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Abstract
In this paper, we demonstrate the use of a Conditional Gen-

erative Adversarial Networks (cGAN) framework for producing
high-fidelity, multispectral aerial imagery using low-fidelity im-
agery of the same kind as input. The motivation behind is that it is
easier, faster, and often less costly to produce low-fidelity images
than high-fidelity images using the various available techniques,
such as physics-driven synthetic image generation models. Once
the cGAN network is trained and tuned in a supervised manner
on a data set of paired low- and high-quality aerial images, it
can then be used to enhance new, lower-quality baseline images
of similar type to produce more realistic, high-fidelity multispec-
tral image data. This approach can potentially save significant
time and effort compared to traditional approaches of producing
multispectral images.

Introduction
In remote sensing applications, having access to high-

fidelity, multispectral aerial imagery is necessary for various types
of scene analysis. Traditionally, such imagery is collected using
multiple sensors from satellites, aircrafts, or Unmanned Aerial
Vehicle (UAV) platforms, or is generated using physics-driven
softwares/models capable of producing realistic multispectral im-
agery, such as DIRSIG [10]. The latter approach, when appropri-
ate, has some drawbacks. Specifically, the amount of time and
effort involved in designing and rendering of high-fidelity im-
agery can still be very high. This time can be significantly re-
duced by producing less accurate or approximate simulations of
aerial scenes, but doing so can significantly reduce image fidelity.
It is therefore important to design an approach to reduce this time
and effort, without significantly compromising the quality of the
image data.

The objective of this research is to use algorithms which,
given a data set pairing low- and high quality multispectral im-
ages, can learn an accurate mapping between the two. Once such
a mapping is learned, it can then be used on new low quality im-
ages of similar content, to generate corresponding high quality,
realistic images. The trained algorithm should be able to generate
R, G, B as well as other spectral channels in the produced data
set, using the same common framework. We look at this problem
from image-to-image translation perspective, where given a low
quality image, we try to translate it into a higher quality image.

Related work
Generative Adversarial Networks

Among various generative modelling methods, GAN as first
proposed by Goodfellow et al. [1] and its various improved
derivatives have become the most popular because of their ability

to generate high quality data. GANs aim to model the data dis-
tribution of real samples by forcing the generated samples to be
as similar to the real samples as possible. These networks lever-
age adversarial training, where the Generator is trained to produce
”fake” samples that are indistinguishable from ”real” samples,
while the Discriminator is trained to accurately distinguish be-
tween generated ”fake” samples and ”real” samples. The Genera-
tor is penalized based on the feedback from Discriminator, hence
it can be said that the Discriminator acts as a ”learned” loss func-
tion rather than a task-specific, hand-crafted loss, which makes
this framework general purpose and useful across various differ-
ent generative tasks. Simply put, GANs can generate data from a
random noise vector given as input.

In [3], A. Radford et al. first proposed the DCGAN architec-
ture which was specifically aimed at modelling the distribution of
image samples. They proposed various improvements over GAN,
one of which was to use strided Convolutions (in Discriminator)
and fractional-strided Convolutions (in Generator), also referred
to as Deconvolutions or Transposed Convolutions. This introduc-
tion of Convolutional layers, owing to their success on various
vision tasks, coupled with other improvements resulted in much
higher quality generated images than vanilla GANs[1]. This work
in addition to [1] drew a lot of attention and lead to many other
papers introducing newer ideas such as improved objective func-
tions [11], stabilized training on larger resolution images [12][13]
and more, further improving image quality.

Conditional GANs and image-to-image translation
In [1], Goodfellow et al. discussed the idea of adding more

information to the Generator input signal in addition to the ran-
dom noise vector to get desired outputs. This idea was further
explored in the first Conditional GAN paper [2] by Mirza et al,
where they give an image as an input to the Generator network,
and adapt the output based on this image. Thus, in a GAN, the
Generator G learns the mapping from a random noise vector z to
an output image y, G : z→ y, whereas in a cGAN, G learns the
mapping from a random noise vector z as well as an input image
x to an output image y, G : {x,z} → y. The training of a cGAN
network hence requires the input and output image pairs {x, y},
making it a supervised learning algorithm, in contrast to the un-
supervised nature of GANs.

Image-to-image translation is defined as a task of translating
one representation of an image to another, given sufficient train-
ing data [4]. Conditional GANs are suitable for this task since
they can efficiently learn a mapping from input images to output
images. A lot of work has been done in image-to-image transla-
tion in recent years. In [4], P. Isola et al. use a Conditional GANs
framework capable of translating images from arbitrary input to
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arbitrary output domains, exploiting the fact that the loss func-
tion (the Discriminator network) quantifying the difference be-
tween generated and real images, is also learned. The proposed
Pix2Pix architecture consists of a Generator based on a U-Net [9]
encoder-decoder architecture for generating images conditioned
on input images, and a PatchGAN/Markovian Convolutional Dis-
criminator as described in detail in [5], which works by classify-
ing smaller 70×70 patches in an image as ”real” or ”fake” instead
of classifying the entire image. The L1 loss between Generated
and Real images was also added to the cGAN adversarial loss,
to capture pixel-level differences. This work was one of the ma-
jor breakthroughs in image-to-image translation and established
a strong baseline for comparison in future papers. Later, Wang
et al. proposed a major improvement [7], over the Pix2Pix base-
line in their Pix2PixHD architecture, which addresses the prob-
lem of unstable training and poor quality when generating higher
resolution images (greater than 256× 256). This architecture is
one of the best state-of-the-art methods existing today for high-
resolution conditional image synthesis, which we also use as a
baseline for our work. The details of the architecture and the spe-
cific modifications we did over it for our task are discussed in the
Method section.

