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Abstract
There are an increasing number of databases describing sub-

jective quality responses for HDR (high dynamic range) imagery
with various distortions. The dominant distortions across the
databases are those that arise from video compression, which are
primarily perceived as achromatic, but there are some chromatic
distortions due to 422 and other chromatic sub-sampling. Tone
mapping from the source HDR levels to various levels of reduced
capability SDR (standard dynamic range) are also included in
these databases. While most of these distortions are achromatic,
tone-mapping can cause changes in saturation and hue angle
when saturated colors are in the upper hull of the of the color
space. In addition, there is one database that specifically looked
at color distortions in an HDR-WCG (wide color gamut) space.
From these databases we can test the improvements to well-known
quality metrics if they are applied in the newly developed color
perceptual spaces (i.e., representations) specifically designed for
HDR and WCG. We present results from testing these subjective
quality databases to computed quality using the new color spaces
of Jzazbz and ICTCP, as well as the commonly used SDR color
space of CIELAB.

Introduction
High dynamic range (HDR) and wide color gamut (WCG)

capability have now become mainstream in consumer TV displays
and is making headway into desktop monitors, laptops and mo-
bile device products. In the consumer industry, the term HDR
generally means the combination of HDR and WCG, and we
will use that shorthand terminology here. HDR systems provide
a more complete representation of information that the human
visual system can perceive and thus not a simple extrapolation,
which makes evaluating content shown on these HDR systems es-
sential. Since subjective evaluations can be time-consuming and
expensive, there is a need for objective quality1 assessment tools.

Various full reference HDR quality metrics such as HDR-
VDP-2 (HDR visual difference predictor) [1, 2], DRIM (Dynamic
range independent metric) [3], HDR-VQM (HDR video quality
measure) [4] have been proposed for image and video quality as-
sessment (IQA/VQA). HDR-VDP2 and HDR-VQM require mod-
eling of both the human visual system (HVS) and the display,
whereas DRIM, in addition to HVS modeling, results in three dis-
tortion output maps making it more difficult for interpretation.
Alternatively, due to lack of HDR objective metrics, LDR/SDR

1Some use ‘objective quality’ to strictly refer to physical measure-
ments. Others, particularly in the perceived quality modeling field, use
‘objective’ to mean something that can be calculated with a quality model.
We use the term in the latter sense in this paper.

(low/standard dynamic range) metrics were also used to evaluate
HDR quality [5, 6]. Examples of full reference SDR metrics that
have been used in literature for HDR quality evaluation are MS-
SSIM (Multi-scale structural similarity index) [7], IFC [8], VIFp
(pixel-based visual information fidelity) [9], FSIM (Feature simi-
larity index) [10], FSITM [11], UQI [12], VIF (visual information
fidelity) [9] and so on.

Recent studies [5, 6, 13, 14, 15], have evaluated both HDR
and SDR quality metrics for HDR quality assessment. In par-
ticular, Hanhart et al. [5] evaluated the performance of 35 ob-
jective metrics on a publicly available database [16]. Zerman et
al. [6] evaluated the performance of 12 metrics on five different
HDR databases. Although the HDR based metrics, HDR-VDP-
2 and HDR-VQM outperform existing SDR metrics, modifying
some SDR metrics such as MS-SSIM by applying calibrated non-
linearities can result in performance close to the HDR based met-
rics in terms of correlation [5]. Rousselot et al. [15] studied the
impact of 12 SDR quality assessment metrics computed in three
HDR/WCG color spaces viz., ICTCP [17], Jzazbz [18] and HDR-
Lab [19]. Choudhury and Daly [20, 21, 22] used a combination
of various HDR and SDR quality metrics in one framework for
improved quality assessment and demonstrate state-of-the-art re-
sults.

