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Abstract

Facial landmark localization plays a critical role in many
face analysis tasks. In this paper, we present a novel local-global
aggregate network (LGA-Net) for robust facial landmark local-
ization of faces in the wild. The network consists of two convo-
lutional neural network levels which aggregate local and global
information for better prediction accuracy and robustness. Ex-
perimental results show our method overcomes typical problems
of cascaded networks and outperforms state-of-the-art methods
on the 300-W [1] benchmark.

Introduction

Facial landmark localization aims to automatically detect
and localize distinctive human facial features, which is regarded
as the basis for many face analysis tasks, such as face recogni-
tion, face model reconstruction and so on. Even though progress
has been made in recent years, facial landmark localization in the
unconstrained environment is still a very challenging problem in
computer vision. The challenges come from the large variations
of face appearance caused by different illuminations, facial ex-
pressions, angles of heads, and face image qualities.

Works done on this topic can be divided into two categories:
generative methods and discriminative methods. For generative
methods, a prior generative model for both the face shape and
appearance is generated and used. Works such as Active Appear-
ance Models (AAMs) [2, 3] and Active Shape Models (ASMs)
[4, 5] use generative methods. For discriminative methods, the
target location is directly inferred from facial appearances. Works
such as Constrained Local Models (CLMs) [6, 7], Deformable
Part Models (DPMs) [8, 9], and regression-based method [10, 11]
are discriminative methods.

With the breakthrough and development of deep learning,
Sun et al. [12] first applied a convolutional neural network in
a cascaded regression framework. Since then, more works have
been done using deep neural networks [13, 14], and some works
further exploited a cascaded convolutional neural networks frame-
work and achieved state-of-the-art performance [15, 16, 17]. All
these cascaded frameworks share the same strategy of level-wise
coarse-to-fine refinement, and have been demonstrated to have su-
perior robustness and accuracy compared with previous methods.

For all the works using a convolutional neural network cas-
cade framework so far, a first level network is trained to obtain
a rough prediction of all facial landmarks. The second or higher
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Figure 1. Mouth landmark prediction failure cases with conventional cas-
caded network. (a) One-level network prediction; (b) Conventional cascaded
network prediction; (c) Conventional cascaded network prediction; (d) Mouth
landmark prediction in the scale of whole face.
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(b) The proposed local-global aggregate network (LGA-Net).

Figure 2. Comparison of conventional and proposed cascaded network.

level subnetworks take regional cropped images as input and do
refinements within the region. However, through experiments, we
discovered that this cascade architecture does not work well for
occluded faces and deformable facial components, for example
mouths, which cause a major part of the error. Representative
examples are shown in Fig. 1. In Figs. 1(a) and 1(b), part of
the mouth is occluded by a hand, the mouth landmark prediction
from the conventional second level network is even worse than
that from the first level network. In another example, if the mouth
landmarks generated by conventional second level networks (Fig.
1(c)) are shown in whole face scale in Fig. 1(d), it is obvious that
the center facial landmarks of the nose, mouth, and chin marked
by red circles are not lined up and are shifted from the mid per-
pendicular of the face, where they are supposed to be.

The problem for the conventional cascaded network is that
with the regional cropped image as the only input, the second
level subnetworks only have local information to make the pre-
diction without any global information. Since facial landmarks

185-1



First level network

63x63x32 61x61x64 50x50x64

maxpool2x2

conv3x3, 64
stride (2, 2)

conv3x3, 64
stride (1, 1) stride (1, 1)

maxpool2x2
stride (2, 2)

64x64x3 62x62x32

31x31x32 20x20x64 27x27x64

1 Facial
! component

1
ion i conv3x3, 32 maxpool2x2
‘, regionimage e (1, 1) stride (2, 2)

stride (1, 1) stride (1, 1) stride

Figure 3. Local-global aggregate network structure.

are mutually correlated, regional landmark predictions from the
subnetworks with no global facial information may sacrifice ac-
curacy, especially for deformable facial components or faces re-
gionally occluded or corrupted. To tackle this problem, a novel
local-global aggregate network (LGA-Net) whose subnetworks
are able to accept and aggregate both local and global informa-
tion is presented. The network consists of two level of networks,
and its second level subnetworks take both local and global infor-
mation from first level network, which is illustrated in Fig. 2. The
details of the network are discussed in Section 2.

