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Abstract
Image aesthetic assessment has always been regarded as a

challenging task because of the variability of subjective prefer-
ence. Besides, the assessment of a photo is also related to its style,
semantic content, etc. Conventionally, the estimations of aesthetic
score and style for an image are treated as separate problems. In
this paper, we explore the inter-relatedness between the aesthetics
and image style, and design a neural network that can jointly cat-
egorize image by styles and give an aesthetic score distribution.

To this end, we propose a multi-task network (MTNet) with
an aesthetic column serving as a score predictor and a style col-
umn serving as a style classifier. The angular-softmax loss is ap-
plied in training primary style classifiers to maximize the margin
among classes in single-label training data; the semi-supervised
method is applied to improve the network’s generalization ability
iteratively. We combine the regression loss and classification loss
in training aesthetic score. Experiments on the AVA dataset show
the superiority of our network in both image attributes classifica-
tion and aesthetic ranking tasks.

Introduction
Image aesthetic assessment is essential to smart photo album

applications, such as the criteria for image retrieval systems and
cover photo recommendation. Besides, it can serve as a guide
for image enhancement. For a long time, image aesthetic assess-
ment has been regarded as a branch of image quality assessment,
which includes the estimation of several image quality attributes,
such as sharpness, noise, artifacts, etc. While the goal of image
quality assessment algorithms is to be consistent with the quality
assessment of a human viewer [23], image aesthetics cannot be
fully represented by image quality alone. Sometimes the human
assessment of aesthetics even contradicts the assessment of qual-
ity for the same image. Compared with other computer vision
problems, image aesthetic assessment is even more challenging
because of its subjective nature [26], which means we can hardly
find a universal rule to judge a given image.

In recent years, convolutional neural networks have been
widely applied in image aesthetics prediction [2, 7, 9, 10, 14,
21, 24, 27] thanks to the publishing of large-scale datasets, such
as AVA [22], AADB [13], and IDEA [11]. These datasets are
composed of image data and meta-data, such as crowd-sourcing
scores, semantic categories, and style or attributes. For human
viewers, although there is no strict rule that directly corresponds
to aesthetic scores, they are perceptually influenced by following
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factors in a given image: the theme, or semantic elements within
the image, and the proper style and composition, such as the rule
of thirds, shallow DOF (depth of field), etc. In other words, the
aesthetics of an image is assessed through a complex interplay be-
tween themes and styles. Moreover, images with obvious styles
are usually linked to high aesthetic appeal.

Inspired by the intrinsic connection between style and aes-
thetic assessment, this work entangles these two problems to-
gether by a multi-task network (MTNet), that can be trained to
encode given images into feature vectors and predict aesthetic
scores, as well as the style category, where the feature vectors
are shared by an aesthetic column and a style column. For effi-
cient training, we first pre-train the encoder on the AVA training
set with A-softmax loss [16], and iteratively fine-tune it by a self-
training approach. The acquired encoder serves as a backbone for
MTNet. Overall, the proposed MTNet is shown to improve the
performance over the previous state-of-the-art architectures.

Related Works
Aesthetic score prediction

Deng et al [4] summarizes early works using hand-crafted
aesthetic-rule based features to design an assessment method [3,
15, 25]. More recent studies show that using a deep feature repre-
sentation method boosted by large-scale datasets performed much
better than traditional hand-crafted features [10]. The training
data are often collected from online photography communities,
where people rate each photo by integer scores from 1 to 10. By
weighted averaging all scores, it should be possible to get the final
score for an image. Higher scores represent a positive assessment
from most of the people. Based on the score, one can compare two
images in terms of their aesthetic aspects, and classify an image
into a high or low aesthetic category.