In this work, we propose to use ICTCP color representation
to compute various IQA metrics. ICTCP color representation can
be considered to be perceptually uniform for HDR and WCG con-
tent thus making the metric computations more accurate. Rous-
selot et al. [15] has done some preliminary work to evaluate met-
rics in ICTCP color representation amongst other color represen-
tations. However, they do not consider the use of this color rep-
resentation for HDR metrics which we have done in this paper.
Furthermore, they use PU [23] transfer function in conjunction
with the SDR metrics whereas we use the PQ [24] transfer func-
tion. One disadvantage of using PU non-linearity is that it has less
sensitivity in the dark regions than PQ partially due to the more
limited display capability when PU was developed. Amongst
SDR metrics, we also show the results using VIFp, which was
not shown in [15]. In addition to that, we show improved perfor-
mance using our implementation of updated ∆EIT P as compared
to the results presented in [15]. Moreover, these improvements
can be easily ported over to other techniques that use combina-
tions of quality metrics such as [20, 21, 22] to further improve the
state-of-the-art performance.

Methodology
In this section, we describe the various quality metrics that

we have used in our evaluation along with the various databases
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that we have considered for our analysis.

Quality Metrics for HDR IQA
Various IQA metrics have been proposed in literature to eval-

uate human visual quality experience. We also discuss the vari-
ous transformations that we perform on these metrics. Based on
the observations presented in [5, 6, 15], we choose the best per-
forming metrics for evaluation. Amongst HDR metrics, we select
HDR-VDP-2 [1, 2] and HDR-VQM [4]. Amongst SDR metrics,
we choose MS-SSIM [7], VIFp [9] and FSIM [10] and select CIE
∆E00 [25, 26], ∆EZ [18] and ∆EITP [27] as candidates for color
difference measures.

HDR-VDP-2 and HDR-VQM were developed for HDR
quality assessment. HDR-VDP-2 is a calibrated metric and takes
into account models regarding point spread function of the eye,
the light-adaptive CSF, and masking within an oriented multi-
scale decomposition. While HDR-VDP-2 does not implement
spatio-chromatic modeling, it does use colorimetric XYZ based
calibration of the input as well as the display primaries to create
a calibrated Y signal for analysis by the metric, which is consis-
tent with the achromatic channel of spatial vision. HDR-VQM is
a video quality metric computed in PU [23] space and also relies
on multi-scale and multi-orientation analysis, as well as simple
temporal differences which are pooled. In this setup, we compute
HDR-VQM on still images, thus having zero temporal error. Both
HDR-VDP-2 and HDR-VQM perform spatial pooling to compute
overall quality score. These metrics allow for information about
viewing conditions such as viewing distance, ambient and so on.

We considered three metrics that were all designed for SDR
content. MS-SSIM is a multi-scale technique that models the
quality based on the assumption that the HVS uses structural in-
formation from a scene. VIFp analyzes the natural scene statistics
and is based on Shannon information. FSIM analyzes high phase
congruency, extracting the gradient magnitude to encode contrast
information.

Finally, we use three color difference metrics. Traditionally,
these are ‘pixel-based’ operators that compare only correspond-
ing pixels from the reference and distorted images and thus do
not consider any spatial process of vision. CIE ∆E00 is a color
difference measure that includes weighting factors for lightness,
chroma and hue along with the ability to handle the relationship
between chroma and hue. It was designed for the CIELAB color
space, which is limited to SDR. In addition, we analyzed newer
metrics derived for HDR applications: ∆EZ based on the Jzazbz
color space [18], and ∆EIT P based on the ICTCP [17] color space.
∆EIT P is standardized in ITU-R BT.2124 [27] and utilizes the PQ
(ST 2084) transfer function. It differs slightly from the ∆EIT P
used in [15] by a rescaling of the B-Y opponent channel. Jzazbz
color space also utilizes the PQ (ST 2084) transfer function and
the aim is to improve lightness correlation; however the lightness
correlation optimization was based on data [19] with a diffuse
white of 997 cd/m2.

Databases
We consider five publicly available databases from differ-

ent labs comprised of natural images to compare the perfor-
mance of the different metrics for evaluation. The digital im-
ages and subjective scores are made available for independent re-
searchers to do various analysis and metric development. The first

database [16] (Database 1) contains 20 reference HDR images.
Distorted images were created by compressing the reference im-
ages with JPEG XT with various profiles and quality levels. Two
different tone mapping operations [28, 29] were used for the base
layer. Four different bit rates were chosen using three profiles of
JPEG XT. Each image had a resolution of 944 X 1080 pixels (i.e.,
a crop for a split-screen of a 1920x1080) and were calibrated for
a SIM2 HDR monitor.

