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Abstract
Video Quality Assessment (VQA) is an essential topic in sev-

eral industries ranging from video streaming to camera manufac-
turing. In this paper, we present a novel method for No-Reference
VQA. This framework is fast and does not require the extraction
of hand-crafted features. We extracted convolutional features of
3-D C3D Convolutional Neural Network and feed one trained
Support Vector Regressor to obtain a VQA score. We did cer-
tain transformations to different color spaces to generate better
discriminant deep features. We extracted features from several
layers, with and without overlap, finding the best configuration
to improve the VQA score. We tested the proposed approach in
LIVE-Qualcomm dataset. We extensively evaluated the percep-
tual quality prediction model, obtaining one final Pearson corre-
lation of 0.7749±0.0884 with Mean Opinion Scores, and showed
that it can achieve good video quality prediction, outperforming
other state-of-the-art VQA leading models.

Introduction
Every day, millions of videos are being shared and spread

on platforms such as Youtube, Netflix, and Hulu. Cisco estimates
that video traffic will be 82 percent of all Internet traffic (both
business and consumer) by 2022, up from 75 percent in 2017.
Because of the high availability of smartphones, many of these
videos are recorded by regular users who distort these videos with
impairments such as artifacts, color, exposure, focus, sharpness,
stabilization, caused by hardware limitations. Users do this be-
cause of lack of knowledge about the generation of professional-
quality video. Natural videos often contain in-capture distortions
that affect the video quality perceived by humans. Video stream-
ing and camera manufacturers companies are keen to understand
the influence and presence of these distortions in natural videos.
This quality prediction can be carried out automatically by us-
ing VQA algorithms. Nonetheless, one of the main challenges
in VQA is video content dependency, which makes it difficult to
generalize from a unique dataset.

Most of the related work in No Reference (NR) VQA mod-
els has focused on compression and transmission artifacts [1–14],
and the most used applications of these NR-VQA models is qual-
ity monitoring in video storage, streaming, gaming and broad-
casting [15]. Mittal et al. [16] created a No Reference Image
Quality Assessment (IQA) model, called NIQE, that makes use of
statistical regularities observed in natural images, without train-
ing on MOS. They base this model on the construction of a set
of statistical features based on a Natural Scene Statistics (NSS)
model. The IQA is given by the distance between NSS features
extracted and a multivariate Gaussian model of the quality aware

features extracted from the collection of images. In [17] Bampis
et al. applied NIQE to VQA, and tested it on the LIVE-NFLX
Database [18], with little success, probably because it is a frame-
based NR model (intended initially to IQA).

In [19], the authors proposed a NR IQA method that uses
spatial features. The model, called Blind/Referenceless Image
Spatial Quality Evaluator (BRISQUE) uses scene statistics of lo-
cally normalized luminance coefficients to quantify losses of “nat-
uralness” in an image due to distortions. BRISQUE is not lim-
ited by the type of distortions, obtaining an advantage compared
to other approaches to NR IQA that are distortion-specific [20].
Sogaard et al. [14] proposed a NR VQA method; they built fea-
tures by the estimation of selected video codec parameters along
with BRISQUE features, applied to each frame. They exploited a
changed version of the IQA BRISQUE and applied it to videos,
along with features from the video codec analysis, and used these
as input for a SVR machine learning method.

Saad et al. proposed in [21–23] a NR VQA method dubbed
video BLind Image Integrity Notator using DCT Statistics (V-
BLIINDS) that is built on a spatio-temporal model of videos con-
verted to the discrete cosine transform domain, and on a model
that characterizes the motion occurring in the scenes to predict
video quality. V-BLIINDS uses features extracted under the
spatio-temporal Natural Video Scenes model to feed a support
vector regressor (SVR) trained to predict the visual quality of
videos. In this model, they assessed the spatial and temporal di-
mensions of the videos collectively. They tested V-BLIINDS on
the LIVE VQA database [24], demonstrating good performance
on compression and packet loss [25].

