hnps://oloi.orgg 0.2352/1SSN.2470-1173.2020.8.IMAWM-309

2020, Society for Imaging Science and Technology

Real-time Whiteboard Coding on Mobile Devices

Xunyu Pan, Colin Crowe, Toby Myers, and Emily Jetton

Department of Computer Science and Information Technologies, Frostburg State University, Frostburg, Maryland, USA

Abstract

Mobile devices typically support input from virtual key-
boards or pen-based technologies, allowing handwriting to be a
potentially viable text input solution for programming on touch-
screen devices. The major problem, however, is that handwriting
recognition systems are built to take advantage of the rules of nat-
ural languages rather than programming languages. In addition,
mobile devices are also inherently restricted by the limitation of
screen size and the inconvenient use of a virtual keyboard. In this
work, we create a novel handwriting-to-code transformation sys-
tem on a mobile platform to recognize and analyze source code
written directly on a whiteboard or a piece of paper. First, the
system recognizes and further compiles the handwritten source
code into an executable program. Second, a friendly graphical
user interface (GUI) is provided to visualize how manipulating
different sections of code impacts the program output. Finally, the
coding system supports an automatic error detection and correc-
tion mechanism to help address the common syntax and spelling
errors during the process of whiteboard coding. The mobile ap-
plication provides a flexible and user-friendly solution for real-
time handwriting-based programming for learners under various
environments where the keyboard or touchscreen input is not pre-
Serred.

Introduction

The fast-growing information technology industry in the
United States is expected to outpace the overall economy’s growth
in the coming years. Meanwhile, the IT job market powered by
advances in emerging technologies such as Al, big data, cloud
computing, cybersecurity, blockchain, and machine learning, cre-
ates tens of thousands of jobs each month across the country. To-
day, college students and working professionals have been learn-
ing to improve their programming skills to fit for those high pay-
ing IT careers. Moreover, many U.S. states have ramped up ef-
forts to increase K-12 education on computer science subjects,
including computer programming. Thanks to the rapid advance of
mobile computing technologies, high quality and low-cost mobile
devices such as laptops and smartphones are increasingly used in
everyday activities, making the study of programming extremely
convenient these days. Mobile devices typically support the in-
put from a virtual keyboard or a pen-based technology such as a
stylus, allowing handwriting to be a potentially viable text input
solution for programming on a touchscreen, which is especially
convenient for children or adults who have no coding experience.

Many research projects on handwriting recognition with
touchscreen have been conducted recently. The major problem,
however, is that handwriting recognition systems are built to take
advantage of the rules of natural languages rather than program-
ming languages. In addition, mobile devices are also inherently

IS&T Infernational Symposium on Electronic Imaging 2020
Imaging and Multimedia Analytics in a VWeb and Mobile World

restricted by the limitation of screen size and the inconvenient use
of a virtual keyboard.

To address these issues, we explore the use of handwriting
input for human-computer interaction and address a particular
problem of the recognition of source code written directly on a
whiteboard or a piece of paper. To this end, we create a novel
handwriting-to-code transformation system on a mobile platform
to recognize and analyze handwritten code. Unlike most hand-
written code recognition systems reading from the touchscreen
device, the ultimate goal of the proposed system is to support
whiteboard coding as a means of programming on mobile devices.
First, the system recognizes and further compiles the handwritten
Java code into an executable program in real-time using Optical
Character Recognition (OCR) technologies. A two-stage diagnos-
tic process is conducted to enhance the source code recognition
performance. Second, a friendly graphical user interface (GUI) is
provided to visualize how manipulating different sections of code
impacts the program output and hence demonstrates a more inter-
active method of programming learning. Finally, given the high
possibility of syntax errors against grammar rules for handwrit-
ten code, the coding transformation system supports an automatic
error suggestion and correction mechanism to help address the
common syntax and spelling errors that occurred during the pro-
cess of whiteboard coding.