The second database [6] that we considered is a combination
of two different databases [6, 30]. One of them [30] is composed
of five original HDR images which were first tone-mapped [31],
following which 50 compressed images were obtained using three
different coding schemes - JPEG, JPEG2000 and JPEG XT. These
images were presented sequentially(one after the other) on a SIM2
HDR47E display and scores were collected from 15 participants.
The second database [6] also uses five original HDR images from
which 50 compressed images were obtained. They used JPEG and
JPEG2000 (with different bit rates) and the SDR images were ob-
tained using two different mapping operations [31, 24]. Overall,
the second database (Database 2) has 100 1920 X 1080 images.

The third database [32] (Database 3) contained 10 HDR
source images. The distorted images were obtained using a back-
ward compatible scheme where the HDR image is tone mapped
using iCAM06 [33] and then this tone mapped image is coded
using JPEG codec at seven different bit rates. Finally the com-
pressed image is expanded by an inverse tone mapping operation
to the original HDR image. Subjective ratings were given by 27
participants. Two different criteria were used to optimize the qual-
ity of the reconstructed HDR resulting in a total of 140 images
with a resolution of 1920 X 1080.

One of the limitations of the three databases mentioned
above was that these databases did not explore wider color gamut
(eg. DCI-P3 or larger). Also, they did not contain any specifically
parameterized color artifacts, although some may arise from tone-
mapping at the very top and bottom of the color solid (and if any
chromatic sub-sampling was used in the compression profiles).
In addition, the subjective testing for all three above-mentioned
databases were conducted on the same monitor (SIM2 HDR mon-
itor). To introduce more variety in our experimental samples we
used two additional databases (Database 4 and 5) that included
chromatic distortions as well as images beyond ITU-R BT.709
color gamut (exceeding P3 and nearly up to ITU-R BT.2020 color
gamut by use of the Sony BVM-X300 OLED pro monitor).

The fourth database [34] (Database 4) contained eight im-
ages distorted using four types of distortion: HEVC compression
using four different quantization parameters (QP), HEVC com-
pression without the chroma QP adaptation resulting in chromatic
distortions at three different values, three different levels of Gaus-
sian noise and two different types of gamut mismatch (i.e., ren-
dered assuming that ITU-R BT.709 images were interpreted as
ITU-R BT.2020 images leading to more saturated colors, and as-
suming that ITU-R BT.2020 images were interpreted as ITU-R
BT.709 images leading to less saturated colors).

The fifth database [15] (Database 5) contained eight im-
ages that were compressed with four different QP using three
different compression options – Recommended HEVC compres-
sion, HEVC compression without chroma QP offset algorithm
and HEVC compression with 8 bits quantization for chroma in-
stead of 10 during compression. The images were all using the

214-2
IS&T International Symposium on Electronic Imaging 2020

Image Quality and System Performance



ITU-R BT.2020 color gamut.
Please refer to [35] for a more detailed description of the

databases.

Metric Computation and Transformation
In order to calculate the quality metrics, the pixel values are

first scaled to the range of luminance emitted by the HDR dis-
play. We use the technique mentioned in [6] where the HDR pix-
els are converted to luminance emitted by a hypothetical display
such that the there exists a linear response between the minimum
and maximum luminance of the display. Since the databases that
we considered use two different displays (SIM2 and Sony BVM-
X300), we use the parameters belonging to that display for eval-
uating the respective databases. Valenzise et al. [30] showed that
using this linear assumption is equivalent to more sophisticated
luminance estimation techniques that require a detailed knowl-
edge of the device. The images were also clipped to the range of
the display to mimic the physical clipping performed by the HDR
display.

