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Abstract
In this paper, we propose a new method for printed mottle

defect grading. By training the data scanned from printed im-
ages, our deep learning method based on a Convolutional Neural
Network (CNN) can classify various images with different mottle
defect levels. Different from traditional methods to extract the im-
age features, our method utilizes a CNN for the first time to extract
the features automatically without manual feature design. Differ-
ent data augmentation methods such as rotation, flip, zoom, and
shift are also applied to the original dataset. The final network
is trained by transfer learning using the ResNet-34 network pre-
trained on the ImageNet dataset connected with fully connected
layers. The experimental results show that our approach leads to
a 13.16% error rate in the T dataset, which is a dataset with a sin-
gle image content, and a 20.73% error rate in a combined dataset
with different contents.

Introduction
Printed defects such as mottle, banding, drips, drop-density-

differences, ghosting, folds, streaks, and smudges commonly ap-
pear on printed images. Visual inspection is the primary approach
to evaluating defect conditions. According to [1], there are two
different methods for an operator to inspect the defects. First,
an operator is fully occupied with one machine when the prints
come off the press. Second, an operator could check a stack of
prints instead. Thus, the operator does not need to wait; but pa-
per is wasted. However, human-based defect inspection is lim-
ited to qualitative evaluation only, and is time-consuming. Since
automated defect detection can address the limitations of human-
based inspection, many researchers and companies have been at-
tracted to the development of computer vision-based method for
defects grading and detection [2, 3, 4, 5].

Mottle is a printed defect caused by low-frequency random
non-uniformity. The mottle defect is different from banding or
any other periodic non-uniform defect that could appear at any
gray level or any color. Figure 1 shows an example where the
printed image quality is severely degraded by the mottle defect in
certain areas. From the perspective of human visual perception,
the spatial frequency, size, contrast, sharpness, illumination, and
viewing distance can affect the perception of the mottle defect.
Figure 2 provides two visual examples of mottle defects, which
are zoomed in views from Figure 1.

In this paper, we categorize the mottle defect level into 4
classes based on the defect degree:

1. Class A means the printed image is visually good. The uni-
form areas in the printed image look highly smooth and uni-
form.

*Research supported by HP Labs, Inc., Palo Alto, CA 94304.

Figure 1. A printed image with mottle defect.

Figure 2. Zoomed in views of the mottle defect. The left image has lower

density with uniform content. The right image has higher density with non-

uniform content.

2. Class B means the printed image is visually sufficient. There
are some non-uniform blotches in the printed image.

3. Class C means a lack of printed image quality. There are
some large non-uniform blotches in the image.

4. Class D means the printed image quality is very poor. There
are very large non-uniform blotches.

Previous Work on PQ Defect Assessment
Early work on print quality (PQ) defect diagnosis reported

a tool for computing the strengths of various PQ defects from
scanned pages, based on procedures recommended by an ISO
standard [6]. Tools to enable the customer to troubleshoot his
or her print quality (PQ) issues by visual inspection were also
developed. This work consisted of PQ troubleshooting pages
[7], web-based troubleshooting tools [8], and tools for simulat-
ing the appearance of print quality defects on test pages [9].
For banding, in particular, tools were developed to model the
defect and measure its strength via psychophysical experiments
[10, 11, 12, 13], as well as to estimate the period of periodic
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banding defects [14, 15, 16]. Some efforts focused on wavelets
as a tool for PQ analysis [17, 18, 19]. Later efforts considered
the visibility of PQ defects in the presence of customer con-
tent [5, 2, 1, 20, 21, 22, 23, 24, 3, 25] and the identification of
specific defects, such as mottle [52, 26, 27, 28, 29, 30], macro-
uniformity [31], fading [32, 33], ghosting [34], local nonunifor-
mities [35, 36, 37], and streaks [38, 39]. Other efforts considered
a more comprehensive set of PQ defects [53, 40, 41, 42]. More
recently, machine learning approaches (linear regression and sup-
port vector regression) have been deployed to predict the visibility
of PQ defects based on ground truth provided by human observers
[31, 43], including the image quality ruler method [44, 19, 45, 46].
The most recent efforts have included the development of a com-
prehensive system for assessing a variety of PQ defects in cus-
tomer content [47], including segmentation of the page into mul-
tiple regions of interest, according to the type of page content [48].
During the entire course of this time, a number of standards have
been developed for assessing PQ [49, 50, 51].

