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Abstract

The evolving algorithms for 2D facial landmark detection
empower people to recognize faces, analyze facial expressions,
etc. However, existing methods still encounter problems of unsta-
ble facial landmarks when applied to videos. Because previous
research shows that the instability of facial landmarks is caused
by the inconsistency of labeling quality among the public datasets,
we want to have a better understanding of the influence of anno-
tation noise in them. In this paper, we make the following con-
tributions: 1) we propose two metrics that quantitatively mea-
sure the stability of detected facial landmarks, 2) we model the
annotation noise in an existing public dataset, 3) we investigate
the influence of different types of noise in training face alignment
neural networks, and propose corresponding solutions. Our re-
sults demonstrate improvements in both accuracy and stability of
detected facial landmarks.

Introduction

2D facial landmark detection is a fundamental technology
behind face recognition [11], expression recognition [30], aug-
mented reality 3D mask rendering, etc. Besides precise and ac-
curate localization, there are several problems that have attracted
more and more attention in recent years: landmark stability, facial
landmark detection under extreme conditions such as occlusion,
rare angle faces, low luminance, large movement, etc. Datasets
play a pivotal role in addressing these problems in landmarks lo-
calization, including the early AFLW dataset [9] with 21 point
markup and the more recent 300-W [20], 300-VW [3][22][24]
with 68 point annotations, and WFLW [28] with 98 manually an-
notated landmarks. These datasets have not only grown larger
in scale, but also have become more diverse in attributes, includ-
ing occlusion, pose, make-up, illumination, motion, and facial ex-
pressions.

Although the scale of facial landmark datasets is growing, it
is still far from being comparable with the tremendous size of face
recognition datasets such as Ms-Celeb-1M [7], which consists
of 10M images of 100K celebrities. These large scale datasets,
along with research on data cleaning [26], drive the development
of new methods to achieve better results in face recognition. The
main factor that constrains the scale of facial landmark datasets
is that, in the current stage, the labeling of landmarks heavily re-
lies on manual annotation and verification. Different from es-
tablishing face recognition datasets whose labels can be cleaned
automatically, building a facial landmark dataset is tedious and
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time-consuming. Besides, [5] noticed that human annotations in-
herently have flaws in precision and consistency: the positions
of the same landmark point annotated by different people vary
a lot, even those of the points with clear features (e.g., corner
of mouth). The variance in the training data would degrade the
stability of landmark detectors, thus leading to perceptually un-
pleasant jitters when the detector is applied to videos. Traditional
landmark detection frameworks treat each frame of a video as an
individual input and pay little attention to temporal consistency;
as a result, it is hard for the output points to maintain a consistent
visual presence in consecutive frames.

Considering the fact that the inconsistency of landmark an-
notations widely exists in popular facial landmarks datasets, such
as 300-W and 300-VW, we regard the unwanted jitters as a type
of noise and design relevant experiments around this concept.

The first goal of our work is to understand the noise in fa-
cial landmarks and how it will influence the training of deep con-
volutional neural networks (CNN). In other words, we are con-
cerned with the relationship between the training set’s noise and
the model’s performance, the extent that the noise can be reduced,
and the best method to get a clean output. To achieve this goal, we
propose two plausible metrics that measure landmarks’ stability.
Although we have to admit that currently it is almost impossible to
get noise-free landmark points in either the training or the detec-
tion stage, a better understanding of the concerns expressed above
would be beneficial for the design of more robust algorithms for
real-world applications.

The second goal of this paper is to propose a complete work-
flow to help decrease the inconsistency of facial landmark anno-
tations, that exists in a wide range of popular public datasets. In
this paper, we show that training on a corrected dataset can ac-
tually improve the detector’s performance. Our proposed work-
flow can also boost the performance of existing methods. The
corrected dataset used in training our facial landmark detector
consists of approximately 4,000 still images, and 300 videos of
200 identities. Due to the nature of the dataset source, these im-
ages exhibit great variations in scale, pose, lighting, and occlu-
sion. For a better comparison, we also carried out experiments
on corrupted datasets by injecting noise on landmark annotations
following previous research [5]. By controlling the amount of ad-
ditive noise, this study helps us to understand quantitatively the
noise’s influence on the detection accuracy.