HDR images in the databases that we previously mentioned
have code value corresponding to linear luminance to account for
wider luminance ranges. Since HDR metrics, which are calibrated
metrics, require absolute luminance values as input, we use the
HDR metrics as-is without any transformation. This is used as
baseline for evaluating HDR metrics. The color representations
for these include the achromatic perceptual non-linearity derived
from luminance (both HDR metrics uses the PU non-linearity).
However, these metrics ignore any chromatic distortions. These
HDR metrics are advanced, computationally complex, and in-
clude CSF effects, masking effects implemented via frequency
channels, and spatial pooling. We also compute the HDR metrics
after converting the linear luminance to ICTCP [17] color rep-
resentation and then using the I channel (which is the PQ non-
linearity applied to the achromatic visual channel). This I channel
in the PQ non-linear space is then converted back to linear values
and given as input to the HDR metrics. This is denoted by the ‘ I’
suffix (for the HDR metrics).

We use three different variations of computing the SDR met-
rics -

1. Compute it directly in the linear domain using the physical
luminance of the scene.

2. Compute in the PQ domain [24]. We first convert the gamma
domain code values to linear luminance for each of the RGB
signals and then convert luminance to the PQ domain and
denote that using ‘ PQ’ suffix. This is based on the results
from [5] that found calibrating the SDR metrics via either
the PQ or PU non-linearities always improved their perfor-
mance compared to applying them directly on the code val-
ues of the signal space i.e., the gamma-corrected domain or
SDR. The PU non-linearity has less sensitivity in the dark
regions than PQ partially due to more limited display ca-
pability when PU was developed. Further, such processing
focuses the quality on the achromatic channel of human vi-
sion, which is known to have the better spatial performance.
Any purely color differences (i.e., iso-luminant) are ignored
in the SDR analysis due to the models limitations, despite
there being some chromatic distortion if 422 and 420 pro-
files were used, or in the tone-mapping distortions. Then we

Algorithm 1 Convert from linear RGB values to ICTCP

Input: R, G, B color channels
Output: I, CT, CP color channels

1: procedure I, CT , CP
2: Convert linear R, G, B values (assuming BT. 2100) to lin-

ear L, M, S values as

L = (1688R+2146G+262B)/4096

M = (683R+2951G+462B)/4096

S = (99R+309G+3688B)/4096

3: Convert linear L, M, S to non-linear L′, M′, S′ by applying
the PQ transfer function

{L′,M′,S′}= EOT F−1(F)

where,

F = {L,M,S}

EOT F−1(F) = ((c1+ c2Y m1)/(1+ c3Y m1))m2

and Y = F/10000, m1 = 0.1593, m2 = 78.8435, c1 =
0.8359 = c3− c2+1, c2 = 18.8515, c3 = 18.6875

4: Convert non-linear L′, M′, S′ to I, CT, CP as :

I = 0.5L′+0.5M′

CT = (6610L′−13613M′+7003S′)/4096

CP = (17933L′−17390M′−543S′)/4096

5: end procedure

normalize the RGB color components to [0, 1] range and
transform the RGB color space to YCbCr color space. The
quality score was computed on the luminance (Y) channel
since [5] found that using the Y channel alone instead of us-
ing the mean of the Y, Cb and Cr color channels resulted in
the best performance. We thus consider only the Y channel
for the SDR metrics and denote that using ‘ Y’ suffix. This
combination of PQ (non-linearity) and Y channel is denoted
using ‘ PQ Y’ suffix.

3. Convert linear RGB pixel values to ICTCP color representa-
tion and compute using the I channel. This is denoted using
‘ I’ suffix. Please note that the ICTCP color representation
implicitly applies the PQ non-linearity function.

The ICTCP color representation is used by both HDR and
SDR metrics and the conversion can be shown using Algorithm 1.

