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Abstract

Change detection in image pairs has traditionally been a
binary process, reporting either “Change” or “No Change.” In
this paper, we present LambdaNet, a novel deep architecture for
performing pixel-level directional change detection based on a
four class classification scheme. LambdaNet successfully incor-
porates the notion of “directional change” and identifies differ-
ences between two images as “Additive Change” when a new ob-
ject appears, “Subtractive Change” when an object is removed,
“Exchange” when different objects are present in the same loca-
tion, and “No Change.” To obtain pixel annotated change maps
for training, we generated directional change class labels for the
Change Detection 2014 dataset. Our tests illustrate that Lamb-
daNet would be suitable for situations where the type of change
is unstructured, such as change detection scenarios in satellite
imagery.

Introduction

Detecting changes in images of the same location observed
at different times is important in surveillance and security, disas-
ter management, demographic estimation, crop monitoring, and
other important applications. Change detection is a time consum-
ing activity that was once relegated exclusively to humans, as it
required a complex set of skills including object detection, con-
textual analysis, and semantic segmentation. Deep convolutional
neural networks (CNNs) [1] [2], [3] have become the backbone
of many advanced applications, such as self-driving vehicles [4],
image-based medical diagnostics [5], and other tasks [6], includ-
ing change detection [7], [8], [9]. Existing approaches generally
fall into one of two categories: structured and unstructured tech-
niques. Structured methods [9] are designed to detect object-level
changes in image pairs. Unstructured methods [7] identify any
type of “significant” change of a generic nature that goes beyond
object classes. Our LambdaNet architecture attempts to bridge
this gap, incorporating structured, object specific change detec-
tion, and unstructured, general change detection.

LambdaNet is a new type of Siamese change detection net-
work, that is capable of processing directional change informa-
tion, i.e., determine additive or subtractive changes. It incorpo-
rates change directionality into the output segmentation map to
identify areas of an image where objects were added or removed,
instead of treating them as a binary change. Furthermore, by train-
ing on data that is labelled in a class-agnostic manner, LambdaNet
is able to generalize to other significant changes. An example of
the LambdaNet performance for directional change detection is
illustrated in Figure 1.

Figure 1. Example of directional changes detected by LambdaNet. Upper

Left: past image; Upper Right: present image; Lower Left: Ground Truth;

Lower Right: change prediction. Red indicates additive change and blue

indicates subtractive change.

Related Work
Deep learning techniques have been used for both structured

and unstructured change detection. In [7], an AlexNet architec-
ture [1], pretrained on ImageNet [10], was utilized for unstruc-
tured change detection. First, the image pair was fed in the net-
work and the activation maps from various layers were extracted
as feature representations. Then a Euclidean distance measure-
ment, made between the two activation map stacks, was thresh-
olded to obtain a change map. While simple to implement, this
method relies purely on Euclidean distance thresholding to deter-
mine a change, and it is void of any semantic content.

The inspiration for LambdaNet is drawn from Siamese net-
works, semantic segmentation, and multi-scale representations.
Semantic segmentation is important to the LambdaNet architec-
ture, as it allows for pixel-level localization of changes between
image pairs. One of the first deep learning-based semantic seg-
mentation techniques is the deconvolutional network, introduced
by Noh, et al. [11], which created the concept of a fully convolu-
tional autoencoder. The encoder portion of the network is based
on the VGG-16 architecture [2], and is responsible for reducing
the input image down to a feature representation. Instead of out-
putting a classification label for the image, the encoder output is
fed into a decoder network that mirrors the VGG-16 encoder. The
decoder expands its input back to the original dimensionality, as-
signing a class label at each pixel in the image.

This network architecture is enabled by the use of unpooling
and deconvolutional layers. The unpooling layer is not utilized
in LambdaNet due to architectural constraints, but the deconvo-
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Figure 2. Architecture of Res2Net module [14].

lutional layer plays a key role. This layer allows for the network
to learn an upsampling function that expands a single pixel into a
region of pixels via a learned filter.