Related Work

Semi-automatic Facial Landmarks Annotation: To aid
the manual annotation work, Christos et al. [21] proposed a semi-
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automatic methodology for facial landmark annotation in creat-
ing massive datasets. They used the annotated subset to train
an Active Orientation Model (AOM) that provides an initializa-
tion to non-annotated subsets, and then classifies the results to
“good” and “bad” manually. However, this kind of method can
only reach a relatively accurate annotation by cleaning out the
obviously “bad” examples, but cannot avoid the jitters among dif-
ferent annotations.

Face Alignment and Tracking: To improve face align-
ment in video, Peng et al. [18] proposed an incremental learn-
ing method for sequential face alignment. To better make use of
the temporal conherency in image sequences, Peng et al. [17]
designed a recurrent encoder-decoder network model for video-
based face alignment, where the encoding module projects the in-
put image into a low-dimensional feature space, and the decoding
module maps the features to 2D facial point maps. The recur-
rent module demonstrates improvements to the mean and stan-
dard deviation of errors by taking consideration of previous ob-
servations. However, this module unavoidably increases the net-
work complexity and training difficulty. Besides, many researches
applied tracking as an extension of face alignment, though it al-
ways results in drifting and loss of accuracy of facial landmarks.
Conducting face tracking usually involves generic facial land-
mark detection, the combination of model-free tracking and re-
initialization [2]. Khan et al [8] proposed a synergistic approach
to eliminate tracking drifts, in other words, to apply face align-
ment when drifting happens. Still, stepping happens when shift-
ing between tracking and detection results. Barros et al. [1] ap-
plied a Kalman filter to fuse the tracking and detection.

Methodology
Noise Modelling
Noise in Public Datasets

Naturally, people assume that the ground truth in popular
public datasets is accurate and precise. However, Dong et al. [5]
has noticed the existence of hand annotation noise. Here, we will
look into the two most commonly used datasets—300-W [20] and
300-VW [3][22][24]:

300-W provides 68 2D landmark annotations for 3,837 face
images. These images were split into four sets respectively: train-
ing, common testing, challenging testing, and full testing. In this
paper, our base detector was trained on the 300-W training set. In
addition, we evaluated the detector’s performance and modeled
the output noise on the 300-W test set.

300-VW is a video dataset consisting of 50 training videos
with 95,192 frames. Its test set contains three subsets (1, 2, and
3) with 62,135, 32,805, and 26,338 frames, respectively. Among
the three categories, Subset-3 is the most challenging. We apply
the proposed method to correct landmarks of the 300-VW full set
and report results on all three subsets.

Figure 1 shows some examples of inaccurate annotations in
the 300-W and 300-VW datasets. Images in the dataset can be cat-
egorized into four categories: accurate subset: data samples with
acceptable ground truth; inaccurate eyes, inaccurate mouth, and
inaccurate contour. Besides, there are also images with more
than one inaccurate facial component.
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Figure 1.  Noisy annotations in public datasets. The images in the left 3
columns are from 300-W, and the images in the right 3 columns are from
300-VW. The quality of annotations is not consistent among these two well-
known datasets. The reader is advised to zoom in to see the annotations.

Metrics

In this section, we will introduce the widely used metric for
facial landmark accuracy, and our proposed methods to measure
the stability of detected facial landmarks quantitatively.

Accuracy reflects the difference between the predicted result
and the ground truth. A good facial landmark detector should pro-
duce results of low prediction error for any given inputs, including
still images and video frames.

