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Abstract
Video capture is becoming more and more widespread. The

technical advances of consumer devices have led to improved
video quality and to a variety of new use cases presented by so-
cial media and artificial intelligence applications. Device man-
ufacturers and users alike need to be able to compare different
cameras. These devices may be smartphones, automotive com-
ponents, surveillance equipment, DSLRs, drones, action cameras,
etc. While quality standards and measurement protocols exist for
still images, there is still a need of measurement protocols for
video quality. These need to include parts that are non-trivially
adapted from photo protocols, particularly concerning the tem-
poral aspects. This article presents a comprehensive hardware
and software measurement protocol for the objective evaluation
of the whole video acquisition and encoding pipeline, as well as
its experimental validation.

Introduction
Still image quality measurement is a well covered subject

in the literature. There are several ISO standards on photogra-
phy, as well as the IEEE-P1858 CPIQ standard [3]. The CPIQ
metrics with JND mapping/perceptual comparison are described
by Baxter et al. [1] and Jin et al. [5]. Other objective quality
measurements for still images with correlation to perceptual mea-
surements or JND mapping are also published. For instance, an
objective exposure quality measurement calibrated on the human
perception has been proposed by He et al. [2].

As for motion pictures, all still image quality metrics can be
applied to individual video frames to provide a first estimation of
the video quality from static scenes. However, light changes are
very common in video use-cases and an evaluation of the temporal
behavior is required as well. Light changes can occur for exam-
ple when walking from indoor to outdoor, when filming a show
where the lighting constantly changes, when a car goes out of a
tunnel, when panning with different light sources in the scene, etc.
In this article we consider end-user cameras that are used in auto
mode. The camera must automatically adjust all parameters to the
environment. The most visible quality attributes for still images
are exposure, white balance, and color; the same applies to video,
and we need to assess the convergence of these attributes during
light changes. Furthermore, some artifacts that exist in photo also
exist in video but their impact on the overall perception is differ-
ent. For instance, the temporal aspect of the noise can bring a
different perception from the spatial aspect and must therefore be
tested separately.

Degradation introduced by video encoding and transmission
is widely studied by VQEG, with correlations to Mean Opinion
Score (MOS) [10][11]. These measurements do not evaluate any
step before encoding and they do not include shooting conditions,

thus they cannot be considered comprehensive video quality mea-
surement protocols. Temporal aspects of video quality begin to be
studied; for instance, a perceptual study of auto-exposure adapta-
tion has been presented by Oh et al. [8]. To the best of our knowl-
edge, there is not as yet a measurement protocol with correlation
to subjective perception for video image quality.

The goal of this work is to provide a measurement protocol
for the objective evaluation of video quality that reliably allows to
compare different cameras. It should allow to automatically rank
cameras in the same order a final user would do it. In this article,
we focus on three temporal metrics: exposure convergence, color
convergence, and temporal visual noise.

The novelty of this work includes a comprehensive approach
that jointly designs hardware (closed-loop controlled lighting,
custom-printed charts, etc) and software, to provide a video qual-
ity measurement protocol. These allow to test different lighting
conditions representative of real use-cases (indoor, outdoor, low-
light). Also, the measurements are done in auto mode and in
the final user perspective, thus the measurement protocol includes
the whole video acquisition and encoding pipeline (optics, sensor,
ISP, codec).

Proposed Metrics
Most still image quality metrics can be adapted to video by

processing each frame independently and then extracting quality
statistics. For instance, we can compute a metric on each frame of
a video and assign its average value to the whole sequence. Thus
we can measure the target exposure, the white balance, the static
color fidelity, the texture preservation, the spatial visual noise, the
modulation transfer function (MTF), the vignetting, the ringing,
the distortion, and the lateral chromatic aberrations. These met-
rics are provided in the Analyzer solution and in others commer-
cial distributions.

In this article, we focus solely on the temporal aspects of
the video quality evaluation: exposure and color convergence on
light transitions, and temporal visual noise on stable light. All
measurements are performed on custom-printed charts under con-
trolled lighting conditions.

