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Abstract

A virtual reality (VR) driving simulation platform has been
built for use in addressing multiple research interests. This plat-
form is a VR 3D engine (Unity ©) that provides an immersive
driving experience viewed in an HTC Vive © head-mounted dis-
play (HMD). To test this platform, we designed a virtual driving
scenario based on a real tunnel used by Tornros to perform on-
road tests [1] . Data from the platform, including driving speed
and lateral lane position, was compared the published on-road
tests. The correspondence between the driving simulation and on-
road tests is assessed to demonstrate the ability of our platform as
a research tool. In addition, the drivers’ eye movement data, such
as 3D gaze point of regard (POR), will be collected during the
test with an Tobii © eye-tracker integrated in the HMD. The data
set will be analyzed offline and examined for correlations with
driving behaviors in future study.

Introduction

Autonomous driving is rapidly expanding in the auto indus-
try. The advantages brought by self-driving vehicles may posi-
tively impact the daily life of humans by relieving traffic jams,
reducing travel time, and preventing accidents [2]. The cur-
rent driverless approaches are based on machine learning from
a variety of sensors. Although these approaches are the great
deal toward achieving the ultimate goal, a couple of potential
issues exist. First, the autonomous driving core, which com-
prises the environment-perceiving sensors and machine-learning
algorithms, require actual driving mileage for training purposes.
However, on-road tests present public safety concerns [3]. Sec-
ond, data collected by sensors is not as efficient as an alert hu-
man driver because sensor arrays on autonomous vehicles tend to
sample large portions of the visual field uniformly for processing
[4]. In contrast, humans have high acuity vision only in a small,
central region of vision known as the fovea. Despite that con-
straint, intelligent gaze behavior supports safe driving over long
distances. So, perhaps autonomous vehicles could be more ef-
ficient in their information processing if they leveraged human-
inspired algorithms to determine where and when to sample the
visual environment. Therefore, we believe a driving simulation
platform balances the need to collect data on human drivers with
the ethical concerns inherent in collecting data during real-world
driving [S][6][7][8][9]. Integration of an eye-tracker in the plat-
form will allow exploration of the interaction between human per-
ception and autonomous driving.

Driving simulation software has existed in the market for
some time. In our previous study of driving simulation, we uti-
lized commercial driving simulation software [10]. But, we found
that limitations in commercial simulation software applications
can be significant. First, the license of software is typically based
on an annual subscription mode. The subscription cost can be
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high, making it unaffordable for many researchers. Second, com-
patible driving hardware is constrained by the commercial soft-
ware. Using the recommended hardware may be required to en-
sure compatibility, but this sometimes leads to a situation in which
the hardware lacks functionality that is critical for a particular
study. Third, many commercial software products can not be cus-
tomized for a specific research need. The result is that researchers
are often constrained by the existing resources. Finally, the latest
technologies, such as VR and eye-tracking, are not supported by
most of the commercial simulation software [11].

VR is an important technology because it can offer an im-
mersive and more realistic experience that helps to simulate the
actual driving experience in the laboratory [12]. VR also avoids
the calibration issue that exists screen-based simulators caused by
the layout of displays, which can lead to motion sickness in par-
ticipants [10].

Motivated by these requirements and opportunities, our goal
was to prototype a driving simulator platform with the following
benefits: 1) low-cost and affordable software and hardware envi-
ronment; 2) modular and customizable structure; and 3) VR and
eye-tracking support. To fulfill these goals, we developed an im-
mersive VR driving simulation platform. “Immersion” and “re-
alism” are hard to quantify. We define realism by the degree to
which the simulation is realistic enough to support natural driving
behavior. To test the realism of the simulator, we compare the be-
havior of drivers on a closed real-world driving track, as reported
by Tornros [1], with the behavior of drivers in our driving simu-
lator as they navigate a 3D model approximation of the roadway
used in the published experiment. Dependent variables include
speed control and lateral lane position. In addition, eye movement
data, including 3D gaze point of regard (POR), of human drivers
during the test is collected by the integrated eye-tracker. These
PORs will form the data set of fixation points that will allow ex-
ploration of how fixation is assisting human drivers in maintaining
speed and lateral position in the future.

This paper is structured by the following sections: Exper-
imental Methods, which describes the instrument, experimental
scene, participants, and experimental procedure; Results, which
provides the data analysis and discussion; Conclusion and Future
Work, which summarizes the study.