The normalized mean error (NME) is widely used as the
evaluation metric for accuracy. It is defined as follows:
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where §; and fie (x) denote each ground truth point based on hu-
man annotation and the predicted point, respectively; and x is the
inputimage. N is the number of landmarks on a face (in this paper,
N = 68), and d represents the outer ocular distance (the distance
between outer corners of eyes) for normalization. It is worth not-
ing that in some previous papers, the distance between centers of
eyes (inter pupil distance) was also used for normalization.
Precision reflects the robustness of a model when given in-
puts with different kinds of noise, e.g. pixel-wise noise includ-
ing camera shot noise, Gaussian blur, or re-centering, etc, which
can exist in video frames. These kinds of noise will not change
the spatial distance among different facial components of ground
truth, but may cause jitters in detection outputs. Since the abso-
lute locations of facial landmarks should be unchanged, we can
define the variance of detected points for precision as follows:

e Standard Deviation (STD). This metric doesn’t require an-
notated ground truth but a test set of still images, e.g., video
frames of an unmoved face from a fixed camera. In this
case, each frame is naturally injected with different camera
shot noise. The normalized standard deviation of the land-
mark locations in the same video can be used as a metric for
stability:
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where j refers the index of frames: 1,..., j,...n; and fi‘9 (x))?
is the position of the i-th landmark averaged over the n
frames. The output of this equation is the standard devia-
tion of i-th landmark coordinate. Larger standard deviation
indicates more jitters.

e Standard Deviation of Difference (SDD). This metric re-
quires annotated ground truth as a reference: Firstly, the dif-
ference between the ground truth and detection results for
each frame is calculated as Ay; = f9(x) —y;. In the ideal
case where the detection results exactly follow ground truth,
the variance of difference should be low no matter how big
the difference is. Larger SDD values indicate more jitters.
For a given video of frames j € {1,...,n}, the formula for
this metric is given by:

Z?:l(AYj *5)2

SDD = STD(Ay) = —
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In a similar manner, we can then define the detection noise as
the deviation between the detection results and the target values,
as mentioned before. We can use the distribution of the detection
noise as a tool to visualize the detector’s robustness and stability.
Figure 2 shows an example of the noise of each landmark point in
both the X and Y coordinates that are calculated from a “pseudo”
video generated by the augmentation method mentioned later in
Section Experimental Setup. In this figure, the detection noise
is plotted in bar graphs with error bars, where blue and red bars
correspond to the mean value of the detection results’ difference
from ground truth in the X and Y directions, respectively. The er-
ror bars are calculated from the standard deviation of these differ-
ences among a group of test images, as defined previously in this
paper. We can get some interesting information from this plot: the
most unstable points are the eyebrows’ ends, and then the lowest
point of the lips, which are actually the most deformable points
on our face. Besides, the color fading of the eyebrows’ ends also
throws challenges to the landmark detector.

Figure 3 shows the detection noise plotted as a 2d histogram
with both X and Y directions, which serves as another way to vi-
sualize the spatial distribution of the noise. In previous research
papers, all noises are assumed to be of the Gaussian distribution
for simplicity. In this graph, the scattered map of points without
clear peaks usually indicates that the noise severely deviates from
a Gaussian distribution. This graph can be used to select stable
landmarks as reference points for further face alignment in Aug-
mented Reality (AR) applications.

The noise in the detection result is connected with inaccu-
rate locations and jarring visual effects. Thus, methods including
tracking and temporal filter are applied in post-processing to re-
duce the noise as discussed in Section Methods to Reduce Noise.
Although the physical noise cannot be eliminated due to the limi-
tation of the input data, it is possible to attain better results using
the prior knowledge about the noise distribution.