We evaluate the performance of the proposed handwritten
code processing system based on the Character Recognition Rate
and Error Correction Number over a dataset of Java source code
samples collected from participating students. Experimental re-
sults demonstrate that the visualization of code transformation
and the mechanism of error correction significantly enhance the
user experience with mobile programming. The presented mo-
bile application provides a flexible and user-friendly solution to
the real-time whiteboard handwriting-to-code transformation un-
der various environments where keyboard or touchscreen input is
not preferred.

Related Work

Writing source code into Integrated Development Environ-
ments (IDEs) is one of the major steps for software development.
However, keyboard input may not always fit in every situation.
Alternative methods for source code input have been intensively
studied over the years. Traditional approaches involve the Spo-
ken Programming based on specially designed programming lan-
guages [1, 2, 3] or some earlier proposals based on natural lan-
guages [4, 5]. However, the input from speech is not always an ap-
propriate solution, especially in various situations where the sur-
rounding environments are complicated or privacy is required [6].
Due to these constraints, Spoken Programming is implemented
more frequently to enhance the programming accessibility for de-

309-1



velopers with visual disabilities [7].

More recently, Handwriting Programming has attracted in-
creasing attention from both academia and industry. The task
for converting written or printed text into digital text is generally
called OCR for optical character recognition. OCR works better
with high-quality printed materials than with handwriting. Many
recent techniques [8, 9, 10] on source code recognition are imple-
mented using existing natural language handwriting recognition
engines with additional post-processing. However, these applica-
tions typically perform on touchscreen devices and do not support
automatic error correction on input source code.

Methods

Nowadays, high quality and low-cost mobile devices with
powerful integrated cameras such as laptops and smartphones are
increasingly used in everyday activities [11, 12], making the study
of programming extremely convenient for children and adults
who have no coding experience. Source code input from a vir-
tual keyboard or pen-based technology is restricted by the limita-
tion of screen size and the inconvenient use of a virtual keyboard.
Due to the fact that computer programs are written using standard
syntax with limited words, the performance of handwriting pro-
gramming can be greatly improved based on the highly formatted
input such as source code.

In this work, we introduce a novel handwriting program-
ming system implemented on a mobile platform to recognize and
analyze handwritten Java source code. Different from existing
handwritten code recognition systems that read directly from the
touchscreen, the proposed system is specifically designed to trans-
form a piece of source code written on whiteboard or paper into
an executable software program using mobile devices. The appli-
cation also supports an automatic error suggestion and correction
mechanism to help address the common syntax and spelling errors
when users write source code. The purpose of the system is to al-
low users to quickly convert their program design into viewable
execution results.

When a user selects to transform handwritten source code
into an executable program, he or she points a mobile device at
the source code on the whiteboard or paper and interacts with the
mobile system through a control panel as shown in Figure 1. The
integrated camera captures a rectangle region around the source
code and creates a bitmap image from the camera feed. The newly
generated image and its related information are saved locally and
further processed through a set of functional components of the
proposed system.

The handwriting-to-code transformation system consists of
four major functional components: (a). A Handwriting Recog-
nition module to convert handwritten source code into a string
of readable characters called OCR Text. The system communi-
cates with Google’s Cloud Vision API OCR service to retrieve
the text information from the captured handwriting image; (b).
A Text Modification module to replace any custom abbreviations
of the retrieved OCR Text. Depending on user customization,
the system can define various abbreviations for frequently used
programming keywords; (c). An Error Correction module to fix
common syntax and spelling errors in the source code written by
inexperienced learners. The final version of the input text af-
ter this process is referred to as Revised Text; (d). A Code Ex-
ecution module to compile and execute the Revised Text-based

309-2

1
2
3
/c..m . "
e \5

Figure 1. The Graphical User Interface (GUI) of the proposed handwriting-
to-code transformation system: (1) A live camera preview of a piece of pa-
per with handwritten source code, (2) A view box to display the recognized
source code, (3) A view box to display the execution results of the recognized
code, (4) A button allowing the user to capture and process an image of the
paper with handwritten source code, and (5) A button to exit the application.

source code file to output program results. The system GUI helps
to display both the recognized source code and the execution re-
sults. Shown in Figure 2 is the high-level logic overview of the
described handwriting-to-code transformation system.