Local-global Aggregate Network

In the proposed network, the first level network takes face
images as input which is obtained by independent face detectors.
Since the first level network is trained with full faces, which con-
tain global information, it is capable of giving rough, but robust
predictions of all the facial landmarks. However, its accuracy is
very limited, especially for some deformable facial components
such as mouth and eyes. In order to get both high accuracy and
small overall model size, strategies of coarse-to-fine are involved,
which introduce the cascaded neural network architecture. At
each following cascaded level, the networks locally refine a sub-
set of facial landmarks within the corresponding regional images
obtained from the previous level.

For more robust landmark predictions in unconstrained envi-
ronments, the local-global aggregate network’s second level sub-
networks take both regional images and global facial information
from its first level as input. In this work, landmark coordinates
obtained from the previous level network are chosen as the high-
level global features. The benefit of this choice is that during
training, the global features can be obtained directly from train-
ing data ground truth instead of from previous networks, so that
each subnetwork can be trained and cascaded independently.

The detailed structure of the novel network cascade is shown
in Fig. 3. The first level network takes a 3-channel 128 x 128
face image as input and outputs an array with 136 elements which
are the 68-point landmark coordinates for the whole face. Fa-
cial components bounding boxes are generated from these coor-
dinates. The original face image is then cropped by the compo-
nents bounding boxes, re-sized to 64 x 64 and fed to the second
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level subnetworks as local information for landmark refinement.
It should be noted that a maximum aspect ratio of 2:1 is set for
the cropped component regional images. If the maximum ratio is
exceeded in both training and testing, the shorter side of the re-
gional image is forced to extend to keep a reasonable aspect ratio
for better performance.

As the global information input to the second level networks,
the first level landmark coordinates are normalized according to
each of the corresponding facial component bounding boxes and
fed to the second level subnetworks. To avoid landmark predic-
tions from first level interfering with the second level subnet-
works’ predictions too much, the corresponding landmark coor-
dinates that are going to be predicted by the second level sub-
network are excluded from the input of first level landmark co-
ordinates. To effectively aggregate local and global features, in
the second level networks, the high level features obtained from
its last convolutional layer are flattened to a one-dimensional ar-
ray, which is then concatenated with the landmark coordinates
from the first level network to form a new feature array contain-
ing both local and global features. This array is then fed to the
fully connected layers to make the refined landmark prediction.
Finally, the landmark coordinates from all second level networks
are combined with face contour landmarks from first level net-
work to form the final prediction. There are in total 4 second level
subnetworks which are left eyebrow, left eye, nose, and mouth.
In order to make the whole network smaller, the right eyebrow
and right eye are processed through the left eyebrow and left eye
subnetworks by horizontally flipping the regional image and cor-
responding landmark coordinates from the first level network.

Network Training
Datasets

To train the proposed network, several public datasets with
68-point facial landmark configurations are used, including 300-
W [1], AFW [8], HELEN [18], IBUG, LFPW [19], and MENPO
[20]. In total, 10831 distinct raw training images with 68 point
annotations are used to train and test the networks.
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| Mouth Landmark predictions | RMSE (%) |

One-level network 3.935
Conventional cascaded network 3.941
LGA-Net (Ours) 3.479

Table 1. Mouth landmark prediction accuracy of different net-
works on 300-W test dataset

Data Augmentation

For each training image, bounding box random expansion
[21], random rotation, horizontal flipping, and random Gaussian
blurring are applied. In this work the maximum bounding box
random expansion shift of all the sides is 0.3 of the width and
height of the initial face bounding box.