In the ISO/IEC 24790 international standard [50], which is
a revised version of ISO/IEC 13660 [51], a method for hardcopy
image quality is introduced which uses a single high-pass filter
that integrates many components in an area to a value. In this
method, the standard deviation of 2mm× 2mm cells for an area
larger than 20mm×20mm is calculated. This method is useful for
qualitative comparison. In another paper [52], the tile method is
modified and expanded to provide more discrete data including
different cell sizes, the average of density, standard deviation, the
average of standard deviation and the standard deviation of stan-
dard deviation, which can be used for quantitative analysis for
the mottle defect. Other traditional methods [52, 53] use the in-
formation of cluster, statistics, and wavelets for the mottle defect
characterization problem. Traditional computer vision methods
estimate the mottle defect by extracting visual features, such as
frequency and standard deviation, from the image and character-
ize the defect level using a threshold based on experimental re-
sults. The main drawback of those approaches is that they need
manually designed features for the printed defects.

Deep Convolutional Neural Networks
In recent years, the deep Convolutional Neural Network

(CNN) has become one of the most efficient methods to solve
many computer vision problems, such as segmentation [54, 55],
detection [56], tracking [57], and pose estimation [58, 59]. With
annotated data, the deep learning based-approach can treat the
computer vision problem as a regression or classification task by
extracting features in the CNN layers and joining them in fully
connected layers. In contrast to the aforementioned traditional
methods, the deep neural network can be trained in an end-to-end
manner based on the dataset without the necessity to manually
design features and thresholds.

In most traditional methods, the mottle defect level depends
on the local areas in an image with uniform color or grayscale. In
the deep learning approach, the entire image can be used as the
input to the network. The deep neural networks work on printed
images with different and non-uniform contents. The traditional
feature-based methods are limited to a specific defect. However,
deep learning methods can easily be extended to different types
of printed defects by training on different datasets.

In this paper, we propose a deep learning-based method for

printed mottle defect grading. We collected the training data
scanned from printed pages and trained a ResNet-34 model to
classify various images with different mottle defect levels.

Dataset
In this paper, we present two new datasets used for mottle

defect grading in printed pages. The first dataset is named the T
dataset with 135 images with different levels of the mottle defect,
as shown in Figure 3. In the T dataset, there are 22 images in
class A, 63 images in class B, 45 images in class C, and 5 images
in class D. All the images in the T dataset have the same “textile”
content. The second dataset is named the M dataset with 145 im-
ages as shown in Figure 4. In the M dataset, there are 87 images
in class A, 42 images in class B, 15 images in class C, and 1 image
in class D. The images in the M dataset have different contents.
All images in the two datasets are grayscale and have been anno-
tated by professional operators. Here, the classes denote different
quality levels ranging from the highest (A) to the lowest (D).

Figure 3. Examples from the T dataset which has 135 images with the

same “textile” content.

Figure 4. Examples from the M dataset which has 145 images with different

contents.

Data Augmentation and Unbalanced Datasets
The deep learning-based methods require a large amount of

training data. To increase the dataset size in our work, we apply
different data augmentation methods such as rotation, flip, zoom,
and shift, as shown in Figure 5. Some commonly used filters,
such as the Gabor filter, and Gaussian filter that were used for
augmentation of the ImageNet Dataset [60] are not used in this
work because the filters might change the feature distribution of
the mottle defects.
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Figure 5. Examples of data augmentation: a combination of augmentation

methods such as rotation, flip, zoom, and shift are used in the above images.