Handwriting Recognition

Figure 1 demonstrates the main GUI of the proposed system.
Users are allowed to use this interface to view the target piece of
paper/whiteboard with handwritten source code, the recognized
source code represented by the Revised Text, and the program ex-
ecution results. Using an external Webcam API, the GUI creates
camera-view objects that allow the application to initialize and
display live camera feed. The main interface has two notable op-
tions: Capture and Quit. The Capture option creates a new sample
image object. This object holds numerous details about the hand-
writing image taken from the live camera feed. The Quit option,
on the other hand, performs cleanup work to remove temporary
files that were created during the program’s previous executions
to prevent overlap errors on future tasks.

The captured handwriting image is saved locally and then
transmitted to Google’s Cloud Vision API OCR Service. This ser-
vice loads the image, searching for blocks of handwritten text that
it can recognize. Upon recognition of dense text, the OCR ser-
vice examines the text blocks to parse individual characters, con-
structing the initial result containing one string of all the parsed
characters. We refer to this string as OCR Text. The recognized
OCR Text results are reliable on typed text and precise for uni-
form proportions, signs, and other digitally-manufactured textural
contents. However, the recognition results are sometimes inaccu-
rate for the average user’s handwriting due to varying degrees of
legibility, readability, and flavor. Hence, additional enhancement
processing is required to obtain more accurate translation between
handwritten code and OCR Text.

IS&T Infernational Symposium on Electronic Imaging 2020
Imaging and Multimedia Analytics in a VWeb and Mobile World



2

Google Cloud

Captured
Image

Recognized
OCR Text

|

Handwriting
Recognition -_—
OCR

Text

Source Code Captured Image of

Text — Error — Code
Modification Correction Execution

Revised
Text

Source Code

Handwritten on
Lined Paper

Handwriting Code
Shown in the GUI

Execution Results

Major Functional
Components of the
Proposed System

Figure 2. The overview of the proposed handwriting-to-code transformation system: A user first writes source code on a paper/whiteboard.
The integrated camera then captures an image of the target paper/whiteboard with handwritten code. The captured image is sent to Google’s
Cloud Vision APl OCR service to retrieve recognized OCR Text. The system then performs a two-stage text diagnostic process consisting
of Text Modification stage and Error Correction stage to generate the final Revised Text. The Revised Text is used to create a source code
file which can be compiled and executed to output results displayed to the user. In addition, the user can view captured image, recognized

code, and execution results all together in system GUI.

Text Modification

Upon retrieval of the OCR Text, the proposed system per-
forms an additional diagnostic process to clean up the OCR Text
and infer the correct input from the user. This process involves
two stages. The first one is called Text Modification. In this stage,
the program will parse the OCR Text and fix any user-defined
abbreviations that have been customized in the system. For ex-
ample, “psvm” is short for “public static void main” and “EOL”
signifies an “End of Line”. The Text Modification step has no
intention to handle innate errors which could prevent the input
source code from successful compilation, but the employment of
programming keywords integrated into the system provides more
reliable results.

Error Correction

The second stage is called Error Correction. In this stage,
the developed program scans the input lines of modified text ob-
tained from the first stage and attempts to recognize what Java
command is supposed to be occurring based on unique details.
For example, “public class main E” should be converted into
“public class main {”. The proposed system can identify and cor-
rect syntax errors such as capitalization errors and incorrect class
names, as well as common spelling errors. Misspelled abbrevia-
tions from the first stage can be fixed as well. The final version of
this text is referred to as Revised Text.

Now that the OCR Text has been converted to Revised Text,
the assumption becomes that it should be prepared to endure the
Java compilation process and run correctly. A new file is created
for the Revised Text called “OCR.java”. In the current system, it
is entirely possible that this newly generated file is not properly
compiled for some reason.

