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Abstract
Video object tracking (VOT) aims to determine the location

of a target over a sequence of frames. The existing body of work
has studied various image factors that affect VOT performance.
For instance, factors such as occlusion, clutter, object shape, un-
stable speed and zooming, that influence video quality, do affect
tracking performance. Nonetheless, there is no clear distinction
between scene-dependent challenges such as occlusion and clut-
ter and the challenges imposed by traditional notions of “quality
impairments” inherited from capture, compression, processing,
and transmission. In this study, we are concerned with the latter
interpretation of quality as it affects video tracking performance.
In this paper, we propose the design and implementation of a qual-
ity aware feature selection for VOT. First, we divided each frame
of the video into patches of the same size and extracted HOG,
and natural scene statistics (NSS) features from these patches.
Then, we degraded the videos synthetically with different levels of
post-capture distortions such as MPEG-4, AWGN, salt and pep-
per, and blur. Finally, we defined the best set of features HOG and
NSS that generate the largest area under the curve in the success
plots, yielding an improvement in the video tracker performance
in videos affected by post-capture distortions.

Introduction
Video Object Tracking (VOT) is a complex process that al-

lows to locate and follow one object over time using video stream-
ing. Recently, many works present different approaches to solve
this challenge. However, to the best of our knowledge, any of
these approaches has not modeled and quantified the influence of
post-capture distortions on the object tracking performance. This
question is very important because state-of-the-art trackers per-
form well in videos with few or non-distortions, but when they are
tested on videos affected by distortions, such as those acquired by
surveillance cameras, the performance can be degraded to a large
extent.

We proposed an approach to integrate NSS perceptual qual-
ity features into a video object tracker scheme and demonstrated
its performance in several videos affected by post-capture distor-
tions. Previous works on this topic have focused on tasks such as
object and face detection [1], dermoscopy [2], and face recogni-
tion in long-wave infrared (LWIR) images [3][4].

Dai et al. [5] studied the influence of the presence of shaking
motions in VOT. They found that trackers fail by this distortion
because of two main issues. The first one occurs when the whole
tracked target is not found in the candidates patches because it has
moved out fast due to significant shaking motion. The second one
is that the shaking movement may generate blur distortion, and
trackers are confused by blurred boundaries between foreground

and background.
To the best of our knowledge, this is the first work to pro-

pose a quality-aware feature extraction approach in VOT. Fur-
thermore, this approach complements our previous work in which
we demonstrated the impact of authentic distortions on state-of-
the-art video trackers [6]. This paper is structured as follows.
First, we present the VOT scheme and the HOG and NSS features.
Second, we explain the the results and discussion and finally we
present the conclusions.

Materials and Methods
Video Object Tracker

We present a video object tracker framework based on a sup-
port vector machine (SVM)[7–9]. Figure 1 shows the diagram of
our approach. Basically, this tracker consists of the classification
between target and background of patches represented in a feature
space [10].

Figure 1: State diagram of the proposed video object-tracking
framework.

For starting the tracking, our algorithm requires the bound-
ing box that indicates the location of the target in the first frame.
The initial training set is generated as follows: as target class
examples, we set the number of target objects Ntar = 10. These
target objects are computed from the first bounding box and its
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Figure 2: On the left, background and target patches bgP and
objP in blue and red, respectively.

neighborhood (random patches that overlap with at least 80% the
target bounding box). Likewise, as background examples, we ran-
domly select Nbg patches (not overlapped with the target). Figure
2 illustrates the target and background patches used to generate
the training set.

In our experiments, Nbg corresponds to 10% of the feature
representation. We use this data to train a linear two-class SVM
classifier. On the next frame, we carry out a “partial search” of the
target. For this purpose, we find a set of query patches from the
image region that contains the bounding boxes that overlap with
at least 50% with the bounding box of the target in the previous
frame. Afterward, we classify the query objects with the current
SVM classifier. If one patch is classified as target, we update
the location accordingly. If more than one patch is classified as
target, we interpolate the bounding boxes of all them. If the target
is not found, we carry out a “total search.” The total search consist
of the classification of all the patches (with the same size of the
target) in the whole image. If at least one patch is classified as
target, the process to update the location is the same as in the
partial search. After updating the target location, we also update
the training set by choosing new target and background examples
as in the first frame. The maximum size of the training set is the
feature dimension. When the data set exceeds the maximum size,
we get rid of the oldest examples. If the target is not found in the
total search either, we move to the next frame without updating
the location nor the training set.