Theoretical Assumptions

Assume we have a set of unreliable annotations (y},,...) of
facial landmarks. Denoting the “true and only” landmark coordi-
nate as y, we describe their relationship by the following equation:
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where 6(x) is the difference between the annotated data and the
true value, or to say, the human annotation noise. Usually, the
noise distribution is assumed to have zero mean and finite variance
[14]:

E[8(y)] =} 8(vi)pi=0,n— e )

-

i=1

Based on this assumption, we can get

E[]=E+8(y)]=y+E[6()] =, (©)

indicating that the expected value of the human annotated value
is the true unknown y. In practice, it is possible to approach
y through a learned mapping function with a sufficient number
of randomly distributed training samples. Most facial landmark
models are trained with L2 loss (MSE Loss):

1 ¥ .
L2Loss = — Z Hfie (x) _)’i||%> 0
2N =

where x denotes the input image data, and £ is the mapping func-
tion. Thus, f? (x) is the network’s output for the i-th landmark, ¥;
is the value of the ground truth for i-th landmark based on hu-
man annotation, and N refers to the number of elements in the
network’s output array. For the common case of 68-point facial
landmarks, N = 136.

The optimization goal of L2 Loss is given by:

argming E;, (2 (x) — $1)?] = ®
argmingEyo ) [[Es oo (£ (x) = 5]

As mentioned before, the noise in landmark positions is as-
sumed to be zero-mean with finite variance for all images in our
dataset. A network trained with L2 Loss, from a statistical point of
view, will produce outputs that approximate the conditional mean
of the target values in the training set:

E[5il ff (x)] = E[] )

As defined in Equation 6, the expectation of ¥; can approach
the unobserved true value y; if there are enough random inputs.

However, if 8 (y) belongs to other types of noise, L2 loss may
not guarantee that the destination of optimization is E ;] = y;. For
example, if injected with salt-and-pepper noise (impulse noise),
the conditional median would be better at approaching the true
value, which can be learned by least-absolute-value training with
L1 Loss. Following a derivation similar to that above, we can get
the correspondence between the loss function and the noise type
shown in Table 1.

Researchers from the image denoising area have already no-
ticed the connection between noise type and training loss type
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Figure 2. Example of the detection noise (SDD (Equation 3)) in X (blue bar) and'Y (red bar) coordinates. The horizontal axis denotes the index number of
the facial landmark, e.g. points 1 ~ 17 represent face contour points, 18~27 stand for eyebrow points, etc. The solid bars are the mean values of the detection
results’ difference, and the whiskers represent the standard deviation of the difference as defined before. Bigger error bars of points indicate that these points
are unstable in that direction, while mean values can tell us the prediction error, or “bias” from ground truth. Ideally, we wish the model’s prediction result to be
an unbiased estimate of the ground truth, which corresponds to zero mean values in this graph.
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Figure 3. Example of the noise (SDD (Equation 3)) plotted as a 2d histogram. Each histogram represents the noise distribution of every facial landmark point

in the X and Y coordinates. Ideally, a stable point should have a Gaussian distribution with a clear peak. If the prediction result is an unbiased estimate of the
ground truth, this peak should be located at the zero point of the histogram in both X andY.
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Table 1. Loss function for each type of noise
Noise Type Loss Function
Additive Gaussian noise

. . L2 loss
Poisson noise
Bernoulli noise(binominal noise) Modified L2 loss [25]
Salt-and-pepper noise L1 loss
Random-valued impulse noise LO loss

[25]. In [10], the model learns to restore images by only look-
ing at corrupted data with synthetic noise. Previous research [6]
also compared training facial landmark detectors using .1 and L2
loss, and a custom loss function. The different performances of
the acquired models, along with our noise modeling results indi-
cate that the actual noise in public training data is more complex
than that based on theoretical assumptions.

Methods to Reduce Noise

Based on previous assumptions about noise, we propose a
method to reduce the spatial noise with the temporal information
from adjacent frames. For each image, we assume the relationship
between the ground truth and the prediction is:

gti = piterri, (10)

where gt denotes the ground truth, p stands for the prediction(or
annotation), and err is the error for view i. The landmark points
of different frames can be regarded as individual samples around
the ground truth. The difficulty lies in calculating the errors from
different frames under the same view. We choose optical flow to
find the corresponding points between two images; this process
can be expressed as follows:

F(pi) = E(pi+erri) = pix, a1

where F; represents the point registration process, and p; x stands
for the information in sample p; under view k. Note that the ac-
quired p; ; includes err; i that is cast to the new view. In this way,
we can apply the previous equation in Section Noise Modelling to
reduce noise.