Experimental Methods
Instrument

The VR platform is mainly constituted by the components
illustrated in Figure 1: 1) Unity 3D engine software [13], 2) HTC
Vive Pro Eye with integrated Tobii Eye Tracking © [14], and 3)
Logitech G920 steering wheel and pedals [15]. The Unity 3D en-
gine is free for personal and academic use to create virtual scenes.
Its system structure not only has powerful built-in functionality
but also supports modular plugins or APIs. Unity considers each

039-1



plugin as an individual functionality carrier, making it highly flex-
ible and accessible to achieve the research goals via plugins. The
Unity Store is equipped with thousands of free and price-friendly
plugins that are available to be integrated into the platform [13].
The HTC Vive Head Mounted Display (HMD) displays the VR
content and coordinates with the Tobii eye tracker. This HMD is
1440 by 1600 pixels per eye. It has 110 degrees field of view and
90 Hz refresh rate. The integrated Tobii eye tracker provides 3D
PORs that can be used to identify eye events such as fixations,
saccades, and VOR. More specifically, this eye-tracker outputs
gaze data with 120Hz frequency and 0.5 to 1.1 degree of accu-
racy [14]. The Logitech G920 steering system includes a steering
wheel with 540 degrees lock-to-lock, and force-adjustable brak-
ing and gas pedals. In addition, our platform adopted a gaming
PC with the configuration of an i7 3.5GHz CPU, a Nvidia GTX
980 video card, a 32GB ram, and a 1TB SSD. Although this video
card is entry-level and inexpensive, it is able to provide sufficient
graphic rendering abilities. The total cost of the simulation plat-
form is ~ $4,000. To many researchers, it is a budget friendly
platform that is able to perform multiple driving tasks based on
customized research interests.

Experimental Scene

The experimental scene in the demonstration test is a vir-
tual recreation of the Ekebergtunnelen tunnel in Oslo, Norway.
The virtual tunnel was based on data outlined in Tornros’s on-
road tests and in measurements derived from Google Street View
images of the tunnel [1]. The construction material and detailed
design of the tunnel are replicated as closely as possible. Fig-
ure 2 reflects the comparison between the virtual tunnel created
in Unity and the real tunnel from the top view. The virtual tunnel
was modeled in four sections, a straight section, a transition sec-
tion, a long curve and an exit curve. The straight section is 600
meter (m) long. It is divided into left, middle, and right lanes with
widths of 3.25m, 3.5m, and 3.25m, respectively. A short transi-
tion section branches the straight route into a long curve and an
exit curve. The 550m long curve includes two lanes that are con-

(b)

Figure 1: The platform composition: (a) Unity 3D engine [13];
(b) HTC Vive Pro Eye 3D HMD [14]; (c) Logitech G920 driving
hardware [15].
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nected with the left and middle straight lanes. These two lanes
are both widened to 3.65m. The exit curve is continued from the
right lane, which is widened to 3.75m. The posted speed limit in
the tunnel is 70 km/h, or 43 mph. The scene details in the tunnel
are depicted in Figure 3.

Real Tunnel

Figure 2: The comparison between the simulated tunnel (top) and
the real tunnel (bottom) in top view.

Participants

Tornros’s on-road test included twenty participants [1]. We
invited the same number of participants (10 M and 10 F) to join
our simulation test. All participants were required to hold a valid
US driver-license. In addition, we sent a questionnaire to all of the
participants to collect information on their annual mileage driven,
and any driving accidents. The questionnaire indicates: 1) the
median age of participants is 28 (23 - 55); 2) The median annual-
mileage is 6000 miles with the range from 2000 to 24000 miles;
3) 18 out of 20 participant have never been involved in a driving

Figure 3: The inside look in the simulated tunnel: (a) the
straight section of left, middle, and right lanes with widths of
3.25m, 3.5m, and 3.25m correspondingly; (b) the transition sec-
tion branches the straight route into a long curve and an exit
curve; (c) the long curve lanes connected with left and middle
lane, which are both 3.65m; (d) the 3.75m wide exit curve that
continues from the right lane.
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accident and the remaining participants have 3 driving accidents
in total.

Experiment Procedure

participants were required to wear the HMD and sit in the
designated seat to execute the driving simulation task. Before per-
forming this task, the HMD setup was customized to the partici-
pants, including headset adjustments and eye-tracking calibration.
The five point eye-tracking calibration includes one center and
four corners of the virtual scene. Participants are required to fo-
cus on the corresponding calibration point when it is highlighted.
Once the setup was completed, participants were introduced to the
experimental content and requirements. Figure 4 shows the first
author wearing the HMD in the driving simulator.

The experiment included practice and test sessions. In both
sessions, participants were required to take one trial drive in each
lane along the forward direction, indicated in Figure 4(a). Once
these trials were completed, participants were required to repeat
each trial in the reverse direction, as shown in Figure 4(b). To
avoid confusion about lanes, we use the same left, middle, and
right order in the forward direction to represent the lanes in the
reverse direction. During driving, participants were instructed to
maintain vehicle position within the lane. Switching lanes was
not allowed. Participants were also asked to keep their driving
speed to the posted speed limit. Participants were aware of the
speed in US and international units. Before beginning the test
session, participants completed a practice session. This is to help

Figure 4: The first author wearing the HMD in the driving simu-
lator.
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participants be familiar with the instrument control and driving
scene. Tornros’ on-road test also included similar practice trials
for the same purpose [1]. Furthermore, in order to eliminate the
effect of the lane as a factor, participants started in different lanes
for each direction in the test. During the whole tests, vehicle on-
time position, speed, and 3D gaze PORs were recorded for the
further analysis.