To evaluate the video tracker performance, we used success
plots, inspired by the work presented in [11]. To generate a suc-
cess plot, we calculate an overlap score S for each frame of a
video, defined as

S =
|rt ∩ ro|
|rt ∪ r0|

, (1)

where rt denotes the object bounding box estimated by the tracker,
r0 is the ground-truth bounding box, ∩ and ∪ are the intersection
and union operators respectively, and | · | represents the number
of pixels within a region. Figure 3 shows a graphic description of
the regions defining S.

We define the area under the curve (AUC) as the trapezoidal
integral of the success plot (i.e S along the whole video). AUC
lies in the range [0,1] and values closer to 1 are better.

Feature extraction
For the analysis in the vector space (SVM classifier training

and test), we represent a patch in the video frame as feature vector

Figure 3: Definition of the regions used for calculating the overlap
score S.

x ∈ Rd (where d is the dimension of the space), by two type of
descriptors:

- Histogram of Oriented Gradients (HOG): a 1-D his-
togram is computed from the gradient directions in a small
region of an image [12]. This region is called a “cell.” To
reduce the effect of the illumination changes over the im-
age, each cell is normalized by the total energy in a set of
neighbor cells called “block.” We take as the HOG feature
representation xHOG ∈RdHOG , the average of the histograms
of all the cells inside the corresponding bounding box. The
dimension of this representation is given by the number of
histogram bins dHOG.

- Natural Scene Statistics in the spatial domain (NSS) [13]:
We compute the NSS feature representation xNSS ∈RdNSS of
a patch by the 36 features extracted from locally normalized
luminances as described in [13].

For avoiding an undesired effect induced by the scale of the
features, we consider two normalization methods for each type of
descriptors:

- z-score: the mean µ and standard deviation σ of each fea-
ture distribution are made 0 and 1, respectively as follows

x̄z =
x−µo

σo
,

where the original mean µo and standard deviation σo are
estimated from the training set.

- 0-1-normalization: each feature distribution is re-scaled in
order to set 0 as the minimum value and 1 as the maximum
value:

x̄n =
x− xmin

xmax
.

Results and Discussion
In this section, we show the object tracking results obtained

with HOG and HOG+NSS method, tested on 910 videos of the
constructed dataset. Our Quality-Aware tracker is implemented
with Matlab 2018a and all the experiments are run on a PC
equipped with Intel i7 8750-H CPU, 32GB RAM and a single
NVIDIA GTX 1060 GPU.

Image distortions
We consider four basic types of distortions that commonly

occur in digital devices and over communication channels. The
distortions here used are related to the encoding (compression)
and transmission processes (post-capture distortions) [1].
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(a) Blur (b) AWGN

(c) MPEG-4 (d) SAP

Figure 4: Distorted frames with high-level intensities.

Figure 5: Pristine frame of proposed dataset, person jumping in
indoor environment.

• AWGN, Additive White Gaussian Noise: This is a local dis-
tortion, in which a zero-mean Gaussian noise of variance pa-
rameter is added independently to each pixel. The imnoise()
function in MATLAB was used to introduce additive white
Gaussian noise to the images. Three levels of AWGN were
added with the noise variance parameters equal to [0.01,
0.05, 0.1].

• Blur: This is a global distortion in which each pixel is

Figure 6: Results in pristine videos of the proposed dataset. The
red line is the performance of quality-aware method using NSS
features. The blue dotted line is the performance of only HOG
features representation.

blurred through convolution with a gaussian low pass filter
of standard deviation. The imfilter() function in MATLAB
was used to introduce Gaussian blur at three levels. The
standard deviation of the Gaussian filter was varied over a
log scale, σB = [5, 10, 15].

• Salt and Pepper noise (SAP): This distortion generates
only a few very noisy pixels. The effect is similar to sprin-
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(a) Low intensity Blur (b) Medium intensity Blur (c) High intensity Blur

(d) Low intensity AWGN (e) Medium intensity AWGN (f) High intensity AWGN

(g) Low intensity MPEG-4 (h) Medium intensity MPEG-4 (i) High intensity MPEG-4

(j) Low intensity SAP (k) Medium intensity SAP (l) High intensity SAP

Figure 7: The overlap success plots of Quality-Aware tracker tested on videos with several post-capture distortions and intensity levels.
The red line is the performance of quality-aware method using NSS features. The blue dotted line is the performance of only HOG
features representation.