Siamese deep neural networks were popularized by Koch,
et al. [12] for one-shot learning. Siamese networks take their
name from their symmetric channel construction, placing identi-
cal network components in parallel. This makes them well-suited
for comparison-oriented applications, such as tracking [13]. Op-
erating by passing two data samples to their parallel channels,
Siamese networks generate a pair of intermediate outputs that
serve as feature representations. These outputs can be compared
to each other using a simple Euclidean distance, or a trained de-
cision network [8]. In a more complex architecture, the decision
network can be replaced with a deconvolutional decoder [9].

Recently, the Res2Net module [14] was introduced as a
promising multi-scale backbone architecture that achieves im-
proved representations. This type of multi-scale representation
can be useful for change detection, as changes between image
pairs can be of any size. The Res2Net architecture is shown in
Figure 2. First, the input activation map is convolved with a 1×1
set of filters to yield activation map X, which is split into S = 4
groups, along the channel dimension. The activation map Y rep-
resents an output buffer for the multi-scale convolutions repre-
sented by the kernels K. Forking and chaining kernels results in a
series of receptive fields of multiple sizes sharing a common cen-
ter point. Finally, the activation map Y is convolved with a set of
1×1 filters to yield activation map Z, which is summed with the
input map to yield the output activation map.

Methodology
The LambdaNet architecture, shown in Figure 3, incorpo-

rates Siamese style encoder channels, a feature fusion node and
a decoder network. The Siamese portion of the network, shown
in green, consists of a pair of VGG encoders with shared weights.
These encoders are pre-trained on ImageNet, which allows for the

Figure 3. High level overview of the LambdaNet achitecture.

extraction of a diverse set of features. The outputs of the encoders
are passed into a Res2Net module [14], which generates feature
representations at multiple scales. At the fusion node, concatena-
tion is used to unify these two feature maps before passing them to
the decoder stage. The decoder stage consists of another Res2Net
layer, followed by a residual decoder, which generates the final
directional change segmentation map. When training the Lamb-
daNet architecture, the learned structures in the network are the
Res2Net layers and the residual decoder.

Directional Change Detection
In our experiments, we used the Change Detection 2014

(CD2014) dataset [15], which consists of 53 videos, split across
11 categories. These videos are from RGB or thermal sensors,
captured at either street level or from an elevated position in a va-
riety of resolutions and conditions, including heavy snowfall, day
and night scenes, and locations with high levels of background
noise. The ground truth of CD2014 takes the form of segmen-
tation maps, with one map corresponding to each frame of the
video. The labels are class-agnostic, in the sense that each pixel
is labelled as either a Change or No Change, without explicitly
labelling each pixel with a class name. Secondary information
is labeled in the ground truth change masks, such as a shadow
region, unknown region (due to motion blur around moving ob-
jects), or “Don’t Care” regions.

Figure 4 shows sample images along with their correspond-
ing ground truth masks. In each of the truth frames, the changes
are labelled with white pixels. Surrounding the target pixels is
a thin border of light grey, indicating a “Don’t Care” region to
account for motion blur. The bottom truth image contains a large
block of dark grey pixels, indicating a portion of the image outside
the region of interest. In the second row truth image, the darkest
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Figure 4. Sample images from the Change Detection 2014 dataset [15].

The left column contains sample images, while the right column consists of

pixel level ground truth.

grey region marks a shadow cast by the target object. This shadow
also has a thin border of “Don’t Care” light grey pixels. These ex-
amples illustrate the intricacies of ground truth labeling for this
dataset.

In the CD2014 dataset, change detection is considered a bi-
nary classification problem, i.e. pixels are labeled as change or no
change, which does not capture directional change. Under the di-
rectional change paradigm, four classes are used to denote change
at the pixel level: Additive Change, Subtractive Change, Ex-
change, and No Change. These classes are derived from both the
per-frame pixel classification, with consideration to which frame,
either past or present, the change occurs. An Additive Change
class label means that the given pixel did not belong to a target in
the past frame, but belongs to a target in the present frame. For a
Subtractive Change class label, the situation is reversed. For the
Exchange class, a different target is present at the same location.
A No Change class indicates that there is no change between the
past and present frame.

The generation of new ground truth for directional change
detection was accomplished via a logical-OR-like operation be-
tween pairs of binary change masks. One mask was designated as
the past mask, while the other was taken as the present mask. The
operation described above was then applied to the image pair to
obtain the fused multi-class ground truth. The source masks were
then reversed and the same operation was applied.