Code Execution

A new Java source code (.java) file is created using the Re-
vised Text. The default Java compiler integrated in the system
builds the source code and executes the corresponding program.
Both the Revised Text and compilation result are stored in the sys-

IS&T Infernational Symposium on Electronic Imaging 2020
Imaging and Multimedia Analytics in a VWeb and Mobile World

tem. At this point, the entire handwriting-to-code transformation
process is completed. The GUI now takes control and displays
the Revised Text and compilation fields on two panes of the front-
end. If the compilation was successful, the execution result is
displayed at the bottom of the screen. Otherwise, a simple error
message is displayed. The GUI remains in a live state, allowing
the user to capture the other source code sample as desired.

Results

The handwriting-to-code transformation system was written
in Java language with the support of an external Camera API [13].
The proposed system was developed on Windows 10(X64) oper-
ating system. The standard Java JDK 8 is used, and all program-
ming is performed within the IntelliJ Idea Development Environ-
ment. The system is run on a Dell XPS 15 2-in-1 laptop which has
an Intel Core 15-8305G processor running at 2.8 GHz with 8GB
of memory.

We evaluate the system performance from two perspectives:
Character Recognition Rate and Error Correction Number. The
Character Recognition Rate measures the average rate of the char-
acters successfully recognized in the written source code. The Er-
ror Correction Number measures the average number of syntax
and spelling errors successfully identified and corrected.

With default system settings, we tested the performance of
our system on successful code recognition and automatic error
correction in different source code input scenarios. Character
Recognition Rate (CRR) and Error Correction Number (ECN)
highly relies on the specific type of paper and the local lighting
conditions. Testing samples used for our experiments were col-
lected in 4 indoor scenarios under various local lighting condi-
tions: (a). Typed Paper: the source code is typed on white paper;
(b). Typed Paper (varied text fonts): the source code is typed with
the combination of varied text fonts on white paper; (c). Lined
Paper: the source code is handwritten on lined paper, and (d).
Whiteboard: the source code is handwritten on whiteboard. For
testing purposes, we collected 100 samples of source code hand-
written or typed by high school students and amateur program-

309-3



(@)

Py
Pub\ic class OCR T EOL
?SVM (S*Y‘D 0] qvas) { EoL
R ' ‘\'( , loWorld"), EoL

(d)

Figure 3. Two samples of source code in our testing collection: (a)
A sample of source code handwritten on a piece of lined paper, and
(b) A sample of source code handwritten on a whiteboard.

mers in 4 indoor scenarios. Figure 3 shows two samples of source
code in our collection, which are handwritten on a piece of lined
paper and on a whiteboard, respectively.

Experimental results shown in Table 1 demonstrate that the
proposed system achieves very high CRR values for all indoor
writing scenarios. As a comparison, the two scenarios for typed
code have the highest CRR values since the typed characters are
easier for OCR recognition. Meanwhile, the other two scenarios
for handwritten code also obtain satisfactory CRR values. These
results show that the proposed system is useful in recognition of
both typed and handwritten source code in various indoor scenar-
i0s. To address the syntax and spelling errors introduced by both
the users and the OCR service, we further tested the system per-
formance on error detection and correction. As shown in Table 1,
the system can detect and correct the errors for all writing scenar-
ios. Again, more errors are corrected in the handwritten scenarios
than those corrected in the typed scenarios. This is expected, as
more errors can be introduced during the process of OCR recog-
nition for the handwritten scenarios.