169-4
IS&T International Symposium on Electronic Imaging 2020

Image Quality and System Performance



kling white and black dots—salt and pepper—on the image.
One example where salt and pepper noise arises is in trans-
mitting images over noisy digital links [14]. The imnoise()
function in MATLAB was used to introduce SAP noise to
the images. We added three levels of SAP noise, being D the
noise density. This noise affects approximately D∗numel(I)
pixels. The used values for D are [0.01, 0.05, 0.1], for high,
medium, and low levels, respectively.

• MPEG-4 compression: The MPEG-4 standard is used in a
wide variety of video applications, such as DVDs and digital
broadcast television. Compression systems such as MPEG-
4 produce relatively uniform distortions/quality in the video,
both spatially and temporally. MPEG-4 compressed videos
exhibit typical compression artifacts such as blocking, ring-
ing, and motion compensation mismatches around object
edges [15]. To generate this distortion, we used ffmpeg1

tool with a bitrate of 100Kbps, 200Kbps, and 1Mbps, for
high, medium, and low levels, respectively.

Proposed dataset
We recorded 70 pristine videos with activities such as walk-

ing, jumping, and sitting. We chose these activities because they
are simple, with only one target in the scene. This condition
allows us to test fairly several trackers in such a way that the
most critical challenge was the distortions applied. The videos
were recorded using four surveillance cameras in indoor envi-
ronments. These pristine videos were impaired with four post-
capture distortions: blur, AWGN, MPEG-4 and SAP. All the
these distortions have three intensity levels. Hence, the whole
dataset have 910 videos (70 pristine, and 210 per each distor-
tion). We have made available this dataset to the scientific com-
munity at https://bit.ly/2vahVgC. Figure 6 shows one pris-
tine video frame and Figure 4 present the same frame affected by
the four distortions at the highest level.

Figure 7 represents the average success plots from 70 videos
corresponding to one level of distortion (low, medium, and high).
HOG+NSS representation performs significantly better than only
HOG features, except when the distortion is low. This differ-
ence is due to the specialization of our method in highly distorted
videos indicating that the introduction of NSS features is more
helpful in VOT task with highly distorted videos. To demonstrate
this idea, Figure 6 shows the performance on pristine videos. This
performance is almost equivalent between both methods, being
slightly better the HOG+NSS method.

Statistical significance test
Since non-parametric tests make no assumptions about the

probability distributions of the variables, we conducted a Kruskal-
Wallis test on each median values of AUC for 70 videos compar-
ing the HOG and HOG+NSS methods to evaluate whether the re-
sults presented in 7 are statistically significant. Table 1 tabulates
the results of the statistical significance test. From Table 1, we
conclude that HOG+NSS method produced highly competitive
object tracking performance on the tested videos with statistical
significance against the only HOG algorithm tested.

1FFmpeg Developers, (2016). Available from http://ffmpeg.org/

Table 1: Statistical significance matrix of AUC values between
HOG and HOG+NSS . A value of “1” indicates that the perfor-
mance of the model with NSS was statistically better than that of
the model with only HOG, “0” means that it is statiscally worse,
and “-” means that it is statistically indistinguishable

pristine MPEG-4 S&P Blur Gaussian
Statistical significance - 1 1 1 1

Conclusions and Future Work
The results obtained by selecting and incorporating quality

aware features into the representation of the image patches show
an improvement in the VOT performance, in terms of AUC, for
blur, SAP, AWGN, and MPEG-4 post-capture and encoding dis-
tortions. The performance loss in unconstrained VOT can be due
to several scene conditions such as occlusion, scale change, and
cluttering which are different from image quality degradations. In
this paper, we only focused on VOT for scenes without occlusions
and scale changes to isolate the loss in performance due to image
quality, while we primarily considered only post-capture distor-
tions such as blur, AWGN, MPEG4, and SAP here, it would be of
interest to study other distortions due to over or under exposure
and images authentically distorted by a combination of multiple
artifacts when captured with a camera.
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