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Abstract

We introduce a new image dataset for object detection and
6D pose estimation, named Extra FAT. The dataset consists of
825K photorealistic RGB images with annotations of ground-
truth location and rotation for both the virtual camera and the
objects. A registered pixel-level object segmentation mask is also
provided for object detection and segmentation tasks. The dataset
includes 110 different 3D object models. The object models were
rendered in five scenes with diverse illumination, reflection, and
occlusion conditions. ||

Introduction

Pose estimation of surrounding objects serves as the basis of
various computer vision applications such as virtual reality (VR),
augmented reality (AR), robotic manipulation, autonomous navi-
gation, and human-machine interaction. For example, to insert a
virtual object in an AR application, it should be accurately regis-
tered with the real world. In order to do so, the geometry, pose,
and shape of the objects and surfaces composing a scene need
to be inferred from the image, video and/or depth information.
For tasks such as autonomous navigation or robot manipulation,
the pose of the objects needs to be estimated in order to properly
move the robot or vehicle. In order to understand the geometry
and position of the objects composing a scene, object detection
and pose estimation techniques are required.

Traditionally, such methods have used RGB-D images in or-
der to infer the pose of the objects. The main drawback of such
an approach is that depth cameras are not widely available (e.g.
smartphones) and typically have low resolution and low frame
rate making it difficult to detect very small, thin, or fast-moving
objects. Therefore, RGB-only based methods are preferred. Re-
cently, many methods based on deep learning have been pre-
sented. These methods use convolutional neural networks to es-
timate the 6D pose of objects. Such neural networks estimate
the pose by detecting keypoints [[13]], estimating a 3 dimensional
bounding box [19,7,[15]], matching the input image with rendered
images [10}[12]], or directly treating pose estimation as a classifi-
cation [9] or regression [20] problem.

With the increasing number of deep learning based methods
for RGB-only pose estimation, there is a need for more training
data. Capturing real images is highly time-consuming, therefore
a faster approach is preferred. In addition, annotating the pose of
objects manually is tedious and inaccurate. While several image
synthesis methods have been presented [[11] to automatically gen-
erate new training samples, the resulting images can lack realistic
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appearance. An efficient and effective alternative is photorealistic
image rendering. Photorealistic rendering allows easy generation
of a large number of images containing realistic lighting, occlu-
sions, and real-world distortions with ground truth labeled auto-
matically.

There are many publicly available datasets consisting of real-
world images for 6D pose estimation. For example, T-LESS [3]
is a dataset with 30 industrial objects that lack distinctive tex-
ture. There are 48.9K images in the T-LESS dataset. Many ob-
jects in T-LESS dataset are symmetric; and the similarity among
them is challenging for pose estimation task. The YCB dataset
[2]] contains 9.24K images of 77 real-life objects for benchmark-
ing in robot grasping and manipulation tasks. The images in
the YCB dataset are captured by the BigBIRD Object Scanning
Rig and the Google scanner. The YCB-Video [20] dataset has
134K video frames for 21 household objects taken from the YCB
dataset. The LINEMOD dataset [4]] is another widely used public
dataset for 6D pose estimation with various toys and household
objects. The LINEMOD OCCLUSION dataset [, 8] is a com-
plementary dataset for the LINEMOD dataset with 10K images
under different lighting and occlusion conditions. The Rutgers
APC [16] dataset includes real images of textured products used
in the first Amazon Picking Challenge. The images in the Rutgers
APC dataset with different poses and clutter conditions are mainly
used for training algorithms in warehouse objects pick-and-place.
The IC-MI dataset proposed in [[17] has images for six objects
heavily 2D and 3D cluttered with foreground occlusion.

Due to the large variety of datasets and evaluation metrics
and the lack of a common benchmark procedure, the BOP dataset
[6] was introduced. The BOP dataset has a thorough survey of 8
different datasets containing images and the evaluation method-
ologies. Additionally, the TUD Light dataset and TOYOTA Light
dataset are introduced in the BOP dataset. The TUD Light dataset
includes images of three objects without occlusion under differ-
ent illuminations. The TOYOTA Light dataset has 21 objects in
total. Each object in TOYOTA Light is put on top of a table with
different tablecloths and five different lighting conditions. The
MVTec Industrial 3D Object Detection Dataset (MVTec ITODD)
[3] contains 28 industrial objects. The dataset focuses more on
practical and challenging tasks such as industrial bin picking and
3D object inspection. Besides datasets containing real captured
images, some photorealistic rendered datasets, such as Falling
Things (FAT) [18]], have been made publicly available. The FAT
dataset contains synthetic images with the 21 household object
models from the YCB dataset.