Training
LambdaNet is trained in a similar manner to semantic seg-

mentation networks. The primary hyperparameters of interest are
the learning rate, that was set empirically to 10−5, and the gradient
scalars Gc for change class c, corresponding to Additive Change,
Subtractive Change, and Exchange. The No Change class weight
was set to one. These scalars were computed using:

Gc(x) = ln
(

∑c ∑p x

∑p x[c]

)
(1)

In Equ. (1) the numerator consists of the total number of pixels
in the dataset for all classes, while the denominator is the total
number of pixels in change class c. A natural log is applied to
this ratio to constrain the upper bound of the per-class scale fac-
tors, preventing the positive classes of highly imbalanced datasets

from overwhelming the negative class. These scale factors were
used in the cross-entropy loss function to enhance the gradients of
the change classes and equalize the extreme imbalance of change
classes with respect to the No Change class. The scaled cross-
entropy loss function is shown in Equation (2).

LCE(x,c) = Gc(−x[c]+ log(∑
p

exp(x[p]))) (2)

During training, the input image pairs are applied to the net-
work in both “directions” to avoid bias during training. This
means that first, the past image is shown to the left input and the
present image shown to the right input, and then the inputs are
reversed. This type of training was done to prevent the decoder
from overfitting to changes in one direction. It also allowed the
network to observe both change “directions” equally, while dou-
bling the number of Exchange samples, which is the least com-
mon class. Sample training triplets are shown in Figure 5.

Past Frame Present Frame Color Truth

Figure 5. Sample colorized triplet entries for multi-class change detection.

The left column is the past frame, the center column is the present frame,

and the right column is the fused ground truth map. Best viewed in color.

Red indicates Additive Change, blue indicates Subtractive Change, green

indicates Exchange and Black indicates No Change.

Results and Discussion
Evaluation of LambdaNet focused on directional change de-

tection by training via cross-validation on random data splits. Ta-
ble 1 shows results for LambdaNet trained for directional change
detection and LambdaNet operating in binary change detection
mode, trained on the same random dataset splits.

Directional change detection results are shown in Table 1.
These results were generated by treating each directional change
class as a one versus all binary classification problem. For each
case, the chosen metrics were recall, precision, F1-Score, and the
mean intersection over union (mIOU). Recall measures the frac-
tion of correctly marked change pixels, while precision calculates
what fraction of pixels that were predicted as changes were ac-
tually true changes. The F1-Score combines the precision and
recall metrics as a harmonic mean to give a single measure for the
change class of interest. The mean intersection over union gives a
raw number of the quality of the segmentation regions compared
to the ground truth regions.

Inspection of Table 1 shows that the Additive and Substrac-
tive Change metrics compare favorably with the binary Lamb-
daNet’s version of change detection. This is especially true for
the F1 score and precision. Furthermore, the similarity of the AC
and SC metric scores indicate that LambdaNet has learned both
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Table 1. Results comparing the directional change LambdaNet to the binary change LambdaNet. The Binary (BC) class row shows
results for the binary version of LambdaNet. The Average row shows the average of the directional LambdaNet results for Additive
(AC), Subtractive (SC), and Exchange (EC) classes.

Change Class Recall Precision F1-Score Mean IoU
Binary (BC) 0.7292 0.6395 0.6682 0.5137
Additive (AC) 0.5940 0.6447 0.6150 0.4504
Subtractive (SC) 0.6329 0.6399 0.6288 0.4660
Exchange (EC) 0.4217 0.1955 0.2452 0.1556
Average 0.5495 0.4934 0.4963 0.3573

Figure 6. Sample frames from video of a child removing bottles from a

table. Upper left is past frame; Upper right is present frame; Lower left is

Ground Truth; Lower right is change prediction.

of these directional classes equally well. On the other hand, the
EC class performs poorly, indicating that the directional change
scheme has difficulty identifying object swaps. An exchange can
be a replacement of a change target with another target. How-
ever, this type of replacement can also occur in the background
No Change class. As a result, the network is left to “guess” at the
nature of the change, and this results in errors. The network may
occasionally identify an unstructured change in the background
as an Exchange, and thus, the primary source of accuracy degra-
dation is the EC class, due to these unstructured changes.