Until now, optical flow has been successfully used as a track-
ing method in many applications. Optical flow assumes that the
brightness of a point that moves slightly from frame to frame does
not vary as the time varies; and the movement of the neighbors
follows in the same way. In our method (Figure 4), the 68 facial
landmarks detected from the first frame are considered the initial
points of interest to be tracked by the optical flow, which gives
the predicted positions of these points in the second frame. Then,
the optical flow is used again on these predicted points but in a
reverse way, to predict their positions in the first frame. Finally,
the detection model gives another set of 68 facial landmarks in the
second frame. Therefore, in both frames, there exist two sets of
68 points, predicted by the detection model and the optical flow.
To supervise the correctness of optical flow, the tracking result is
chosen over the detection result in the second frame, if the track-
ing result is close to the detection result, and vice versa.

Usually, the optical flow performs well in tracking, but there
exist some cases that easily cause the failure of optical flow. For

IS&T Infernational Symposium on Electronic Imaging 2020
Imaging and Multimedia Analytics in a VWeb and Mobile World

example, the point on the upper eyelid has been tracked stably
by optical flow, but when the person blinks their eyes, the point
may stick to the lower eyelid instead of going up with the upper
eyelid. Therefore, we assume that the tracking result from optical
flow should be close to the detection result. Also, the reason for
applying optical flow again to the tracking points in the second
frame to give their positions in the first frame is to check the trust-
worthiness of the optical flow. This is based on the assumption we
made on the optical flow algorithm that the results of a two-frame
scenario should be consistent, regardless of the sequence of these
two frames.

Although applying optical flow to the detection results im-
proves the stability of the facial landmarks, it suffers from the
failure case in which the detection result is not close to the track-
ing result; so it is hard decide which result should be chosen as the
final landmark of the frame. To resolve this issue, we developed
a simple but efficient way to smartly leverage the detection result
and the tracking result. From a high-level view, the final facial
landmarks are given by

Pfinal = QPyerection + BPtmckingv (12)

where o and B = 1 — o denote the weights assigned to the de-
tection result and tracking result, respectively. To determine the
value of o, we made two assumptions: 1) the landmarks in the
first frame should be close to the landmarks in the second frame,
predicted by applying optical flow to the landmarks in the first
frame, and 2) the landmarks, obtained by applying optical flow to
the landmarks in the first frame to the second frame and then back
to the first frame, should be close to the original landmarks in the
first frame. By measuring these two distances, the value of & can
be calculated, since the larger the distances, the larger the value
of a, in other words, the less trustworthy the tracking result is.

Experiment and Analysis
Experimental Setup

Baseline. In [13], Mao et al. proposed a cascaded VGG-
style network, which demonstrated a strong ability to detect fa-
cial landmarks accurately and performed extremely well on the
300-W test dataset [20]. This cascaded network is designed as
a two-level network, where the first level outputs initial 68 fa-
cial landmarks, and the second level further refines the prediction
results for each component, e.g., eyes and mouth, by fusing the
global information obtained by the first level network and the fea-
tures extracted by the second level network. Compared to the
conventional single-level network, this cascaded network outputs
facial landmarks of higher accuracy. Figure 5 shows an example
comparing the results obtained from the first-level network and
the cascaded network [13]. In this paper, we adopt the first level
of Mao’s cascaded network as the base model.

We choose PyTorch [16] to implement this work. We apply
MSE loss to train the network and Stochastic Gradient Descent
(SGD) as the optimizer. The initial learning rate is set to be 0.05,
and the maximum number of epochs is 100 with a batch size of
512. Our network is trained on one Nvidia Quadro M6000. All
input images are resized to 128 x 128 and normalized in RGB
channels before sending them to the network.