Mittal et al. [10] proposed an NR VQA method called
the video intrinsic integrity and distortion evaluation oracle (VI-
IDEO). They quantify distortions using statistical regularities of
natural videos. VIIDEO is based upon a set of perceptually rel-
evant temporal video statistic models of video frame difference
signals to obtain a VQA score. To select appropriate features for
the Asymmetric Generalized Gaussian Distribution model, they
used three criteria: (i) regularity over pristine videos, (ii) regular-
ity should be destroyed on distorted videos, (iii) the loss of regu-
larity should vary with the degree of perceived distortion. How-
ever, they do not test VIIDEO on a dataset with naturally distorted
videos, such as LIVE-Qualcomm [26].

Ghadiyaram et al. in [27] proposed a No Reference IQA
method, called Feature Maps–Based Referenceless Image Qual-
ity Evaluation Engine (FRIQUEE), based on a large set of per-
ceptually relevant feature maps, along with NSS models. These
features feed an SVR learning model with radial basis ker-
nel functions. They deployed these models in several color
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spaces (HSI, LMS, LAB, CIELAB [28]), and tested the proposed
method, mainly on the LIVE In the Wild Image Quality Challenge
Database (1162 natural images, obtained using mobile camera de-
vices, and evaluated by 8100 human observers) [29, 30], achiev-
ing good quality prediction on authentically distorted images.

In [31] the authors proposed a VQA method that takes into
account video content. The algorithm calculates four measures:
1. picture resolution, 2. bitrates, 3. spatial Information (SI), and
4. temporal information (TI) to represent the visual quality in four
separate dimensions. Thus, they created a dataset with ten videos
represented by MOS provided by 20 subjects. However, they did
do not test VQA performance on other datasets. Furthermore,
the proposed dataset was small and did not allow for adequate
generalization.

Ghadiyaram et al. [26] proposed a dataset dubbed LIVE-
Qualcomm Mobile In-Capture Video Quality Database, compris-
ing 208 videos obtained from 8 different smartphones, modeling
six common in-capture distortions. They conducted a subjective
quality assessment study on this dataset, where 39 subjects as-
sessed each video. Likewise, they tested several state-of-the-art
No-Reference IQA and VQA algorithms [10, 16, 19, 21, 27] on
this dataset and reported FRIQUEE [27] to be the best perform-
ing VQA algorithm on LIVE Qualcomm in terms of PLCC and
SROCC, which were 0.7349 and 0.6795 respectively, with all dis-
tortions commingled.

In [32] Zhang et al. showed the effectiveness of deep fea-
tures as a perceptual metric. They found that deep features outper-
form previous metrics by large margins in perceptual tasks. They
remarked that this performing is independent of CNN architec-
ture and levels of supervision. They demonstrated that even CNN
trained for common computer vision tasks achieve good perfor-
mance on semantic and perceptual tasks [33]. However, this per-
formance can be improved by training a simple linear scaling of
layers activation using perceptual VQA or IQA datasets. Simi-
larly, other studies determined that a CNN trained for object and
video recognition can be useful to determine human perceptual
characteristics [34, 35].

Göring et al. [8] trained two no-reference models for clas-
sical video quality up to 4K resolution. The first one is a
BRISQUE+NIQE baseline model trained on per-frame VMAF
scores, using one random forest regression model without fea-
ture selection. The second approach uses a pre-trained classifi-
cation Deep Neural Network (DNN) in combination with hierar-
chical sub-image creation. They introduce a hierarchical patching
approach to feed the DNN, dividing a frame into sub-images of
equal size (1/2, 1/4, and 1/8 of each dimension). To generate deep
features, the authors used the inception-v3 network [36], imple-
mented in Keras, with re-scaling to 299× 299 pixels. However,
they tested the DeViQ method on one dataset containing only 12
videos, which led to low generalization capabilities.

We have organized the remainder of the paper as follows: in
the Section Materials and Methods, we describe the overall frame-
work of the model. We show the process to train a Support Vector
Regressor (SVR), and the dataset used. We explain the correla-
tion measures used, and the color spaces used to transform the
original videos in the dataset. In the Results and Discussion sec-
tion, we report and analyze the experimental results, and section
5 concludes the paper.

Figure 1. C3D Architecture [37].