Exposure and Color on Lighting Transitions
Lighting transitions are a challenging occurrence for video

quality that happen when either the lighting in the scene or the
framing changes. They can occur when filming a show where the
light changes constantly, when walking from outdoor to indoor or
from indoor to outdoor, when driving in or out of a tunnel, when
panning, etc. In auto mode, devices need to adapt the exposure
and the white-balance to the change of lighting and the resulting
transition can be unpleasant to the viewer. In this section we pro-
pose metrics to evaluate the performance of auto-exposure and
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Figure 1. DXOMARK video lighting system

auto-white-balance on lighting transitions.

Test Environment
For still image quality measurement, DXOMARK uses the

in-house designed Automatic Lighting System. This system has
been designed to produce a very stable, precise and continuous
lighting at several luminance values and color spectrum. How-
ever it does not allow to simulate fast lighting changes. For in-
stance, the fluorescent tubes take several seconds to switch from
1000lux to 10lux. This is why we have designed a dedicated
video light source, which is visible in Figure 1. This light source
can produce from 1lux to 2000lux with color temperatures rang-
ing from 2300K to 2800K. It also allows to perform up or down
steps in luminance alone in less than 100ms, and variation of both
luminance and color temperature in ramps that converge in several
seconds.

We perform the measurements on an X-rite ColorChecker
Classic chart with a DXOMARK frame, reproduced in Figure 2.
The metrics are computed in the CIELAB 1976 color space [6]
with the reference white point in D65. For each patch of the chart,
we compute the average L∗, ∆a∗b∗ and ∆H∗. We measure the
target exposure as the L∗ value on a 18% gray patch. The white-
balance and the hue error are respectively measured as the ∆a∗b∗

and ∆H∗ values on the gray patches, and the color rendering as
the ∆a∗b∗ value on all or tone-specific (blue, green, skin tone, ...)
colored patches.

Luminance Steps
Luminance steps occur when the light changes abruptly in

the scene, for example when filming a show in a dark room and
the lights suddenly turns on. The device is presented with a very
sudden change, and in auto-mode it has to respond to it. For each
measured value (for instance L∗), we want to evaluate how fast,
smoothly and accurately it converges. For that we define:

Convergence time The total time it takes to converge to a stable
value.

Convergence error Convergence value error, compared to the
value before the transition.

First convergence time The first time where the convergence
value is reached.

Figure 2. X-rite ColorChecker Classic chart with DXOMARK frame

Figure 3. Luminance step convergence: terms definition

Oscillation time The time it takes for the value to converge to a
stable value after reaching the value at convergence for the
first time.

Overshoot The maximum overshoot during oscillation.

These concepts are illustrated in Figure 3.
We consider the convergence of a value v (for instance the

L∗, ∆H∗, or ∆a∗b∗ value), in a video sequence that contains a
transition. We first measure v on the ColorChecker chart patches
on all the video frames as described above. Then, we detect the
transition start time (with a threshold on the derivative of v) and
the convergence time (with a threshold on the standard deviation
and the slope of v over a moving window). We also compute the
median value of v on a stable period before and after the transition.

Luminance and Color Temperature Ramps
In this section, we consider ramps where both the luminance

and the color temperature vary over several seconds. These can
occur when panning in a scene that contains several light sources,
for example when walking in a room with both windows and arti-
ficial light sources. The difference with the steps described in the
previous section is that the changes between consecutive frames
are relatively small. Some devices react smoothly and adapt to the
transition, others adapt with a lag (which creates abrupt changes
or oscillations later on), or do not adapt at all. To estimate these
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Figure 4. DXOMARK Visual Noise chart

parameters we define the following metrics:

Amplitude Amplitude of the variation during the transition.
Oscillations intensity Robust estimator of signal variation over

time. A constant signal has an oscillations intensity of 0;
that intensity increases with the amount of oscillations in the
signal. The oscillations intensity is the difference of moving
averages on a large and a small integration window

1
T

∫ T

0
|ETS [t,v]−ETL [t,v]| dt, (1)

where
ET [t,v] =

1
T

∫ t

t−T
v(τ)dτ. (2)

And v is the L∗ or ∆H∗ or ∆a∗b∗ value, T is the duration of
the video, and TS and TL are the small and large integration
windows durations respectively.