The color difference measures were not computed in the
transformed spaces i.e., we do not apply either the PQ or PU non-
linearity. CIE ∆E00 requires a conversion from RGB to CIELAB
color space. In typical use, the white point needs to be input to
the CIELAB calculations, which for hard-copy the paper white is
commonly used. Perceptually, this makes sense since paper white
is usually visible on the border of the print, and the visual system
can anchor to it. But this approach has always been a problem for
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video where there is no white border surrounding the image. It
is particularly a problem for HDR content. Reinhard et al. [36]
showed why using an adaptive white point luminance of 1000
cd/m2 is not ideal and [19] has shown that using a value closer
to diffuse white (as opposed to the highlight maximum) produces
better results. Choudhury et al. [35] also showed better perfor-
mance using a value of 100 cd/m2. We thus use an adapting white
point luminance of 100 cd/m2 (D65 is used as the chromaticity).
We compare that with ∆EIT P which is based on the ICTCP color
representation and requires no white-point assumption. We also
compare with ∆EZ which is based on Jzazbz color representation,
a different HDR/WCG color representation. The color difference
metrics are all pixel computations, that is, no spatial filtering or
pooling is modeled. This means the achromatic and chromatic
contrast sensitivity functions are not accounted, nor achromatic
masking, nor chromatic masking, nor the achromatic-chromatic
masking interactions.

Experimental Results and Discussion
In this section, we test the performance of various metrics

and the proposed transformations on the five databases mentioned
in the previous section. We evaluate the performance of the met-
rics by comparing the subjective scores with the scores predicted
from the different metrics using a standardized method [37] used
by the video quality experts group (VQEG). In that standardized
approach, a monotonic logistic function is used to fit the objective
prediction to the subjective scores as follows:

f = α +
β

1+ e−γ.(x−δ )
, (1)

where f is the fitted objective score, x is the predicted score using
different techniques and α,β ,γ,δ are the parameters that define
the shape of the logistic fitting function.The fit is computed by
minimizing the least squares error between the subjective and the
fitted objective scores. This mapping function is used to mimic
the fact that high-level cognitive processes are required to map the
lower-level perceptions to a score. The rationale is that the var-
ious metrics can model low-level perception, but that high-level
cognitive processes are required to arrive at a score. As a sim-
plified model of this internal mapping step, the logistic function
with variable parameters is currently being used as a surrogate
until better understanding is achieved. Please note that the sub-
jective scores for each database have been made available by the
respective authors.

We use the following four standard evaluation procedures
and criteria [37] to measure the performance – Pearson Lin-
ear Correlation Coefficient (PLCC) and Root Mean Square Er-
ror (RMSE) for measuring prediction accuracy, Spearman Rank-
Order Correlation Coefficient (SROCC) for prediction mono-
tonicity and Outlier Ratio (OR) is used to determine prediction
consistency. Lower values of RMSE and OR, and higher values
of PLCC and SROCC indicates better performance.

We compare the performance of the different metrics and re-
port the results in Tables 1, 2, 3, 4 and 5 for databases 1, 2, 3, 4
and 5 respectively. As mentioned in the previous section, we con-
sider two different variations of HDR metrics. The two variations
for HDR-VDP-2 are shown as HDR-VDP-2 (Computed using lin-
ear luminance values) and HDR-VDP-2 I (Suffix ‘ I’ shows that it
is computed using I channel from ICTCP color representation). In

the latter case, only the I channel is given as input. Likewise, for
HDR-VQM. The three different variations of SDR metrics (in par-
ticular MS-SSIM) are shown as MS-SSIM (Computed using lin-
ear luminance values), MS-SSIM PQ Y (Suffix ‘ PQ Y’ shows
that it is computed using Y channel in ‘ PQ’ non-linear domain)
and MS-SSIM I (Computed using I channel from ICTCP color
representation). Likewise, for VIFp and FSIM. The three differ-
ent color difference metrics are shown as ∆E00, ∆EZ and ∆EIT P.
For each database, the best performing HDR metric is highlighted
in bold; best SDR metric is italicized and best color difference
metric is underlined. For some metrics we show results from pre-
vious publications. Those are denoted by ‘From [Reference#]’.
For instance, in Table 1, we present results of MS-SSIM using
linear values from [5].

We can also see that the overall performance of all the met-
rics (including HDR, SDR and color difference) can be improved
using ICTCP color representation. For instance on database 5,
the PLCC of HDR-VQM increases from 0.771 to 0.832; PLCC
of MS-SSIM increases from 0.472 in linear to 0.847 in PQ using
Y channel to 0.872 using I from ICTCP color representation and
PLCC of ∆EIT P is 0.693 compared to the PLCC of ∆E00, which
is 0.398.