Materials and Methods
Convolutional Neural Network

In all the experiments, we use the C3D Network [37] to ex-
tract spatio-temporal features. In [37] the authors showed that
these spatio-temporal features, along with a simple linear classi-
fier, can yield good performance on some video analysis tasks,
such as action recognition [38], action similarity labeling, scene
classification and object recognition. C3D uses a 3× 3× 3 con-
volution kernel for all layers, and takes full video frames as input,
with no pre-processing stage. C3D performs 3D convolutions and
3D pooling to propagate temporal information across all the lay-
ers, allowing access to the model temporal information.

C3D has five convolution layers and five pooling layers (a
pooling layer immediately follows each convolution layer), two
fully-connected layers and a softmax loss function to predict ac-
tion labels. The number of filters for convolution layers from 1 to
5 are 64, 128, 256, 256, 256, respectively, as shown in Fig. 1. C3D
resizes all video frames into 128×171 pixels [37]. In one exper-
iment, we modified the C3D original architecture to take as input
to the convolutional layers videos split into 16 frames clips with
an 8-frame overlap between two consecutive clips, obtaining more
feature vectors per video and thereby improving the features/data
ratio. C3D has 17.5 million parameters in the fully connected lay-
ers. The authors tested four distinct architectures, varying the size
and depth of the kernel in each one. The number of parameters in
the convolutional layers are different for each architecture, but the
variation is minimal compared with the 17.5 million parameters
in the fully connected layers, which is the same for all architec-
tures [37]. We extracted feature vectors with dimensions of 50175
from the fifth convolutional layer (conv5b) and 4096 of the fully
connected layer (fc6).

Dataset

Several VQA databases have been created in recent
years [39, 40]. We used the database LIVE-Qualcomm Mobile
In-Capture Video Quality proposed by [26], because it contains
videos with authentic distortions. The original videos from LIVE-
Qualcomm are in YUV420 format. We converted all videos to
AVI Uncompressed. This resulted in videos with an average size
of 2.8 Gigabytes, duplicating its original size. This kind of con-
version allows for minimizing the information lost by compres-
sion, thus avoiding adding other different post-capture distortions
to the videos. However, a drawback is the enormous size of these
videos, increasing the processing time to extract the features from
C3D layers. The videos in the LIVE-Qualcomm dataset have an
average duration of 15 seconds and have a rate of 30 Frames per
Second (FPS). Each video has approximately 450 frames, but not
all videos have the same duration; some videos have less than 400
frames. We discarded one video as an outlier (only 360 frames).
Therefore, we used 207 out of the 208 videos from the LIVE-
Qualcomm dataset.
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Figure 2. 3-D PCA of pristine and distorted videos from LIVE-Qualcomm

dataset, with No Average Pooling NA (25 points represents one single video).

Pre-processing
We pre-processed each video using a transformation to the

YCbCr color space on account of the rough correspondence be-
tween the YCbCr components and visual attributes. YCbCr is
one of two primary color spaces used to represent digital videos
(along with RGB). The distinction between YCbCr and RGB
is that YCbCr represents color as brightness (Y) and two color
difference signals (CB, Cr), while RGB represents color as red,
green and blue [41, 42]. Likewise, YCbCr is less redundant than
RGB, supporting the CNN encoding capabilities. In YCbCr color
space, lightness changes that affect image contrast (but not color)
are easily accessed. Besides, YCbCr is intended to take advantage
of human colour-response characteristics. We believe that this
can facilitate the detection of certain distortions. We also pre-
processed each video by using a statistical image model based
on Mean Subtracted Contrast Normalized (MSCN) coefficients.
MSCN coefficients have characteristic statistical properties that
are changed by distortions and it is known that quantifying these
changes makes it possible to predict the distortion affecting an
image and its perceptual quality [19].