In both the T dataset and the M dataset, there are fewer sam-
ples in the D class, which corresponds to the poorest printed im-
age quality. An unbalanced dataset like this may cause poor clas-
sification accuracy. Several methods have been developed to in-
crease the number of data for the classes with fewer samples. The
first method uses a simulation method to generate synthetic data.
It requires an accurate simulation model of the printing process
and the mottle defect generation process, which are not available
in our case. The second method randomly under-samples images
from the original dataset. A higher sampling probability is as-
signed to the class with fewer samples to achieve balance. Al-
though it is easy to implement, the under-sampling process gets
rid of some samples and loses important information in the orig-
inal dataset. The third method randomly over-samples images
from the classes with insufficient samples. The maximum number
of duplicates is limited to avoid overfitting in the training dataset.

In this work, the images in classes with insufficient data are
over-sampled; and the maximum number of duplicates is limited
to 15. Then, the data augmentation is implemented for the training
dataset. In the final dataset, the T dataset has 192 images with 44
images in class A, 63 images in class B, 45 images in class C,
and 40 images in class D. The augmented T dataset is divided
into a training set with 154 images and a validation set with 38
images. The T dataset and the M dataset are merged to generate
the combined dataset. After augmentation, the combined dataset
has 410 images with different contents. There are 109 images
in class A, 105 images in class B, 106 images in class C, and
90 images in class D. The augmented combined dataset has 328
images in the training set and 82 images in the validation set. The
resolution of all images is 5100×6600 (600 DPI).

Network and Training Process
The ResNet-34 [61] network is used as a feature extraction

backbone. The ResNet-34 structure has several residual blocks,
as shown in Figure 8. The feature extraction network is fol-
lowed by fully connected layers. In the regression network, the

last layer has a single output, as shown in Figure 6. The four
classes [A,B,C,D] are mapped to scores [0,1,2,3]. In the clas-
sification task, the last fully connected layer has four outputs, as
shown in Figure 7. The final network is trained by transfer learn-
ing using ResNet-34 pre-trained on ImageNet [60] connected with
fully connected layers. In the first step, the ResNet-34 convo-
lution layers are frozen. Second, the fully connected layers are
trained with a specified learning rate. Third, the convolution lay-
ers are unfrozen and the whole network is retrained with a lower
learning rate. In the training process, the loss function is MSE
Loss adding dropout regularization loss for the regression task,
and cross-entropy loss adding dropout regularization loss for the
classification task. In the validation/testing stage, the dropout reg-
ularization loss is turned off.

To find the best learning rate for training, in each epoch,
stochastic gradient descent is trained with a lower learning rate
first. Then the learning rate is multiplied by a factor in each mini-
batch until a higher learning rate is reached. We record the loss
in each iteration for different learning rates and choose the learn-
ing rate with a relatively lower loss. The triangular learning rate
policy [62] is used in the training stage. The learning rate value
changes between the minimal and maximal learning rates. The in-
crease of the learning rate will force the network model to explore
a new parameter space when the loss function decreases slowly or
stops decreasing.

Figure 8. Structure of residual block.

Experimental Result
In this work, the deep CNN is trained on two different

datasets. Three experiments are trained on the augmented T
dataset and the other two experiments are trained on the aug-
mented combined dataset. In the first experiments, we train the
dataset using cropped input images and combine the results of the
small patches to generate the final prediction. We treat the de-
fect grading problem as a regression or a classification problem to
explore the effect on the prediction accuracy. In the last two ex-
periments, the combined dataset is used to further prove that the
network can be generalized to mottle defect grading with different
contents.

Prediction Using Cropped Patches
In the first experiment, the original input image in the T

dataset is cropped to 600× 600 resolution patches without over-
lap. The whole T dataset is cropped into 11880 patches in four
classes: [A : 22 × 88,B : 63 × 88,C : 45 × 88,D : 5 × 88]. The
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Figure 6. Network structure for mottle defect regression task.

Figure 7. Network structure for mottle defect classification task.

training set has 9504 images and the validation set has 2376 im-
ages, respectively. The error rate on the training set is 38.55%.
The confusion matrix is shown in Figure 9.

Figure 9. Confusion matrix for prediction using cropped patches. The x-

axis is the prediction of the networks and the y-axis is the ground truth of the

data.

In the prediction stage, the original image is cropped to 88
patches as shown in Figure 10. The 88 patches are fed to the con-
volutional neural network to output a 88 dimension score vector.
The final prediction is generated by averaging or majority vot-
ing over the score vector. On the validation set, the error rate is
33.33% by the average score method and 37.04% by the majority
voting method. The result shows that the accuracy of using local
cropped patches in not satisfactory.