Temporal Visual Noise
Visual Noise for still images has been standardized in IEEE

1858 [3] and ISO 15739 [4]. Although these standards are sup-
posed to provide good perceptual correlations, it has been argued
by Wüller et al. [12], that while the general formulae are valid,
there is still an effort in determining the parameters for the met-
rics. With an appropriate set of parameters, these metrics can
be applied to video frames independently and the average value
or the standard deviation can be assigned to the whole video se-
quence.

However, since photonic noise on the sensor varies with
time, temporal noise adds up to the spatial noise in videos.
This creates blinking that can be annoying and distracting to the
viewer. To the best of our knowledge, regarding video visual
noise, there is no proposed measurement protocol and no study
on perceptual correlation. The goal of this section is to propose
an adaptation of existing visual noise measurements to measure
video temporal noise.

Test Environment
We use the DXOMARK Visual Noise chart, which can be

seen in Figure 4. This chart is an ISO 14524:2009 compliant
OECF test chart and it has large patches to be able to work
with video resolutions that are usually smaller than photo resolu-
tions. We consider constant lighting at different luminances from
1lux to 1000lux, and different color temperatures from 2300K to
6500K.

Figure 5. 18% gray patch on successive frames during an increasing tran-

sition from 250 lux to 1000 lux and a decreasing transition from 1000 lux to

250 lux, for the OnePlus 6T

Temporal Visual Noise Metric
The temporal visual noise metric is computed in the

CIELAB color space [6]. Exposure and white balance are com-
pensated to isolate the temporal noise from other distinct effects
(exposure drift, white-balance drift, etc). We measure temporal
noise variances σL∗ , σa∗ , and σb∗ as spatial averages (over the pix-
els of an entire patch) of the temporal variances (over all frames
for a single pixel). For computational reasons, the variances are
computed using Welford’s online algorithm [7]. Since the noise
depends on the luminance, these variances are computed on seven
ROI with different reflectance. A normalization is required to
compare different devices with different exposures: we interpo-
late on the measured CIE-L* values for all patches and compute
the noise variances for L∗ = 50, which is the average value of
correctly exposed frames.

A recent perceptual study on still images [12] shows a good
correlation of perceptual measurements to the square root of a
weighted sum of the noise variances. Until a similar study is per-
formed on videos, we set all weights to 1, and we define the Tem-
poral Visual Noise (TVN) as:

TVN =
√

σ2
L∗ +σ2

a∗ +σ2
b∗ . (3)

Notice that this is the average euclidean distance of each pixel of
a correctly exposed patch from its average.

The perception of luminance and chromatic noise is differ-
ent, users tend to be more sensitive to chromatic noise. Denois-
ing algorithms for luminance and chroma noise are different as
well. To evaluate how colored the noise is, we define the Tempo-
ral Noise Chromaticity (TNC) as:

TNC =
σ2

a∗ +σ2
b∗

σ2
L∗ +σ2

a∗ +σ2
b∗
. (4)

Results
Luminance Steps

Several devices were tested on comprehensive test scenario
containing increasing and decreasing lighting transitions of differ-
ent amplitudes (from 20lux to 1000lux) and in different lighting
conditions (low-light, indoor, outdoor). For each transition, we
measured the exposure convergence metrics defined in the previ-
ous section on a 18% gray patch. Figure 5 shows the response of
a device to increasing and decreasing transitions between 250lux
and 1000lux. Figure 6 shows the exposure convergence for three
devices: short convergence time, long convergence time, and
overshoot. These are representative of the convergence shape and
time of our data-set.
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OnePlus 6T Honor View 10 Vivo NEX

Convergence in 0.5 s

No Overshoot

Convergence in 1.6 s

No Overshoot

Convergence in 0.6 s

Overshoot 12 (L∗)