Results

The primary dependent factors in the scene are lateral lane
position and speed. The lateral position was measured between
the side-line center to the vehicle center. The measurement of
the lateral position is taken in the straight section, the right curve,
and the left curve individually. In each measurement, lateral po-
sition is only collected for the same width lanes. In other words,
the vehicle position in the left and right lanes is assessed for the
straight section while that in the left and middle lanes is analyzed
for the curves. The comparison between real and virtual perfor-
mance was calculated as the difference between the average lat-
eral lane position in each section for the two conditions. The av-
erage speed was computed for the entire driving route including
the forward and reverse directions and the final comparison was
performed using the average speed between the virtual and actual
driving conditions. It should be noted that Toérnros did not in-
clude the data populations for speed and lateral position analysis.
Therefore, this paper qualitatively compares the performance of
the simulation platform with the on-road test.

Average Speed

The average speed comparison is shown in Figure 6. In the
figure, red represents the simulation outcome and cyan the on-
road results. This color code holds true for the rest of compar-
ison figures. On-road test data reflected that the average speed
in left and middle lanes similarly tends to be faster than that in
the right lane, though the difference is not statistically significant.
Our simulated data also reflected this trend, which indicates the
good relative validity that lane factor is effective for both on-road
and simulation tests, implying that drivers in the real and simu-
lated environments relied on visual references to judge the current
speed in addition to the speedometer. Considering looking at ob-

Driving Direction

_

Driving Direction "‘-'.L.
!
\
(b)

Figure 5: The driving direction diagram in the experiment: (a) the
forward driving direction; (b) the reverse driving direction.
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Figure 6: Average speed comparison between driving simulation
and on-road tests in left, middle, and right lanes. Red represents
the simulated data and cyan exhibits the on-road data.
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Figure 7: Average lateral position in the straight section between
driving simulation and on-road tests in left (tunnel wall to the left),
and right (tunnel wall to the right) lanes. Red represents the sim-
ulated data and cyan exhibits the on-road data.

jects in the left side is very natural behavior in a left driving coun-
try. Drivers are able to have a good reference to avoid running
into the wall by just looking at the left wall when driving in the
left and middle lane. When drivers drive in the right lane, looking
at the right wall is probably not a typical habit. Therefore, drivers
may be more cautious and drive more slowly to avoid a potential
collision with the wall.

Average Lateral Position in the Straight Section
The comparison of the average lateral position in the straight
section is presented in Figure 7. In order not to confuse the defi-
nition of the left or right lane in each direction, we use tunnel wall
to left to represent the nearest wall on the left side of the driver.
Similarly, tunnel wall to right means that the nearest wall is on
the right side of driver. Based on the data depicted in the figure,
drivers positioned the car closer to the wall in the left lane for the
simulation test. This may be because the virtual wall did not im-
pact drivers as strongly as the physical wall. As for the right lane,
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the average lateral position is roughly the same in the simulated
and the on-road tests. Overall, the average lateral position in the
straight section is very close to the findings of the on-road test.

Average Lateral Position in Curve Sections

Average lateral position in the curve sections are divided
into right and left curve section. Right curve means taking the
curve along the forward direction while left curve means taking
the curve along the reverse direction. Figure 8 shows the average
lateral position in the right curve. Comparing with the on-road
test outcome, drivers positioned the vehicle much closer to the
left wall and further away from the right wall. The straight sec-
tion results indicate that it is reasonable for the vehicle to be close
to the left wall. However, we did not expect the significant reduc-
tion of the lateral position between the vehicle and the left wall in
the left lane. It is also unexpected that the vehicle was far from the
right wall. This difference from the on-road results led us to take
a closer look at the curve in the road. After inspection, we found
out that the transition point actually has unnatural curvature, high-
lighted in the red circle in Figure 9, that shifts both lanes toward
the left. Therefore, the variation seen in Figure 8 may be due to
this transition section, a difference between the real world and our
simulation.

Another clue to support our assumption is the average lateral
position in the left curve, which is shown in Figure 10. Without
the affection of that difference in the left curve, drivers positioned
the vehicle closer to the wall in the left lane of the simulation
test. This fact is matching the observation in the straight section.
Figure 11 illustrates the left curve scene in details.

Conclusion and Future Work

A VR driving simulation platform has been built for use in
addressing multiple research interests. In order to demonstrate the
realism of our platform, we quantify the degree to which the sim-
ulation is realistic enough to support natural driving behavior. To
be specific, we designed a virtual driving scenario based on a real
tunnel used by Tornros to perform on-road tests [1]. The collected
data from the platform driving simulation, such as driving speed
and vehicle lateral position in the lane, showed a similarity with
those in on-road tests qualitatively, which suggests the use of our
platform as a research tool may be possible.

In the future, we plan to examine the collected eye-tracking
data, particularly the 3D PORs, for possible correlations between
gaze behavior and driving behaviors. The specific processing in-
cludes eye-movement classification (fixation, saccade, and VOR),
categories of objects being viewed in driving, and fixation corre-
lation with speed, and lateral position control.
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