Some researchers [27] choose to represent image aesthetic
quality with the score, either in numerical encoding or binary en-
coding. However, other researchers propose that due to the sub-
jective nature of human annotators, the score distribution can be
really diverse. Especially, the mean score is easily influenced by
low and high extremes from minor annotators. Besides, previous
papers [9, 10, 11] also notice that the distribution of mean score
or the number of the votes for each image is far from evenly dis-
tributed as shown in Figure 1. In order to solve this problem, more
recent works propose to use the score distribution in image aes-
thetic assessment. The progress on this path is mainly to use more
and more appropriate loss functions to make the network’s output
approach the target distribution. Jin et al [9] applies the weighted
Chi-square distance loss to predict the average score and standard
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deviation from the rankings distribution. Wang et al uses asym-
metrical Kullback-Leibler (KL) divergence as the loss function
and processes the AVA dataset’s score distribution into a Gaussian
distribution to train their DBN network. Hou et al [8] and Talebi
et al [24] uses squared EMD (earth mover’s distance) loss [8]
to train a CNN to predict the score histogram. Murray et al [21]
employs the Huber loss, which is more robust to outliers, in their
APM network. Cui et al [2] applies the traditional label distri-
bution learning method to predict an aesthetic score histogram.
Jin et al [10] compares previously proposed loss functions and
chooses the cumulative Jensen-Shannon divergence.

(a) (b)
Figure 1. The score and vote number distribution of the AVA dataset: (a)

The distribution of the number of votes per image; (b) The distribution of

mean score per image.

Image style classification
Early works [5] use hand-crafted features to describe photo

styles. Lu et al [17] utilizes style attributes of the image to help
improve the aesthetic classification accuracy, where the style-
SCNN is pretrained on the AVA dataset and its output is concate-
nated to predict the binary categorization result. Inspired by the
multi-column and concatenation methods, Kong et al [13] incor-
porates joint learning of photographic attributes and image con-
tent to predict image aesthetic scores.

Embedding of the MTNet
Network Architecture

The architecture of MTNet is shown in Figure 2. It can be
generally divided into two parts: an image encoder, and a multi-
column network to realize specific tasks, including an aesthetic
column that outputs the score distribution for the image’s aesthet-
ics, and an attribute column that classifies the attributes of the
given image. The image encoder roughly follows the same struc-
ture as SphereFace [16], which is a modified ResNet. Input im-
ages are encoded into a 512-dimension feature vector for further
processing in multi-column networks.

The attribute column is composed of a fully connected layer
that converts the 512×1 feature vector into a 14-class prediction
result. Since we apply angular-softmax (A-softmax) to train the
classifier, the predicted score for each class ranges from −1 to 1.

Angular-softmax
A-softmax loss is a novel loss function modified from soft-

max loss, first proposed by [16]. Traditional softmax loss is com-
monly used for classification tasks. For an input feature vector xi
and its corresponding label yi, the softmax function can be formu-

lated as follows:

Lso f tmax =−
1
N

N

∑
i=1

log
ezyi

∑
C
j=1 ez j

(1)

where N is the number of training samples, C stands for the
number of classes. z j is the activation of the j−th neuron in a
fully connected layer with corresponding weight vector W j and
bias b j. Each neuron is supposed to predict the score z j for target
class j. Softmax loss is based on the Euclidean margin of differ-
ent classes. If we fix the bias b j = 0 and express x in the polar
coordinate system, the predicted score z j can be written as:

z j =W T
j x = ||W j|| · ||x||cosθ j (2)

where θ j denotes the angle between W j and the input x. Previous
papers [6, 16] use a simplified example of binary classification to
illustrate the idea of A-softmax. According to Equation 2, three
components can influence the predicted score: an embedding fea-
ture vector x, and the learned weights W1 and W2, which represent
the class centers. For this binary classification problem, the deci-
sion boundary is:

||W1||cosθ1 = ||W2||cosθ2 (3)

For a single label problem, a sample is classified into the
class j that has a higher score z j. As shown in Equation 3, the
decision boundary depends on both the norm and angle of the
classification center. Even if the angles between a feature vector
and two class centers are the same, it tends to be categorized to
the class with a larger L2 norm. Besides, a feature vector with a
larger L2 norm would output a higher prediction score.