Figure 6. Different devices reactions to a decreasing transition from 1000 lux

to 25 lux

Luminance Transitions
Transition size Small Large
Transition direction Inc. Dec. Inc. Dec.
Apple iPhone 8 Plus 0.7 s 0.5 s 1.3 s 0.8 s
Apple iPhone XS Max 0.4 s 0.5 s 0.4 s 0.5 s
Google Pixel 3 0.6 s 0.7 s 1.2 s 0.9 s
Honor View 10 1.0 s 0.7 s 2.0 s 1.8 s
Huawei P20 0.5 s 0.6 s 1.0 s 1.6 s
Nokia N8 0.2 s 0.2 s 0.5 s 0.4 s
OnePlus 6T 0.5 s 0.4 s 0.5 s 0.4 s
Samsung Galaxy A8 0.2 s 0.2 s 1.9 s 0.8 s
Samsung Galaxy J5 0.2 s 0.2 s 1.7 s 0.9 s
Sams. Gal. S10 Plus 0.6 s 0.6 s 0.7 s 0.8 s
Sony Xperia 1 0.8 s 0.7 s 1.4 s 1.4 s
Sony Xperia L2 0.2 s 0.3 s 0.5 s 0.4 s
Vivo NEX 0.4 s 0.3 s 0.4 s 0.4 s
Xiaomi Mi 9 0.4 s 0.4 s 0.6 s 0.5 s

Figure 7. Convergence time for different increasing and decreasing lu-

minance transitions, both small (amplitude< 200 lux) and large (amplitude>

600 lux)

Figure presents the convergence time for several devices
for increasing and decreasing transitions both large (more than
600lux difference) and small (less than 200lux difference). These
two categories cover the full range of tested transitions. Approx-
imately half of the devices have convergence times under 0.6s.
For example, the Vivo NEX is around 0.4s for all transitions.
For other devices the performance changes significantly between
large and small transitions. For instance, the convergence time
for the Honor View 10 is twice as large for big transitions than
for small. Generally speaking, convergence times are larger for
increasing transitions than for decreasing ones. For some devices
this difference is very noticeable, in particular for the Samsung
Galaxy J5 and A8 on big transitions. We can see this difference
in Figure 8.

Notice that convergence time is not enough to measure the
performance of a device, specifically a device should converge
to a suitable value of exposure. Figure 9 shows that the Samsung
Galaxy A8 has a very fast convergence but it does not convergence
to a suitable luminance value.

Luminance and Color Temperature Ramps
We have tested different devices ramps with intensity and

color temperature variations. In this section, we focus on the

Figure 8. CIE-L* value during luminance transitions for 3 devices: Com-

parison of Increasing (250 lux to 1000 lux) and Decreasing (1000 lux to 250 lux)

transitions

Figure 9. CIE-L* value during a 30 lux to 10 lux luminance transition for 2

devices

white-balance ∆a∗b∗ behavior on two transitions, which are rep-
resentative of tested transitions:

Transition T1 15s ramp from Daylight to Daylight + Tungsten,
Transition T2 15s ramp from Tungsten to Horizon.

with

Daylight 1000lux, 6500K,
Tungsten 2000lux, 2800K,
Horizon 100lux, 2300K.

Figure 10 shows all different behaviors that have been ob-
served on transitions T1 and T2. All devices have a bigger re-
action to T2 than to T1. The OnePlus 6T and the Apple iPhone
XS Max fully compensate the ramp on transition T1. On transi-
tion T2, the OnePlus 6T compensates most of the ramp though
with more oscillations than on T1. On the other hand, the Apple
iPhone XS Max does not compensate the ramp and has a large
amplitude variation on transition T2. Large amplitude variations
is seen on the Apple iPhone 8 Plus on both transitions. We can
see that on both transitions the Sony Xperia 1 corrects the white
balance with a lag, which creates abrupt variations. These can be
perceived as oscillations.

These observations together with results of other tested de-
vices can be seen in terms on amplitude variation and oscillations
in Figure 11. Generally speaking devices have a bigger reaction
to the transition T2, both regarding amplitude variation and oscil-
lations.

Noise
Figure 12 shows the Temporal Noise Variance defined in

Equation 3 and the Temporal Chromaticity for the Huawei P20
at different luminance values. We can see that the temporal noise
increases when the luminance decreases, and that the noise chro-
maticity is significantly lower in bright light.