Figure 10. Defect prediction using cropped patches.

Mottle Grading Regression and Classification on
T dataset

The second and third experiments are performed on the T
dataset. In the regression task, the input is resized to 1000×1000
resolution and the output is a single score mapped to four classes
[A, B, C, D]. We first use the learning rate finding as shown in
Figure 11, which suggests a learning rate of 2e-2. Then we freeze
the convolutional layers, unfreeze the fully connected layers, and
train for 40 epochs. Finally, we unfreeze all layers and train with
a lower learning rate in the range [3e-5, 2e-2] for 5 epochs. The
batch size is 16 in the training process. Figure 12 shows the loss
in the training and validation sets. The best root mean squared
error for regression is 0.45, as shown in Figure 13. The final error
rate is 21.05%.

Figure 11. Finding the learning rate for the regression method on the T

Dataset.
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Figure 12. Loss for regression on the T training and validation sets. The

dropout rate in the training stage is 50%. The loss in the training stage is

calculated by adding MSE loss and the dropout regularization loss of the

weights. The loss in the validation stage is MSE loss only.

Figure 13. Root mean squared error for regression on the T dataset.

In the classification task, the last fully connected layer has
four outputs indicating four classes. The loss for the classifica-
tion task is shown in Figure 14. The confusion matrix is shown
in Figure 15. The error rate is 13.16%, which is better than the
regression task in the T dataset with the “textile” content images.

Figure 14. Loss for classification in the T training and validation sets. The

dropout rate in the training stage is 50%. The loss in the training stage is

calculated by adding cross-entropy loss and the dropout regularization loss

of the weights. The loss in the validation stage is cross-entropy loss only.

Figure 15. Confusion matrix for classification on the T dataset. The x-axis

is the prediction of the network, and the y-axis is the ground truth of the data.

Mottle Grading Regression and Classification on
the Combined Dataset

The second and third experiments are performed on the com-
bined dataset. Mottle grading regression and classification on the
combined dataset have a setting similar to that of the tasks on the
T dataset. The combined dataset is more challenging, since it has
a large variety of image contents. In the regression task, Figure
16 shows the loss in the training and validation sets. The best root
mean squared error for regression is 0.49 as shown in Figure 17.
The final error rate is 21.95%. In the classification task, the loss
for classification is shown in Figure 18. The confusion matrix is
shown in Figure 19. The best error rate is 20.73% which is similar
to the regression task.

Figure 16. Loss for regression in the combined training and validation sets.

The dropout rate in the training stage is 50%. The loss in the training stage

is calculated by adding MSE loss and the dropout regularization loss of the

weights. The loss in the validation stage is MSE loss only.

Figure 17. Root mean squared error for regression on the combined

dataset.

IS&T International Symposium on Electronic Imaging 2020
Imaging and Multimedia Analytics in a Web and Mobile World 184-5



Figure 18. Loss for classification in the combined training and validation

sets. The dropout rate in the training stage is 50%. The loss in the training

stage is calculated by adding cross-entropy loss and the dropout regulariza-

tion loss of the weights. The loss in the validation stage is cross-entropy loss

only.

Figure 19. Confusion matrix for classification on combined dataset. The

x-axis is the prediction of the network, and the y-axis is the ground truth of

the data.

Conclusion
In this paper, we propose a new deep learning-based method

for printed mottle defect grading. Different from traditional meth-
ods such as feature extraction using ∆E variation, our method uti-
lizes a CNN for the first time to extract the feature automatically
by stochastic gradient descent. Transfer learning and data aug-
mentation methods are used to train a robust mottle defect grader.
The proposed deep learning mottle characterization method can
be used in mottle grading not only for the test image with the same
uniform content as seen in the training set but for printed images
with different contents. The mottle grading method achieves a
13.16% error rate in the T dataset with the same content and a
20.73% error rate in the combined dataset with different contents.
The proposed method can also be generalized to other printed de-
fects, such as streaks given an annotated streak dataset.
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