information which in turn can lead to the 

description of performance of  non-linear system processes. 
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