In this paper, we want to eliminate the influence of norms
and classify over angularly discriminative features (The reason
to disentangle the L2 norm is illustrated in the Appendix). We
normalize ||W j|| and ||x|| to 1 as follows:

W j =
W ∗j
||W ∗j ||

, x =
x∗

||x∗||
(4)

where W ∗j and x denote the original weight and feature vectors.
After normalization, only the angles between the feature vector
and the two weight vectors are relevant to the decision boundary:

cosθ1 = cosθ2 (5)

That is, the sample tends to be classified into the class j that
has larger cosθ j, which corresponds to a smaller angle. We can
regard the normalization as mapping the weight vector and feature
vector to a unit hypersphere. As analyzed above, ||W j|| = 1,∀ j
and ||x||= 1. The modified A-softmax is:

Lang =−
1
N

N

∑
i=1

log
emcosθyi

∑
C
j=1 emcosθ j

(6)

where m is the scale factor that controls the size of the margin.
From softmax to A-softmax loss, our network learns image fea-
tures with an angular margin. A-softmax has already demon-
strated its superiority in many tasks including face recognition
and verification [16], person re-identification [6], and other gen-
eral classification tasks [28].
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Figure 2. Structure of the MTNet.

Semi-supervised Training
In most computer vision research, data augmentation in-

cluding random cropping, re-centering, RGB normalization, and
noise-injection is used as an effective tool to improve the net-
work’s robustness. However, cropping and re-centering would
change the composition of an image. This would lead to to-
tally different aesthetic rankings for human perception. And RGB
normalization would make the acquired network less sensitive to
brightness, white balance, etc, which happen to be important fac-
tors for image aesthetic assessment. Thus, methods of data aug-
mentation should be carefully chosen for image aesthetic related
research projects. In this paper, we horizontally flipped 50% of
training images to ensure the least influence on the data’s inner
consistency. All images are resized to 112× 96 to satisfy the re-
quirements of the network input.

In the AVA attributes subset, all training images have a sin-
gle label, while the number of labels of test images can vary from
zero to many. The difference between the training and testing
data requires our network to have the ability to generalize, while
maintaining discrimination between multiple attribute classes. A
semi-supervised strategy is used to achieve this goal. First, we
train the primary classifier with A-softmax loss until it actually
learns discriminative attribute features (reaching 99.9823% accu-
racy on the training set in our experiment). Then we apply this
pre-trained classifier on training data again to predict the attribute
scores for each image. With the reference of ground truth, we add
the attribute classes for which the prediction scores are higher
than a certain threshold into the training labels. After scanning
the whole dataset, we get a new training set with multi-label at-
tributes. Then, we re-train the classifier with the acquired labels
and re-apply it to the training set again to propose new attribute la-
bels to training images. We repeat this process until the classifier
stops changing. The iterative learning algorithm is summarized in
Figure 3.

After the iterative learning process, we are supposed to have
a robust classifier that can distinguish image styles. This classifier
can be divided into an image encoder and an attribute column. As-
suming that the encoded feature vectors have enough information
reflecting image attributes, it is reasonable to expect that informa-
tion about aesthetic scores is also included in the latent features.
The following section introduces how to train an aesthetic column
based on this assumption.

Figure 3. The diagram of the iterative learning process.

Combining the Regression and the Classification
The target output of the aesthetic column is the score his-

togram as mentioned in the earlier introduction of the AVA
dataset. On the one hand, the aesthetic score prediction task
is firstly a regression problem that aims to approach the target
score as closely as possible. The mean square error (MSE) loss
is widely adopted for solving such regression tasks. On the other
hand, the predicted scores serve as a reference for binary clas-
sification, that categorizes the input image into either “good” or
“bad” categories. Cross entropy loss, softmax loss, etc. are used
to solve this classification problem.

In this paper, we combine the regression problem with the
classification problem to get better results. By adding extra lay-
ers to the aesthetic column, our network is capable of outputting
a score histogram and binary classification scores. For these two
types of outputs, we apply the MSE loss and the Cross-Entropy
loss, respectively, to the two tasks. The advantage of combining
the two losses is to increase distinctions among training data. As
shown in Figure 1, the score histogram of the AVA dataset is not
evenly distributed. Previous research [11] has declared that he un-
balanced training set makes the training of neural networks easy
to over-fit. The adding of classification loss teaches the network
to be more discriminative on the images near the threshold.

Experiments
In training the attribute classifier, we choose m = 4. Stochas-

tic gradient descent is used as the optimizer, with a momentum of
0.9 and a weight decay of 0.0005. We fix the parameters of the
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Figure 4. The attributes of photos in the AVA datasets embedded into two

dimensions by the UMAP.

image encoder when training the aesthetic column, and fine-tune
the remaining layers with AVA’s training set. During the fine-
tuning, the optimizer’s weight decay is changed to 0.005 while
others remain the same.