Lastly, in their paper [8], Milz et al. use the same Pix2Pix
cGAN as in [4] on Multispectral Aerial Images. They do various
interesting aerial image-to-image translation experiments that are
relevant to remote-sensing applications. These include transla-
tion from one spectral domain to the other and vice-versa, such
as Aerial RGB↔Semantic Map, Aerial RGB↔LiDAR Height
Map, Aerial RGB↔LiDAR Elevation Map and 2D Object Box
labels↔Aerial RGB. These experiments demonstrate that cGANs
can extract features from not just RGB but also other spectral
channels. Our work is similar to this idea but we don’t just work
with a single spectral domain in inputs and outputs, but demon-
strate that aerial images with multiple spectral channels can be
generated using cGANs, conditioned again on multispectral im-
ages. Such multispectral image-to-image translation with cGANs
hasn’t been explored before and is a novel area of research which
can lead to development of new techniques that are useful for var-
ious remote-sensing applications.

Method
As mentioned before, we use the Pix2PixHD [7] architec-

ture as a baseline and modify it as per our needs. This deci-
sion was made after initial experiments with several different ar-
chitectures, and among them the Pix2PixHD architecture gave

Figure 1. The Generator architecture. Fi, RBi and Bi denote the Convolutional front-end, Residual Blocks, and the Deconvolutional back-end
of each network respectively. ”Conv” denotes the final convolution layer which gives the output image.

the best qualitative results. The architecture details are as fol-
lows. The architecture uses a coarse-to-fine Generator and a
multi-scale Discriminator. The coarse-to-fine Generator G con-
sists of a global generator network G1 and one or more local en-
hancer networks {G2,G3, ...}. The Generator G is hence given
as G = {G1,G2,G3, ...}. If there are n such networks, the last
network Gn operates on the original image of resolution N×N,
while each preceding network operates on a down-sampled image
of resolution 1

4
th

that of its succeeding one. Thus, Gn−1 operates
at N

2 ×
N
2 , Gn−2 at N

4 ×
N
4 , and so on. This way, the first network-

the global generator- extracts features at the coarsest scale while
the last local enhancer network extracts features at the finest scale.
Each Gi consists of a Convolutional front-end, followed by a num-
ber of Residual blocks [6], and ending with a Deconvolutional or
Transposed Convolutional back-end. In addition to these 3 com-
ponents, a final convolution layer is applied only to the output of
the last local-enhancer Gn to get the output image. For global
generator G1, the image is simply passed as input and processed
sequentially through these three components to obtain the output,
but for each local enhancer Gi; i ≥ 2, the output of the front-end
is element-wise added with the output of the last feature-map of
Gi−1’s back-end before feeding into Residual blocks. This addi-
tion lets us add information extracted by Gi−1 at a smaller scale
to Gi before it extracts its own features. Such coarse-to-fine struc-
ture helps accumulate information from image at multiple-scales,
which works very well for generating high-resolution images.

A similar idea is used in the multi-scale Discriminator, which
consists of multiple networks, given as D = {D1,D2,D3, ...}. All
Di have the same PatchGAN architecture similar to the one de-
scribed in Pix2Pix [4], but operate on different scales. D1 is
trained to classify image as ”fake” or ”real” at scale N×N, D2
at N

2 ×
N
2 , D3 at N

4 ×
N
4 , and so on. The losses of all the Dis are

added together, which captures the classification loss at various
scales from coarsest to finest.

In our final architecture used for training, we make several
changes to the original architecture used in [7]. These changes
were made taking various factors into account, such as the reso-
lution of images, number of spectral channels in images, training
times and observed qualitative results. In our architecture, we use
two local enhancer networks in the coarse-to-fine Generator in
addition to the global generator, and three PatchGAN networks
in the multi-scale Discriminator. Each network in the Generator
consists of three Downsampling and three Upsampling layers in
the Convolutional front-end and Deconvolutional back-end respe-
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Figure 2. Architecture of the three Discriminators. Input is
a 70× 70 patch of the image. Conv k denotes a Convolution-
BatchNorm-LeakyReLU layer with k filters, 4x4 kernel, stride=2.
As an exception, BatchNorm is not used in the first layer. The
leakyReLUs have a slope=0.2. The last ”Conv” layer gives a 1-d
output which is used for MSE calculation.

ctively. The global generator contains six Residual blocks in be-
tween the front-end and back-end layers, while each local en-
hancer contains three such blocks. The schematic diagrams of the
Generator and Discriminator architectures are shown in Figure 1
and 2 respectively.