Conclusions

Today, learning to code on mobile platforms is becoming
more popular for younger generations. Mobile devices, however,
are inherently restricted by the limitation of screen size and the
inconvenient use of virtual keyboards. Alternative source code
input methods such as spoken programming are not appropriate
for all situations. In this work, we introduce an effective applica-
tion developed on a mobile platform aiming to support real-time
whiteboard coding. The proposed application first captures an im-

3094

age of handwriting source code using an integrated camera. The
mobile system then delivers the image to a remote OCR cloud ser-
vice and retrieves a string of identified characters. To enhance the
recognition performance, a two-stage diagnostic process is con-
ducted on the retrieved text string to remove various errors: (a).
Text Modification stage to replace any custom abbreviations and
(b). Error Correction stage to fix common syntax and spelling er-
rors. Finally, the Revised Text is used to create a source code file
which can be further compiled and executed to output program
results. The described application is portable and user-friendly
for young students and working professionals to improve their
programming skills. Experimental results have demonstrated that
the proposed system is helpful to recognize, correct, and execute
source code written on paper or whiteboard.

Though having achieved promising performance in con-
verting handwritten source code into executable programs, our
method relies on the recognition performance of the remote OCR
service. Some potential extensions are achievable for the pro-
posed system in the near future: (a). Create an integrated OCR
module which can be trained using handwriting samples over time
to achieve better recognition results; (b). Build a local database
storing past syntax and spelling errors for future error detection
cases; (c). Extend the application to smartphones and other mo-
bile platforms to serve more users. The ultimate goal of this work
is to demonstrate the feasibility and the potential for converting
any mobile device into a flexible tool that can support real-time
and reliable whiteboard coding and execution.

Acknowledgments

This work was partially supported by the Frostburg State
University Provost’s Experiential Learning Enhancement Fund
Program (PELEF) and by a FSU Foundation Boxley Faculty Re-
search Award (# 36046).

Special thanks to Kent County High School of Maryland and
Beth H. Jelinek, M.D., for assistance with the collection of hand-
writing samples.

References
[1] B. M. Gordon, “Developing a language for spoken program-
ming,” in Proceedings of the Twenty-Fifth AAAI Conference

on Artificial Intelligence, San Francisco, CA, 2011.

A. Désilets, D. C. Fox, and S. Norton, “Voicecode: An inno-

vative speech interface for programming-by-voice,” in ACM

CHI 06 Extended Abstracts on Human Factors in Comput-

ing Systems, Montréal, Canada, 2006.

A. Begel and S. L. Graham, “Spoken programs,” in /IEEE

Symposium on Visual Languages and Human-Centric Com-

puting, Dallas, TX, 2005.

[4] S. C. Arnold, L. Mark, and J. Goldthwaite, “Programming
by voice, vocalprogramming,” in Proceedings of the Fourth
International ACM Conference on Assistive Technologies,
Arlington, VA, 2000.

[5] D. Price, E. Rilofff, J. Zachary, and B. Harvey, “Naturaljava:
A natural language interface for programming in java,” in
Proceedings of the 5th International Conference on Intelli-
gent User Interfaces, New Orleans, LA, 2000.

[6] X.Pan, X. Zhang, and S. Lyu, “Detecting splicing in digital
audios using local noise level estimation,” in /EEE Interna-

[2

—

3

—

IS&T International Symposium on Electronic Imaging 2020
Imaging and Multimedia Analyfics in a Web and Mobile World



Table 1. Comparison of the Character Recognition Rate (in percentage) and Error Correction Number of the proposed system in
four indoor coding scenarios under various local lighting conditions.

Character Recognition Rate (CRR) | Error Correction Number (ECN)
Typed Paper 96.91 1.00
Typed Paper (varied text fonts) 94.30 1.25
Lined Paper 88.86 2.13
Whiteboard 89.37 345

tional Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), Kyoto, Japan, 2012.

[7] V.Potluri, P. Vaithilingam, S. Iyengar, Y. Vidya, M. Swami-
nathan, and G. Srinivasa, “Codetalk: Improving program-
ming environment accessibility for visually impaired devel-
opers,” in Proceedings of the ACM CHI 18 Conference on
Human Factors in Computing Systems, Montréal, Canada,
2018.

[8] MyScript, “Myscript programs,” http://www.myscript.com.