In general, we can see that HDR metrics are better in per-
formance than SDR metrics, which in turn are better than color
difference metrics. The exception being databases 4 and 5, where
SDR metrics in perceptual domain are slightly better than HDR
metrics. The overall trend is not surprising because the HDR
models are more advanced and closely mimic the human visual
system by taking into account point spread function of the eye,
masking effects and contain additional information such as hav-
ing orientation channels. In case of HDR metrics, their calibra-
tion and HVS front-end non-linearities evenly distribute the per-
ception of distortions across the image’s full tone-scale resulting
in improved performance. While applying such front-end non-
linearities to the SDR metrics does improve their performance, on
average it doesn’t outperform HDR metrics.

Database 1 seems less selective and most metrics already
have very high correlation and low error on that database. We
observe that the overall performance of all the metrics is poorer
on Database 4 compared to other databases. This might be due
to the fact that Database 4 has a wide variety of artifacts. Some
distortions such as gamut mismatch might be clearly visible but
not associated with loss of quality for some viewers.

Amongst the HDR metrics, HDR-VDP-2 outperforms HDR-
VQM on all databases except database 1. The performance is
similar on database 3 (they are tied on database 3 for PLCC). Both
metrics are the most computationally expensive, with HDR-VDP-
2 being about 4x that of HDR-VQM. HDR-VQM is intended as
a temporal video metric, while HDR-VDP-2 was intended to be
used with still images. That aspect may help explain the behav-
ior of HDR-VQM, whereas the high computational cost of HDR-
VDP-2 helps its performance, and the video capability (while be-
ing applied to still images) of HDR-VQM may cause it to perform
negatively with the other databases.

Using the I channel from ICTCP color representation consis-
tently improves the results for both HDR metrics across each of
the five databases. Applying HDR metrics using absolute linear
values can be considered to be state-of-the-art and we further im-
prove its performance using ICTCP color representation. While
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Table 1: Performance comparison on Database 1 [16]
Method PLCC SROCC RMSE OR
HDR METRICS
HDR-VDP-2 0.951 0.951 0.48 0.370
From [15]
HDR-VQM 0.961 0.957 0.428 0.392
From [15]
HDR-VDP-2 I 0.960 0.956 0.349 0.341
HDR-VQM I 0.962 0.957 0.341 0.379
SDR METRICS
MS-SSIM 0.854 0.877 0.652 0.758
From [5]
VIFp 0.827 0.834 0.705 0.666
From [5]
FSIM 0.893 0.916 0.564 0.683
From [5]
MS-SSIM PQ Y 0.932 0.926 0.448 0.491
From [20, 21, 22]
VIFp PQ Y 0.925 0.922 0.473 0.516
From [20, 21, 22]
FSIM PQ Y 0.917 0.916 0.494 0.583
From [20, 21, 22]
MS-SSIM I 0.942 0.936 0.418 0.450
VIFp I 0.926 0.922 0.473 0.483
FSIM I 0.933 0.938 0.450 0.562
COLOR DIFFERENCE METRICS
∆E00 0.794 0.790 0.764 0.645
∆EZ 0.667 0.671 0.938 0.737
∆EIT P 0.836 0.837 0.687 0.637

the HDR metrics still have their PU font-end non-linearities, as
opposed to PQ, inputting the I signal from ICTCP instead of the
Y signal does slightly reshape the effective spectral aspects of
the achromatic signal. We tried another variation of evaluating
the HDR metrics where we give as input the PQ non-linear val-
ues. However, this results in worse performance since both these
HDR metrics implicitly apply PU non-linearity to the inputs (not
shown). Thus the front-end non-linearity would be applied twice.
Also the pooling done at the end make such assumptions and does
not directly translate to the PQ non-linearity.