SVR training
SVR has been applied successfully to VQA problems [12,

21, 43–48]. In some VQA frameworks, one usual way to obtain a
quality score is to train the SVR with the proposed features. SVR
is able to handle high-dimensional data, comparable to the length
of features vector in the output of C3D convolutional and fully
connected layers. We utilized the MATLAB Machine Learning
Toolbox to implement the SVR with a radial basis function (RBF)
and Gaussian kernel. We found the optimal model parameters of
the SVR via 10-fold cross-validation. The aim of minimizing the
error to the validation data guided our selection of the model. We
used a random, nonoverlapping train and test split with 80% of the
sequences for training and 20% for testing in each test case. To
avoid any bias due to the division of data, we randomly split the
data set 100 times. The median PLCC, SRCC results, and their
standard deviations for each test case are reported in Tables 1-2.
A higher value of each of these metrics shows better performance
in terms of correlation between MOS and proposed VQA method

Figure 3. Scatter plot between Ground Truth MOS and Predicted MOS

obtained with Fc6 YCbCr 8Frames AP VQA proposed method. There are

39 videos in the test set. We reported the linear correlation coefficient R2 =

0.6567, and plotted the least-squares line (red).

scores.
To evaluate the performance of VQA methods, we adopted

two criteria, namely the Pearson Linear Correlation Coefficient
(PLCC), and the Spearman Rank Ordered Correlation Coefficient
(SROCC) between ground-truth MOS and predicted MOS. The
PLCC is a measure of the strength of linear dependence between
two variables. The SROCC measures prediction monotonicity,
since it operates only on the ranking of the data points and ignores
the relative distance between them. The absolute value of SROCC
describes the intensity of the monotonic relationship [49]. The
feature vectors have a size of 4096×1 for Fully Connected layer
fc6 and 50176×1 for the fifth convolutional layer conv5b. These
vectors compose the matrix Finput , which is the input matrix to
train and test the SVR machine. One of the deployed approaches
uses Average Pooling (AP) by averaging all columns from matrix
Finput (m is the number of features in the output of CNN layer),
where the matrix of size m×n is converted in m×1, to represent
each video as a single feature vector.

Results and Discussion
We obtained 73 pristine videos from several sources [24, 50,

51] and extracted the C3D deep features vectors from fully con-
nected layer fc6. Thereafter, we studied these feature vectors
with the equivalent feature vectors of distorted videos from the
LIVE-Qualcomm dataset. Figure 2 shows the results of Princi-
pal Component Analysis projection (PCA). Diverse clusters occur
because of the pristine and the various types of distorted videos.
The videos were converted to YCbCr color space and processed
by the C3D CNN. The values in Table 1 and 2 justify our choice
of YCbCr color space, which plays a significant role in enhancing
video quality predictions. Therefore, we take the feature vector
from the output of the sixth fully connected layer fc6, using the
advancement of eight frames in each block of frames to feed the
CNN.