Figure 6 illustrates unstructured directional changes in im-
ages analyzed with LambdaNet. Since the change marks indi-
cate differences between the image pairs, the LambdaNet de-
coder learns a separation function that ignores common elements
between images and only highlights their differences. Figure
6 shows a video of a child clearing a table, with unstructured
changes for the bottles that are detected by LambdaNet even
though they are not present in the ground truth. It also appears
that while the desired unstructured behavior is present, it is not
strongly associated with a particular change class, as evidenced
by the mix of classes used to mark the moved bottles.

Directional change may be viewed as a refined version of
the traditional binary change detection. As can be seen in Figure
7, when the three color directional change mask is flattened into
a single channel, the result is very similar to the binary change
case. Quantitatively, the mean square error between the flattened
directional change mask and the binary mask is 1.21.

Figure 7. Comparison of binary and directional change masks. Top row

consists of past and present frames. Bottom row shows, from left to right,

the binary change, directional change, and binary change after flattening the

directional change mask.

Figure 8. Example of directional change where the ground truth contains a

significant “Don’t Care” region shown in gray. Upper left is past frame; Upper

right is present frame; Lower left is Ground Truth; Lower right is change

prediction.

The most significant issue in evaluating LambdaNet is that
its unstructured behavior is often penalized in the metric scores
as a false positive. In many instances, this is due to the way the
ground truth is labelled in the CD2014 dataset. Several videos
have large “Don’t Care” regions where otherwise valid change
targets are masked as “No Change” areas. In other cases, some
change targets are only partially segmented, leading to incomplete
learned representations. This is particularly visible in the ground
truth image in Figure 8 and yields a lower quality segmentation
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Figure 9. Example with strong illumination and small targets, showing cars

driving off a highway exit at night. Upper left is past frame; Upper right is

present frame; Lower left is Ground Truth; Lower right is change prediction.

for the structured change of the vehicles.
Limitations of LambdaNet include that it is sensitive to in-

tense changes in illumination and prone to errors for very small
targets. The sensitivity to illumination changes is likely related
to the network’s ability to detect unstructured changes. Figure
9, shows an failure example where change detection is marked
due to bright illumination. This occurs frequently in the “Night
Videos” category, due to extreme glare from car headlights or
streetlights. LambdaNet also struggles to identify changes be-
tween objects that are extremely small and/or occluded, also
shown in Figure 9. These are the situations that a human would
also find the most difficult.

Lastly, LambdaNet’s performance (in binary mode) was
compared with that of a purely unstructured version of change
detection that relied exclusively on thresholding the encoder net-
work representations. Under this paradigm, a pair of images were
passed through the dual encoders and their activation maps were
subtracted from each other, after bilinear interpolation to the orig-
inal image size. The difference map was summed in the channel
dimension and thresholded to produce a binary change map. Sam-
ple outputs are shown as Figures 10 and 11.

In Figure 10, the threshold was set manually to obtain the
best result. In this case, both segmentations, obtained using
threshold and the binary LambdaNet, are qualitatively very simi-
lar. However, the thresholding method fails when the background
is dynamic, as shown in Figure 11. The threshold-based technique
marks background changes as significant changes, while Lamb-
daNet rejects such background noise. This is because LambdaNet
not only learns what a valid change consists of, it also learns what
changes are insignificant and rejects those in the final prediction.

Conclusion
We presented LambdaNet, a fully convolutional network

consisting of Siamese encoders with multi-scale modules, a fu-
sion node and a decoder network, that was able to successfully
identify additions and removals of target objects from pairs of in-
put images. Additionally, LambdaNet displays ability to identify
unstructured changes without explicit labels. This allows the net-
work to identify changes in image pairs that were not originally

Figure 10. Comparison of threshold results (left) and LambdaNet results

(right) for binary change detection with a change target present. For each

side: Upper left is past frame; Upper right is present frame; Lower left is

Ground Truth; Lower right is change prediction.

Figure 11. Comparison of threshold results (left) and LambdaNet results

(right) for binary change detection with dynamic background. For each side:

Upper left is past frame; Upper right is present frame; Lower left is Ground

Truth; Lower right is change prediction.

labelled in the ground truth, making LambdaNet suitable for ap-
plications where prior knowledge of the environment may be lim-
ited.
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