Amongst the different variations of SDR metrics, SDR met-
rics computed in the linear domain consistently has the worst re-
sults. This finding is consistent with that of [5, 6] who showed
those results in databases 1 and 2. We observe similar trends in
databases 3, 4 and 5. This is expected because SDR metrics are
designed for gamma encoded images with small range of lumi-
nance values (typically in the range of 0.1 - 100 cd/m2) whereas
the HDR images have a much larger dynamic range. Using PQ
transformation improves the prediction of SDR metrics. Amongst
the two variations that use PQ non-linearity we find that using
ICTCP color representation (denoted using ‘ I’ suffix) is better
than using YCbCr (denoted using ‘ PQ Y’). ICTCP implicitly ap-
plies PQ transformation as seen in Algorithm 1. Similar to HDR
metrics, using ICTCP color representation results in best perfor-
mance although most of the performance improvement comes
from using PQ non-linearity essentially being the difference be-

Table 2: Performance comparison on Database 2 [6, 30]
Method PLCC SROCC RMSE OR
HDR METRICS
HDR-VDP-2 0.938 0.928 10.12 0.44
From [15]
HDR-VQM 0.930 0.917 10.72 0.53
From [15]
HDR-VDP-2 I 0.944 0.932 9.96 0.45
HDR-VQM I 0.933 0.918 10.66 0.53
SDR METRICS
MS-SSIM 0.636 0.660 22.91 0.79
VIFp 0.721 0.754 21.04 0.6
FSIM 0.796 0.801 17.97 0.74
MS-SSIM PQ Y 0.879 0.873 14.20 0.56
From [20, 21, 22]
VIFp PQ Y 0.924 0.914 11.31 0.62
From [20, 21, 22]
FSIM PQ Y 0.889 0.885 13.56 0.56
From [20, 21, 22]
MS-SSIM I 0.907 0.899 12.51 0.57
VIFp I 0.919 0.910 11.69 0.59
FSIM I 0.904 0.900 12.65 0.52
COLOR DIFFERENCE METRICS
∆E00 0.613 0.599 23.59 0.75
∆EZ 0.538 0.514 25.16 0.78
∆EIT P 0.714 0.729 20.81 0.74

tween the spectral details of I and Y. There were a few cases when
using I from ICTCP resulted in worse performance than using PQ
in Y viz., for database 3 where PLCC of VIFp drops from 0.924
for ‘ PQ Y’ to 0.919 for ‘ I’. However, the drop in performance
is not much. We also find that MS-SSIM is the best among SDR
metrics on databases 1, 3 and 4; VIFp works the best on database
2 and FSIM works the best on database 5. A surprising result is
that FSIM computed in ICTCP color representation outperforms
the more sophisticated HDR metrics on database 5.

Amongst the color difference metrics, we observe that over-
all ∆EIT P outperforms ∆E00 and ∆EZ on four out of the five
databases. Rousselot et al. [15] also find similar trends in per-
formance with regards to color difference metrics (they found a
precursor to ∆EIT P outperforming ∆E00 and ∆EZ). That version
didn’t achieve as high correlation values (at least with regards to
∆EIT P) as us. For instance, they report a PLCC of 0.8065 on
Database 1 compared to our PLCC of 0.836 using DEITP. It is
unclear if the slight difference in the metric caused the difference,
or other possible unstated assumptions in their calculations. The
improved performance of ∆EIT P over ∆E00 is expected because
the achromatic non-linearity of ∆EIT P (encoding I using PQ) is
known to better match the human visual threshold for the HDR lu-
minance range [38]. In particular, the L* achromatic non-linearity
of CIELAB is known to fail for dark regions (luminance levels
less than 1 cd/m2).

One surprising result was that ∆EZ , which has been designed
for HDR/WCG applications frequently performed poorly. It has
been found previously that the offset for blue linearity correction
in the Jzazbz space could cause mismatches. Additionally, the
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Table 3: Performance comparison on Database 3 [32]
Method PLCC SROCC RMSE OR
HDR METRICS
HDR-VDP-2 0.898 0.891 0.563 0.586
From [15]
HDR-VQM 0.894 0.887 0.532 0.514
From [15]
HDR-VDP-2 I 0.905 0.898 0.426 0.642
HDR-VQM I 0.905 0.900 0.436 0.457
SDR METRICS
MS-SSIM 0.527 0.521 0.854 0.828
VIFp 0.543 0.491 0.844 0.814
FSIM 0.523 0.507 0.857 0.778
MS-SSIM PQ Y 0.853 0.841 0.523 0.657
VIFp PQ Y 0.692 0.641 0.725 0.757
FSIM PQ Y 0.840 0.827 0.544 0.635
MS-SSIM I 0.855 0.844 0.520 0.650
VIFp I 0.679 0.623 0.738 0.750
FSIM I 0.841 0.827 0.543 0.642
COLOR DIFFERENCE METRICS
∆E00 0.718 0.697 0.700 0.764
∆EZ 0.649 0.633 0.765 0.771
∆EIT P 0.639 0.632 0.773 0.785