The LIVE-Qualcomm dataset contains videos acquired from
four different smartphones per unique scene. We evaluated the
impact of this information redundancy in the SVR performance.
To do this, we took the method having higher overall performance
(Fc6 YCbCr 8Frames AP) and deleted duplicated videos for the
same scene. We organized the dataset in such a way that each
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TABLE 1: Median PLCC ± Standard Deviation of proposed VQA method. AP indicates Average Pooling. NA indicates No Average
(we use one feature vector each XX frames), and AP* suggests that only one video per unique scene is used. The results of the
methods of six upper rows was taken from [26], since they were evaluated on the same dataset
VQA Method Artifacts Color Exposure Focus Sharpness Stabilization All distortions
FRIQUEE [27] 0.7638 0.3543 0.6808 0.8107 0.2203 0.7034 0.7349
BRISQUE [19] 0.6402 0.3392 0.6042 0.4550 0.5371 0.6940 0.5788
Average-pooled NIQE [16] 0.6078 0.2904 0.4625 0.5371 0.5595 0.6015 0.6802
Temporally-pooled NIQE 0.6766 0.3141 0.5213 0.5782 0.5508 0.6510 0.6749
V-BLIINDS [21] 0.8386 0.6645 0.6900 0.8077 0.6845 0.7138 0.6653
VIIDEO [10] 0.2888 0.3312 0.2073 0.2515 0.3012 0.3697 0.0982
Conv5b RGB 8Frames AP 0.2619±0.2933 0.3714±0.3994 0.5429±0.3391 0.4000±0.5107 0.6000±0.3309 0.1429±0.3529 0.6100±0.1446
Conv5b RGB 16Frames AP 0.4524±0.3486 0.3714±0.3141 0.6000±0.3042 0.4000±0.5407 0.6000±0.3589 0.2857±0.3182 0.5906±0.1092
Fc6 YCbCr 8Frames AP 0.5714±0.2635 0.6000±0.3452 0.6000±0.3349 0.5000±0.4169 0.6000±0.3407 0.4643±0.3339 0.7749±0.0884
Fc6 YCbCr 8Frames AP* X X X X X X 0.7648±0.1487
Fc6 YCbCr 8Frames NA 0.5494±0.2380 0.6303±0.3086 0.6183±0.365 0.4828±0.2854 0.5954±0.3447 0.3767±0.3175 0.7146±0.0849
Fc6 MSCN 8Frames AP 0.5476±0.2399 0.4857±0.3419 0.4286±0.3015 0.3536±0.5015 0.6559±0.3929 0.1429±0.4062 0.5824±0.148
Fc6 MSCN 8Frames NA 0.5000±0.1992 0.5076±0.2951 0.4146±0.2588 0.4688±0.353 0.5714±0.2442 0.2284±0.2947 0.5428±0.1176
Fc6 MSCN 16Frames NA 0.4730±0.2061 0.4341±0.2905 0.4635±0.2622 0.5215±0.3040 0.5082±0.263 0.2215±0.3029 0.5453±0.1767
Fc6 MSCN 16Frames AP 0.5000±0.2887 0.4286±0.3786 0.4857±0.3020 0.3000±0.4920 0.5798±0.3255 0.1786±0.3187 0.6129±0.1439
Fc6 YCbCr 16Frames AP 0.5476±0.2593 0.4286±0.3244 0.6000±0.3566 0.3929±0.2857 0.6571±0.3381 0.4643±0.3457 0.6380±0.1194
Fc6 YCbCr 16Frames NA 0.5495±0.2581 0.4211±0.2840 0.4698±0.2685 0.4544±0.3421 0.6192±0.288 0.3757±0.2754 0.5217±0.1272

TABLE 2: Median SROCC ± Standard Deviation of proposed VQA method. AP indicates Average Pooling. NA indicates No Average
(we use one feature vector each XX frames), and AP* suggests that only one video per unique scene is used.

VQA Method Artifacts Color Exposure Focus Sharpness Stabilization All distortions
FRIQUEE [27] 0.75 0.4107 0.6071 0.7879 0.0714 0.6607 0.6795
BRISQUE [19] 0.6071 0.3571 0.5536 0.3929 0.4821 0.6429 0.5585

Average-pooled NIQE [16] 0.5 0.3214 0.3929 0.3393 0.5 0.2143 0.5451
Temporally-pooled NIQE 0.5357 0.3214 0.4821 0.3750 0.5179 0.2143 0.5525

V-BLIINDS [21] 0.7321 0.6071 0.6429 0.8036 0.6786 0.6607 0.6177
VIIDEO [10] -0.1786 0.1429 -0.0714 0 -0.1786 -0.1071 -0.1414

Conv5b RGB 8Frames AP 0.2631±0.2793 0.2127±0.3107 0.5786±0.3288 0.5908±0.4828 0.7493±0.3068 0.0±0.2906 0.5752±0.2141
Conv5b RGB 16Frames AP 0.3557±0.3308 0.1564±0.28 0.6153±0.3282 0.478±0.4948 0.7627±0.333 0.0±0.2962 0.5868±0.1536