We perform two types of evaluation: the classification accu-
racy using the benchmark-setting on AVA style experiments [22],
and divergence between the predicted score histogram and the
ground truth in AVA aesthetic image lists [22] using the same met-
rics as described in [10].

Style Classification
To prove that our image encoder actually learns the features

representing image attributes and scores, we visualize the encoded
features by dimension reduction using UMAP (Uniform Manifold
Approximation and Projection) [19, 20], as shown in Figure 4.
For simplicity, we plot the AVA attribute training set where each
image only corresponds to one label. We can see that the attributes
of different labels form separate clusters in the hyperspace, which
indicates our network is able to learn a discriminative embedding
of the latent features of the AVA images.

We compare our model’s performance on the test set of AVA,
where each image may correspond to 0 to n labels. Following
the approach taken in previous papers, we report AP (Average
Precision), which computes the average precision value for recall
values over 0 to 1, and mAP (mean Average Precision), which is
the average AP for all categories.

Table 1 shows that our method achieves the second-best re-
sults for style classification. Here, we list our results acquired
from three different methods: 1) primary method, which is the pri-
mary classifier that is trained on the original single-label dataset;
2) iterative learning model, which is acquired based on the pri-
mary classifier through the iterative learning process as men-
tioned previously; 3) nearest cluster method. It uses the model
trained from iterative learning. But instead of taking the classifi-
cation output from the last fully connected layer, it takes the 512-
dimension feature vector to compute the cosine distance to the
class’s average centers of each style category. The classes with
a distance that is lower than the threshold are taken as prediction

outputs. In our experiment, the distance thresholding method out-
performs the direct output of the fully-connected layer by 0.05%.

Aesthetic Score Histogram Prediction
Table 2 shows the comparison of score histogram predic-

tion results on AVA dataset. The divergence between the pre-
dicted histogram and the ground truth is measured by several
metrics: PED (the Euclidean distance between two probability
distribution functions); PCE (cross-entropy between two prob-
ability distribution functions); PJS (the symmetrical version of
the Jensen-Shannon divergence between two probability distribu-
tion functions); PCS (Chi-square distance between two probabil-
ity distribution functions) [9]; PKL (the symmetrical version of
Kullback-Leibler divergence between two probability distribution
function) [26]; CED (Euclidean distance between two cumulative
distribution functions) [8, 27]; and CJS (the symmetrical version
of the Jensen-Shannon divergence between two cumulative dis-
tribution functions) [10]. With the exception of PCS, our result
outperforms the previous best ones by a large margin.

Conclusion
In this paper, we present a multi-task deep convolutional neu-

ral network for image aesthetic quality assessment and style cate-
gorization. Rather than solving these problems with two separate
models, in our MTNet the aesthetic column and the style column
share the same image encoder trained by a semi-supervised ap-
proach, which provides a new insight for solving the multi-label
classification problem with single-label data. Besides, we intro-
duce A-softmax loss in the image aesthetics area for the first time,
and demonstrate its effectiveness on style classification in an an-
gular hyperspace. Our experiment results prove that the perfor-
mance of aesthetic assessment can be leveraged by style classifi-
cation. The evaluation results on the AVA dataset show that our
approach outperforms earlier-reported methods for the six out of
the seven metrics evaluated.

Appendix
Interpretation of L2 Norm

To understand what the L2 norm of feature vectors encoded
by our network represents, we select the top three and bottom
three pictures of each style according to their feature vectors’ L2
norm. The selected pictures are shown in Figure 5.

The feature vector is a distilled representation of the original
image. In our work, the network basically serves as a discrimina-
tor for good images with recognizable styles. Each dimension of
the vector represents a detectable feature related to the network’s
purpose, which implies that a higher norm corresponds to stronger
detectable features in the image. The pictures in Figure 5 sup-
port this: images with higher norms usually have richer content
and more distinguishable features. In order to get rid of the bias
caused by these factors of the L2 norm for style classification, we
chose A-softmax loss along with cosine distance as a comparison
metric.
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