final equations of the Jzazbz color space was optimized using a
dataset with a diffuse white at 997 cd/m2, which might be appli-
cable for outdoor prints, but is not ideal for video displays.

Database 3 was a challenge for ∆EIT P. Database 3 was
unique in that it was not conducted in a dark surround; the am-
bient surround was 130 cd/m2. Since ∆EIT P is designed for most
critical conditions (when a display has the largest physical dy-
namic range with no black level elevation due to screen reflec-
tions), it tended to over-predict the differences in this higher ambi-
ent case (i.e., it under-predicts the quality). Another unique factor
for Database 3 is that they did not use a full-reference methodol-
ogy. Rather, ACR (absolute category rating) methodology is used
without using a labeled reference. This method uses a single stim-
ulus. Without knowing what the image should look like, which is
important to aspects of creative intent, there is the possibility for
more variability in individual interpretation. This is a particular
issue for color, as often incorrect colors may be plausible, but
would be deviations from artistic intent and thus affect elements
of the narrative (e.g., symbolism, emotion).

Our findings are summarized in Table 6.

Conclusion & Future Work
In this paper we evaluate several image quality metrics to

assess the quality of HDR content. Specifically, we consider vari-
ous HDR, SDR and color difference metrics. We use five different
databases containing a wide variety of distortions for evaluation.
We find that overall using HDR metrics result in the best perfor-
mance followed by SDR metrics and finally by color difference
metrics. We used a few variations of these metrics and found
that the performance of all the metrics (including HDR, SDR and
color difference) can be improved using ICTCP color representa-
tion. For HDR metrics which traditionally uses linear luminance

Table 4: Performance comparison on Database 4 [34]
Method PLCC SROCC RMSE OR
HDR METRICS
HDR-VDP-2 0.871 0.868 12.55 0.457
From [15]
HDR-VQM 0.867 0.833 14.72 0.561
From [15]
HDR-VDP-2 I 0.874 0.834 11.46 0.322
HDR-VQM I 0.853 0.807 12.31 0.354
SDR METRICS
MS-SSIM 0.675 0.692 17.43 0.489
VIFp 0.832 0.811 13.08 0.333
FSIM 0.76 0.783 15.36 0.427
MS-SSIM PQ Y 0.867 0.827 11.77 0.270
VIFp PQ Y 0.798 0.777 14.29 0.354
FSIM PQ Y 0.814 0.793 13.72 0.322
MS-SSIM I 0.879 0.849 11.24 0.270
VIFp I 0.826 0.792 13.32 0.343
FSIM I 0.820 0.796 13.50 0.322
COLOR DIFFERENCE METRICS
∆E00 0.273 0.219 22.73 0.604
∆EZ 0.304 0.296 22.51 0.666
∆EIT P 0.390 0.320 21.75 0.656

values, using the I channel from ICTCP results in improved per-
formance. For SDR metrics, using PQ transfer function signifi-
cantly improves the results when compared to using in linear do-
main and using ICTCP color representation further improves its
performance. Amongst color difference metrics, ∆EIT P has better
performance than both ∆E00 and ∆EZ .

Both state-of-the-art HDR metrics (HDR-VDP-2 and HDR-
VQM) are modeled in PU domain. We would like to make these
metrics work in PQ domain because the PU non-linearity has
less sensitivity in the dark regions than PQ. Also, more advanced
spatio-chromatic modeling could further improve performance of
the color difference metrics. Further improvements in analysis by
re-coding the the HDR metrics to actually replace the achromatic
PU non-linearity with a color ICTCP front-end would allow for a
better understanding of the gains possible from use of the ICTCP
color representation.
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