Fc6 YCbCr 8Frames AP 0.6076±0.2364 0.7077±0.3603 0.7271±0.3263 0.4524±0.3819 0.7236±0.346 0.445±0.3156 0.7517±0.0853
Fc6 YCbCr 8Frames AP* X X X X X X 0.7507±0.1281
Fc6 YCbCr 8Frames NA 0.5365±0.2688 0.7294±0.3487 0.6562±0.4141 0.407±0.2864 0.66±0.3744 0.3361±0.3048 0.69±0.2985
Fc6 MSCN 8Frames AP 0.5776±0.2814 0.4583±0.3482 0.4484±0.3055 0.3401±0.431 0.6493±0.3867 0.1465±0.3774 0.5781±0.171
Fc6 MSCN 8Frames NA 0.4943±0.219 0.4348±0.2872 0.4029±0.2711 0.3527±0.3269 0.6114±0.2818 0.226±0.3087 0.4631±0.263
Fc6 MSCN 16Frames NA 0.4761±0.2101 0.3725±0.2798 0.4192±0.2782 0.4534±0.2974 0.5854±0.243 0.281±0.3122 0.4901±0.2458
Fc6 MSCN 16Frames AP 0.4869±0.298 0.4512±0.3203 0.469±0.2971 0.3096±0.4598 0.6562±0.3403 0.0488±0.291 0.5831±0.1898
Fc6 YCbCr 16Frames AP 0.5776±0.2549 0.3734±0.2988 0.5396±0.346 0.4009±0.2969 0.7477±0.3627 0.4276±0.3254 0.617±0.1274
Fc6 YCbCr 16Frames NA 0.5256±0.274 0.4393±0.2799 0.4888±0.2945 0.4744±0.3206 0.7043±0.3372 0.3679±0.2782 0.5238±0.2349

smartphone device was represented by approximately same num-
ber of videos, with a total of 54 videos (Galaxy GS5=8, Galaxy
GS6=8, HTC One VX=8, Iphone 5S=8, LG G2=8, Lumia 1020 =
3, Note 4 =4, Oppo Find 7 =7). The results of this test are sum-
marized in method Fc6 YCbCr 8Frames AP*, as shown in the
Tables 1 and 2. It may be observed that the overall performance
varies by only 0.0099. These results support the conclusion that
the redundancy in information per scene is not a critical factor
in the overall performance of the proposed VQA method when
tested on the LIVE-Qualcomm dataset. By contrast, the results
reported in [26] were tested using all the videos, including those
involved in the same scene.

For further analysis, we also calculated the R2 correlation
coefficient (values > 0 show a linear correlation). Figure 3 shows
a scatter plot of our results using the Fc6 YCbCr 8Frames AP

VQA method on one test sequence of 39 videos, compared
with the Ground Truth MOS from LIVE-Qualcomm. Our
proposed VQA method obtained the best overall performance
(all distortions), achieving a PLCC correlation of 0.7749 ±
0.0884, outperforming the best performance reported in [26]
by FRIQUEE [27] (PLCC = 0.7349). Furthermore, our
VQA method Fc6 YCbCr 8Frames AP obtained the best perfor-
mance on videos with exposure distortion, achieving a SROCC
of 0.7271 ± 0.3263. Similarly, another proposed method,
Fc6 YCbCr 8Frames NA, obtained the second best results on
exposure distortion, with a SROCC of 0.6562 ± 0.4141. Re-
spect to distortions in separative way, and comparing with PLCC
score, the method Fc6 YCbCr 8Frames NA outperform the oth-
ers methods in Color distortion. This method used the features
extracted from the first Fully Connected layer, with the input data
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converted to YCbCr format, and batch size separation of 8 frames.
Thereby, both methods outperformed the best performance

reported in [26] on videos affected by exposure distortion with
V-BLIINDS [21], which obtained 0.64290 without reporting
standard deviation. The results for other methods (i.e., V-
BLIINDS [21], VIIDEO [10], NIQE [16], BRISQUE [19], and
FRIQUE [27]), are reproduced here [26] because they also re-
port on median PLCC and SROCC values using tenfold cross-
validation with 100 random train–validation–test split, and used
the same dataset. Those methods that use Average Pooling (AP)
required lower computational times; by reducing the size of ma-
trix Finput , allowing accelerated execution of SVR training and
testing.

Conclusions and Future Work
In this paper, we have proposed a NR VQA method, explic-

itly aimed at videos with natural distortions, such as color, arti-
facts, exposure, focus, sharpness, and stabilization. Our method
is based on a 3D convolutional neural network approach, using
features extracted from several layers of the CNN to feed an SVR
model to produce an NR VQA model providing a high level of
video quality prediction power. Our VQA method outperforms
several state-of-the-art VQA methods when applied to authenti-
cally distorted videos.
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