In this paper, we introduce a new dataset named Extra FAT.
We follow a similar approach as in the FAT dataset [18]]; but we
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Table 1: Comparison of different 3D datasets: LINEMOD dataset [4] (LM), YCB dataset [2] (YCB), T-LESS [5] (T-LESS), IC-MI dataset
[17] (IC-MI), TOYOTA Light dataset [6] (TYO-L), Rutgers APC dataset [16] (RU-APC), and TUD Light dataset [6] (TUD-L)

Dataset # obj | #frames Type LM | YCB | T-LESS | IC-MI | TYO-L | RU-APC | TUD-L
LINEMOD [4] 15 18K real v

LM OCC [1}18] 15 18K real v

YCB-Video [20] 21 134K real v

FAT [18] 21 60K rendered v

T-LESS [5] 30 48.9K real v

IC-MI [17] 6 4.2K real v

TYO-L [6] 21 55.4K combined v

RU-APC [16] 24 10K real v

TUD-L [6] 6 62.3K combined v
BOP [6] 89 >294K | combined | v/ v v v v v
Extra FAT (ours) | 110 825K rendered | v v v v v v v

include a larger number of object models and a larger variety of
virtual scenes. This dataset includes rendered images containing a
large number of 3D object models from the most commonly used
datasets for 6D pose estimation. Table 1 compares our dataset
with previously presented datasets m

For each rendered image in the Extra FAT dataset, the loca-
tion and rotation for both the virtual camera and the objects, and
a registered pixel-level object segmentation mask with 640 x 480
resolution, shown in Figure [T] are provided. Such images and
annotations can be used to train and test methods for object detec-
tion, segmentation, and pose estimation.

The images are simulated in five different indoor scenes with
various illumination and occlusion conditions, as shown in Figure
2l The indoor scenes include common environments such as of-
fice spaces, living rooms, and kitchens. There are 825K images
in total. The specifications for the Extra FAT dataset are shown in
Table 2.

Table 2: Dataset Specification.

Extra FAT Dataset
Image Resolution | 640 x 480
Field of view 90°
Number of frames 825K
Number of objects 110
Number of scenes 5

Dataset
Image Generation
The Extra FAT dataset is generated by rendering 110 3D ob-
ject models: 21 household objects taken from the publicly avail-
able YCB dataset, 15 objects from the LINEMOD dataset, 30 ob-
jects from the T-LESS dataset, 14 objects from the Amazon Pick-
ing Challenge 2015 dataset, 6 objects from the IC-MI dataset, 3
objects from the TUD Light dataset and 21 objects from the TOY-
OTA Light dataset, as shown in Figure[3] Figure[dand Figure 3]
As in the FAT dataset, we use the Unreal Engine 4 (UE4)

TThe number of objects in the BOP dataset is from the BOP bench-
mark paper [6]. There are more models provided for the BOP 2019 chal-
lenge.
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[14], a commonly used tool for game development, to render 3D
object models in the virtual game scenery. The open-source Un-
realCV [14] plugin serves as a communication tool to generate
photorealistic images and pose ground truth.

In the FAT dataset, objects are placed at random positions
from where they fall. In the Extra FAT dataset, we move the
object between pre-defined points (therefore our objects are not
technically falling but are flying).

We first manually specify some candidate points within the
virtual scene. During the image generation process, pairs of can-
didate points are selected randomly and the virtual camera and
object trajectories are defined by linear interpolation between the
two points, as shown in Figure[6] While moving the objects be-
tween the pair of points, we apply a uniform random perturbation
in the location and rotation of the object and the virtual camera.

Statistics of the objects in the Extra FAT dataset show that the
distributions of the Yaw, Pitch, and Roll angles are uniform, which
indicates that the poses of objects in the dataset are comprehensive
and representative for the general pose estimation task.

In order to avoid placing the object out of the visible range
of the camera, we constrain the relative location and rotation be-
tween the camera and objects. As shown in Figure [/| the pixel
coordinates (py, py) obey the following constraint:

—MHx < px < Uy
—Hy < py < Hy

()]

where 1, = 200 and u, = 180.
The constraint of the relative object position with respect to
the camera (#y,1y,,) can be computed from the pixel coordinates:

[Z

Ix = Px?
t (®)

Iy = py ?

y

where fy, fy are the focal lengths in the x and y direction. The
parameter ; is in the range (6,1, 6,5) to make sure that the object
is in front of the camera and not too far from it, or too close to it.
We set ;) =0.3 and 6,, =0.8.
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Figure 1. Each frame in the Extra FAT dataset consists of an image with
640 x 480 resolution, a registered pixel-level object segmentation mask, and
the pose ground truth of the virtual camera and the objects

In order to avoid having objects highly occluded by a wall
or other objects in the scenery, we add a constraint on the ratio of
mask area to image size:

1
Lmask | > threshold 3)
wXxh

Images where the segmentation mask area to image size ratio
is lower than threshold = 0.05 are discarded.

Training and Testing Setting

We propose three different training/testing split approaches.
First, we provide a training/testing split with about 6,000 frames
for training and 1,500 for testing for each object. Second, the
training and testing sets can be divided by scene. Four scenes
can be used for training and the other one for testing. Finally,
we propose using Extra FAT entirely as a training set and use the
BOP [6] benchmark as a testing method.

Conclusion

In this paper, we presented a new dataset for 6D object pose
estimation. By using photorealistic rendering, we obtain images
with diversity in terms of illumination, reflection, and occlusion.
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These images can be used to train convolutional neural networks
for object detection, segmentation, and pose estimation. We hope
Extra FAT will help the community to propose novel algorithms
for RGB-only image object segmentation and 6D pose estimation.
We invite other researchers to generate new datasets including ob-
jects from other commonly used datasets.
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Figure 3. 3D object models in the YCB dataset.

Figure 4. 3D object models in the LINEMOD dataset.
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Figure 5. 3D object models in the TYO-L [6], TUD-L [6], IC-MI [17], RU-APC [16], and T-LESS [5] datasets.

Figure 6. Linear interpolation trajectory from candidate location points.
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Figure 7. Pixel coordinate constraint.
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