In this work, we manually divide the whole training dataset
into two subsets: normal augmentation set and strong augmenta-
tion set. The normal augmentation set contains common training
samples and the strong augmentation set contains rarer and more
challenging training samples such as rare and challenging head
poses, facial expressions, and illuminations. In this work, 200
augmented training samples are generated from each data sample
in the strong augmentation set; and 50 augmented training sam-
ples are generated from each data sample in the normal augmen-
tation set.

Training Detail

In order to train a specific network, the landmark coordinates
need to be normalized based on their own bounding box. For the
first level and second level networks, it is the face bounding box
and the corresponding facial component bounding box, respec-
tively. For example, consider a bounding box whose top left cor-
ner coordinate is (Xppox, Yopox)> With w and height h. (x,y) is one
landmark coordinate before normalization. Then the normalized
landmark coordinate (X;orm, Ynorm) based on the bounding box is

(xnorm7)7norm) = (x Zhbox s Y ybbox) (N
w h
The same landmark normalization process is applied on both the
first and second level networks using corresponding face or facial
component bounding boxes.

For all the networks, the Euclidean loss is chosen to be the
loss function for network training. Each network in the first and
second level is trained separately. For all the networks, the dataset
is divided into a training set which contains 80% of data samples
and a validation set, which contains 20% of the images. Adam
[22] is used for network parameters optimization.

Experimental Results

The accuracy of the landmark prediction was measured by
the point-to-point RMS error between each predicted landmark
and the ground truth annotations, normalized by the face’s inte-
rocular distance, as proposed in [8].

Since the mouth is the most complicated and deformable
component on the face and its failure cases have been shown
before, the comparison between mouth landmark predictions by
one-level network, a conventional cascaded network, and LGA-
Net are shown in Table. 1 and Fig. 4. It can be seen that
the proposed network has better performance in both robustness
and accuracy compared with the one-level network and conven-
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(a) One-level network.

(c) LGA-Net.
Figure 4. Mouth landmark prediction of different networks.

tional cascaded network. It also does well on the facial mid-
perpendicular check as discussed before, which the conventional
cascaded network handles badly.

To evaluate the performance of our facial landmark local-
ization network, the most widely recognized 300-W benchmark
testset is used. We compared our method with recent state-of-the-
art methods on the 300-W Common Subset, Challenging Subset
and Fullset in Table. 2. It shows that our method has the high-
est accuracy compared with other state-of-the-art methods. Fig.
5 gives some examples from the test dataset. It can be seen that
the test dataset contains great variations in pose, expressions, and
lighting conditions; and our network is very robust and able to
give superior accurate facial landmark predictions.

Figure 5. Landmark prediction examples using the LGA-Net.

Conclusion

In this paper, we present a novel local-global aggregate net-
work for facial landmark localization. In our method, two lev-
els of CNN are carefully designed to aggregate both local and
global information for more robust and accurate landmarks pre-
diction compared with a conventional cascaded networks. The
experimental results show the state-of-the-art performance of the
proposed method, which demonstrates its superiority over other
facial landmark localization algorithms.
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Method

| Common | Challenging | Full Set |

SDM [10] 5.57 15.40 7.52
CFAN [23] 5.50 16.78 7.69
LBF [11] 4.95 11.98 6.32
CFSS [24] 4.73 9.98 5.76
TCDCN [13] 4.80 8.60 5.54
Fan et al. [16] 4.76 8.25 5.45
Honari et al. [25] 4.67 8.44 5.41
TSR [26] 4.36 7.56 4.99
RCN+ (L+ELT) [27] 4.20 7.78 4.90
RF-CHN [28] 4.03 6.84 4.58
DCFE [29] 3.83 7.54 4.55
Chen et al. [17] 3.73 7.12 4.47
PCD-CNN [30] 3.67 7.62 4.44
LGA-Net (Ours) 3.42 6.23 4.18

Table 2. Mean RMSE (%) on 300-W benchmark Common Sub-
set, Challenging Subset and Fullset (68-point).
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