Fusion By jointly detecting and tracking the landmarks us-
ing optical flow, we are able to reduce the instability of the land-
marks that appeared in 300-VW. In each video, the ground truth
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Figure 4. Overview of our framework. Each frame of the video sequence is fed into the cascaded detection network to obtain the facial landmarks prediction.
Then the optical flow algorithm is applied to the facial landmarks of each frame to predict the landmarks of neighboring frames. Each frame now has two sets of
facial landmarks, which are then fused together by assigning different weights to the landmarks of these two sets. For each landmark, if the prediction from the
optical flow is close to that from the detection network, a higher weight is assigned to the prediction from optical flow, and vice versa.
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Figure 5. Comparison between the results obtained from the single-level
network and the cascaded network. The landmarks on the left-side eye are
predicted by the cascaded network, while the landmarks on the right-side eye
are predicted by the single-level network. This indicates that the cascaded
network performs better on the components, since it only focuses on them.

landmarks can be treated as the detection result, then starting from
the second frame, the tracking result is obtained by applying op-
tical flow on the detected landmarks in the previous frame. Then
these tracked landmarks in the second frame are used by the op-
tical flow to predict the landmarks back to the first frame. As
previously mentioned in Section , the value of ¢ and the weight
assigned to each detected landmark can be calculated to obtain the
final facial landmarks in the current frame.

Figure 6. Comparison between the image from the original 300-VW dataset
and our corrected 300-VW dataset. The annotations of the original 300-VW
dataset are not temporally consistent, causing the original dataset to be too
noisy to be used. The image on the left side shows one of the examples:
the landmarks on the contour are not closely attached to the face contour.
However, this is not the case in the image on the right side, which is obtained
from our corrected 300-VW dataset.

Data Augmentation. We design a data augmentation
method especially for the video task. The goal of our augmenta-
tion is to turn a still image into a “pseudo” video, with continuous
changes in the pixel-wise noise, motion blur, brightness, scale,
projective distortions, etc. The key point of doing this data aug-
mentation is to acquire a training video without intra-frame noise
in landmark locations. To generate diversified videos with these
augmentation methods, we borrow the idea of a“storyboard” from
designers to assign the start status and the end status of the gener-
ated video, where the intermediate steps are set to adapt to the fps
(frame-per-second) in order to simulate real-world changes.

Results on Public Datasets

The comparison of our result with previous methods on
the three test sets of 300-VW is shown in Table 2. Both the
base model described in Section Experimental Setup and our
new model, which is retrained using L2 loss with our proposed
method, are compared in this table. The better performance of
our new model shows that the noise reduction can improve the
performance on all three subsets. Compared with the baseline
model, the noise reduction training provides our network with a
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Figure 7.
changes in brightness, Gaussian noise, scale, and projective distortion. In

Data augmentation. This sequence of images continuously

this way we can augment a single image into a “‘pseudo” video.

Video frames from the 300-VW dataset with the detected 3D
bounding box and 68 landmark points

Figure 8.

better comprehension of the data distribution in hyperspace.

To keep consistency with previous works, we also report the
NME on the three test sets of 300-W in Table 3. When applied
to a single image, our method only uses the module labeled “de-
tection” in Figure 4. The best result on 300-W so far is reported
by LAB [28] trained with a new dataset WFLW including 10,000
images with different environments, poses, occlusions, etc. In ad-
dition, SBR [5] and SAN [4] also include private training sets.
Our model is able to reach comparable results with only 300-W’s
training set.

Effect of Noise on the Accuracy and the Precision

As discussed in Section Noise Modelling, we can estimate
the mean of the target landmark values to any desired degree of
accuracy if given a sufficiently large and representative training
set [27]. L2 loss can guarantee a high accuracy towards the “true
and only” target as long as the noise is zero-mean. In order to
verify this, we add different amounts of Gaussian noise (from 0%
to 3%) following the settings in [5] to the training set and train an-
other three models using the same approach as for the base model.
The results in Figure 9 show that even if these models have never
seen clean data, they are able to reach the same level of accuracy
as the base model. Similar results are also discussed in previous
papers [5][10].