In Figure 13 the intensity of each pixel is proportional to
the logarithm of the temporal noise variance of L∗ on a 18% re-
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Figure 10. ∆a∗b∗ value on ColorChecker gray patches during transitions T1

(blue curve) and T2 (green curve).

Amplitude Oscillations
T1 T2 T1 T2

Apple iPhone 8Plus 8.8 21.1 0.6 0.8
Apple iPhone XS Max 3.1 15.1 0.8 1.2
Google Pixel 3 1.8 4.4 0.5 0.5
Honor View 10 6.9 14.0 0.5 1.2
Huawei P20 4.7 17.1 0.8 1.4
Nokia N8 3.5 13.0 0.8 1.6
OnePlus 6T 0.7 4.2 0.4 0.7
Samsung Galaxy A8 4.6 13.6 0.5 0.9
Samsung Galaxy J5 3.3 9.4 0.5 1.0
Galaxy S10 Plus 17.6 10.0 0.7 0.9
Sony Xperia 1 5.3 13.7 2.0 2.2
Sony Xperia L2 1.3 9.6 1.1 1.2
Vivo NEX 3.1 10.7 0.6 1.0
Xiaomi Mi 9 10.5 13.2 0.8 1.4

Figure 11. White-balance ∆a∗b∗ amplitude variation and oscillation on tran-

sitions T1 and T2 for different devices.

Figure 12. Temporal noise per lighting condition for the Huawei P20

Figure 13. Luminance noise for each pixel of a 18% gray patch for Huawei

P20 at 1,100,and1000 lux

Figure 14. Color noise for each pixel of a 18% gray patch for Huawei P20

at 1,100,and1000 lux

flectance patch at 1,100,and1000lux. It illustrates the observa-
tion we made above that the temporal noise is higher in low-light.
We can also observe temporal artifacts. First we can see there is
less temporal noise on the grid where the deblocking filter [9] has
been applied by the video decoder. We can also see that at 1 lux
some pixels are very bright, which means they are very sensitive
to light and vary a lot during time. In Figure 14, the color satura-
tion of each pixel is proportional to the logarithm of the temporal
variance of a∗ and b∗ for the same patch and the same lighting
conditions as in Figure 13. We can see that the noise chromaticity
increases when the luminance decreases.

The Temporal chromaticity in Figure 12 is the color noise
ratio in the total amount of noise, and the temporal noise variance
is the total noise on all channels. We can relate these to the images
in Figure 13 and Figure 14 as follows. At 1000lux, the image of
the luminance noise image is dark and the image of the color noise
is not saturated a lot, therefore both the temporal noise and the
temporal chromaticity are low. At 100lux, the luminance noise is
almost the same but the image of chroma noise is more saturated
than the ones at 1000lux. Therefore the temporal chromaticity is
larger than the one at 1000lux. At 1 lux we can see that both the
color noise and the luminance noise are larger than the ones in
brighter light. This is why the temporal noise is larger at 1 lux,
but the temporal chromaticity is the same at 1 lux and at 100lux.

Conclusion
This work has led to the development of a comprehensive

measurement environment with reproducible hardware, software,
testing protocol and technical reports generation. It has been
tested on many smartphones including high-end, mid-range and
entry-level devices. It allows to better understand the limitations
of the devices in terms of video quality. The technical reports
are used for consulting, which allows camera manufacturers to
improve video quality, and for publications on the DXOMARK
website. They provide objective measurements that allow con-
sumers and manufacturers to compare cameras.

Though the design of the metrics is not specific to smart-
phone video, it needs to be tested on other kinds of devices in
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future work, including DSLRs, automotive cameras, action cam-
eras. On DSLRs, we expect good noise performance due to larger
pixel pitches, but poor exposure and color behavior on light tran-
sitions, because DSLRs are not optimized for this purpose. For
automotive cameras, performance on light transitions is crucial
for the applications and it is important for manufacturers to be
able to test it.

More effort is needed to correlate these measurements with
perceptual analysis, despite the difficulty to perform perceptual
analysis on video.

Disclaimer
This work was conducted solely by DXOMARK employees.

Former employees listed as co-authors only contributed while
working at DXOMARK/DxOLabs.
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