[9] Q. Zhi and R. Metoyer, “Recognizing handwritten source
code,” in Proceedings of the 43rd Graphics Interface Con-
ference, Edmonton, Canada, 2017.

[10] M. Kherallah, N. Tagougui, A. M. Alimi, H. E. Abed, and
V. Margner, “Online arabic handwriting recognition compe-
tition,” in International Conference on Document Analysis
and Recognition, Beijing, China, 2011.

[11] X. Pan and C. Gill, “Multimedia instant messaging with
real-time attribute-based encryption,” in IS&T Symposium
on Electronic Imaging (IS&T-EI), Burlingame, CA, 2017.

[12] X. Pan and S. Lyu, “Region duplication detection using im-
age feature matching,” IEEE Transactions on Information
Forensics and Security (TIFS), vol. 5, no. 4, pp. 857-867,
2010.

[13] B. Firyn, “Webcam capture api,” https://github.com.

Author Biography

Xunyu Pan received the B.S. degree in Computer Science
from Nanjing University, China, in 2000, and the M.S. degree
in Artificial Intelligence from the University of Georgia in 2004.
He received the Ph.D. degree in Computer Science from the State
University of New York at Albany (SUNY Albany) in 2011. From
2000 to 2002, he was an instructor with Department of Com-
puter Science and Technology, Nanjing University, China. In
August 2012, he joined the faculty of Frostburg State University
(FSU), Maryland, where he is currently an Associate Professor
of Computer Science and the Director of Laboratory for Multi-
media Communications and Security. Dr. Pan is the recipient of
2011~2012 SUNY Albany Distinguished Dissertation Award and
2016 FSU Faculty Achievement Award in Teaching. His publica-
tions span peer-reviewed conferences, journals, and book chap-
ters in the research fields of multimedia security, image analysis,
medical imaging, communication networks, computer vision and
machine learning. He is a member of the ACM, IEEE, and SPIE.
(Corresponding Author: xpan@frostburg.edu)

Colin Crowe is a senior at Frostburg State University cur-
rently pursuing a B.S. degree in Computer Science and minor in
Secure Computing and Information Assurance, as well as plan-
ning to further his education with FSUs Computer Science Mas-

IS&T Infernational Symposium on Electronic Imaging 2020
Imaging and Multimedia Analytics in a VWeb and Mobile World

ters Program. Colin participates in many extracurricular activi-
ties, including participating in the Phi Kappa Phi honor society
and serving as Vice President of the FSU Computer Club. In ad-
dition, he works as a Computer Science Tutor and is an intern at
a local Web-Development company. He has accepted a position
as a full-time Software Engineer post-graduation.

Toby Myers is a veteran of the U.S. Army. In 2018, he re-
ceived an A.S. degree in Computer Science from Allegany College
of Maryland in Cumberland, MD. Toby is currently pursuing a
B.S. degree in Computer Science at Frostburg State University in
Frostburg, MD. He is a member of Upsilon Pi Epsilon Computer
Honor Society and Salute Veterans National Honor Society.

Emily Jetton is a senior in the Computer Science program at
Frostburg State University. After graduating, she has accepted a
position working in the Johns Hopkins Applied Physics Lab while
pursuing a Masters Degree through the Johns Hopkins Profes-
sionals Program. She is a member of FSUs Computer Club, a
leading officer in the Women in Computer Science Club and is a
member of the Phi Kappa Phi Honor Society. Her work experi-
ence includes working as a Computer Science and Statistics Tutor
as well as an intern for the United States Department of Justice.

309-5



JOIN US AT THE NEXT El!

Electronic Imaging

IS&T International Symposium on
SCIENCE AND TECHNOLOGY

Imaging across applications . . . Where industry and academia meet!

e SHORT COURSES * EXHIBITS « DEMONSTRATION SESSION ¢ PLENARY TALKS
e INTERACTIVE PAPER SESSION ¢ SPECIAL EVENTS ¢ TECHNICAL SESSIONS -

www.electronicimaging.org

imaging.org