When we tried to fine-tune our base model on a small subset
of challenging images, we also discovered a possible “blessing”
of the noise. Since the challenging images are of a small number
and severely deviate from the main set, the fine-tuning can lead
to a generally worse result on the 300-VW test set because of
over-fitting on the challenging set. We compare the fine-tuning
results from original data, augmented data (higher probability of
over-fitting), and data with 3% additive Gaussian noise in Table
4. Surprisingly, the model trained with additive noise performs
better than the other two. This result may imply the positive effect
of known noise in overcoming the trend of over-fitting.

The annotation noise’s curse to the detection accuracy has
already been discussed in earlier sections. Besides, our exper-
imental results also reveal that the noise in the training set can
degrade model’s precision and lead to more jitters in the video
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Table 2. Comparison of NME (%) on 300-VW dataset

Method Training Set Subset-1 ~ Subset-2  Subset-3
Inter-pupil distance
SDM [29] / 7.41 6.18 13.04
TCDCN [31] 300-W 7.66 6.77 14.98
CFSS [32] 300-W 7.68 6.42 13.67
DRSN [15]  AFLW, 300-W, CelebA, MAFL, 300-VW 533 4.92 8.85
Inter-ocular distance
Ours-base 300-W 5.13 5.94 8.81
Ours-new 300-W 4.60 4.04 8.49
Table 3. Comparison of NME (%) on 300-W dataset
Method Training Data Common  Challenging Full Set
Inter-pupil distance
SDM [29] / 5.57 15.40 7.52
LBF [19] 300-W 4.95 11.98 6.32
MDM [24] 300-W 4.83 10.14 5.88
TCDCN [31] MAFL 4.90 8.60 5.54
CFSS [32] 300-W 4.73 9.98 5.76
DRA-STR [12] 300-W, AFLW 4.36 7.56 4.99
DRSN [15] AFLW, 300-W, CelebA, MAFL, 300-VW 4.12 9.68 5.21
3DALBEF [23] 300-W, 300W-LP 3.69 10.03 4.93
LAB [28] WFLW 3.42 6.98 4.12
Inter-ocular distance
SBR [5] 300-W, AFLW, 300-VW 3.28 7.58 4.10
SAN [4] 300-W, AFLW 3.34 6.60 3.98
LAB [28] WFLW 2.98 5.19 3.49
Ours 300-W 3.62 541 3.97
results. We compare the facial landmark outputs of three models
trained with different data: corrected data, noisy data, and aug-
5 mented data. As shown in Figure 10, compared with correted-data
= s9 model, the noisy-data model is higher in SDD. It indicates that the
z J injected noise will increase the spatial instability of output land-
: marks. Besides, the augmented-data model shows the best perfor-

0 5 10 15

Epoch

Figure 9. NME (%) of models trained with different amounts of injected
noise. The X-axis is the epoch of training. Each line represents a series
of models acquired by injecting a fixed amount of Gaussian noise to facial
landmark locations in the training set. All models are tested on the same
300-W test set. As the epoch increases, all models converge to a similar
level of accuracy regardless of how much noise has been injected in the
training data.

Table 4. Comparison of NME (%) on 300-VW test set

Training data  Subset-1 ~ Subset-2  Subset-3
Original 5.62 4.63 9.97
Augumented 5.88 4.76 9.98
Noisy 5.55 4.54 9.87
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mance among all three models by a large margin, which indicates
our 2d-augmentation method can reduce the output jitters without
extra modifications to the model.

Conclusion

In this paper, we investigate the effect of noise in facial land-
mark detection task by modeling the noise in both the training
set and detection output, and comparing results of models trained
with different noise and training strategies. Our results show the
great potential of getting better landmark detectors trained on
public datasets with our proposed noise reduction method. Our
method is capable of handling multiple types of noise in both the
annotation and detection processes. Besides, we also discuss the
relationship between the loss function and different types of noise.
Our further experiments suggest that the noise injection could be
a good method to avoid over-fitting.
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