The objective function contains two components. Lets say
the dataset contains pairs {xi,yi} of images, where xi is the input
low-quality image and yi is the corresponding high-quality image.
The first component is the normal cGAN adversarial loss, which
for three discriminators in our case can be written as:

∑
i=1,2,3

VAdv(G,Di) (1)

where the function VAdv(G,Di) is given by:

VAdv(G,Di) =E(x,y)[logDi(x,y)]+Ex[log(1−Di(x,G(x)))] (2)

In addition, we also use a feature matching loss taken from Dis-
criminator as recommended by the authors in [7]. This loss is cal-
culated by computing the L1 loss between the intermediate layer
features of Discriminators for real and generated images. When
the Generator is penalized on this loss, it is further encouraged
to produce realistic-looking images. If there are T total layers in
each Discriminator and the kth layer in ith Discriminator is repre-
sented as D(k)

i , this loss is given by:

VFM(G,Di) =E(x,y)

T

∑
k=1

1
Nk
‖D(k)

i (x,y)−D(k)
i (x,G(x)) ‖1 (3)

This loss is added to the adversarial loss, and the final objective
function is given by:

∑
i=1,2,3

VAdv(G,Di)+λ ∑
i=1,2,3

VFM(G,Di) (4)

where λ is a scalar weight assigned to the feature matching loss,
and λ = 20 in our case. For training this architecture, the whole
objective needs to be minimized with respect to the Generator
and the adversarial loss needs to be maximized with respect to the
Discriminators. Thus, the final learning problem is given as:

min
G

(
max

D1,D2,D3

(
∑

i=1,2,3
VAdv(G,Di)

)
+λ ∑

i=1,2,3
VFM(G,Di)

)
(5)

Experiments and results
Datasets

We have created two datasets and conduct experiments on
both. In both the datasets, we have pairs {xi,yi} of 512×512 im-
ages, where each xi and yi is a low-quality and the corresponding
high-quality image respectively. These images are generated us-
ing a physics-driven scene simulation software called DIRSIG5
[10]. The images generated are randomly extracted from a realis-
tic simulation of a large aerial scene of an urban setting consisting
of houses, trees, terrain, vehicles, buildings, and several other ob-
ject types, each with multiptle different, diverse geometries. In the
first dataset, the images contain R, G, B channels, and also Edge
maps and Semantic maps. The Edge maps contain 1s on the pix-
els corresponding to edges of the objects and 0s everywhere else.
These were extracted from the corresponding instance maps, and
are useful to guide the Generator in producing sharp object edges.
Similarly, the Semantic maps are per-pixel labelled maps, wherein
each pixel is labelled with one of the 140 geometries in the scene.
These help the Generator in generating specific objects in the im-
ages more accurately. The low-quality images in this dataset have
a poor quality of textures across all the objects in the scene, while
the high-quality images have the best quality, realistic textures.
We will refer to this dataset as Dataset1.

In the second dataset, the images contain R, G, B, Near-
infrared, Red-edge, LiDAR channels as well as Edge and Seman-
tic maps. DIRSIG5 uses ray-tracing which traces the light rays
reaching a pixel to their sources, to solve for the value of that
pixel. This solution is effectively the Monte-Carlo integral of all
the light paths reaching the pixel, and hence the fidelity of the
solution depends on the number of paths traced [10]. Using less
no. of paths per pixel (or samples) gives a lower quality, approx-
imate but faster solution. On the other hand, using a large no. of
paths per pixel gives a more accurate, high-fidelity solution at the
cost of higher computation time. The low-quality images in this
dataset were obtained by fixing the no. of such samples taken per
pixel to one. The high-quality images on the other hand were ob-
tained with the default DIRSIG5 adaptive sampling, wherein the
no. of samples may range from 20 to 100, depending on the com-
plexity of the pixel. The time taken for generating 2000 512×512
low-fidelity images was approximately 1 hour and 10 minutes, as
compared to upwards of 9 hours for high-fidelity images. Hence,
it can be said that a cGAN model capable of accurately translating
the low-fidelity images to high-fidelity can potentially save hours
of computation time taken to generate high-fidelity images using
software such as DIRSIG5. We will refer to this second dataset
as Dataset2. Both these datasets have a total of 2000 image pairs,
out of which 85% (1700) are used for training, and the rest 15%
(300) are used for testing.

Experiments
We present visual qualitative results obtained on both the

datasets. In both the cases we start with a learning rate of 1e−4
and train with this rate for first 20 epochs. After 20 epochs, we
linearly decay the learning rate every epoch and train for 80 more
epochs. A batch size of 2 was used in both the cases. We also use
Batch Normalization layers in both the Generator and Discrimina-
tor networks. For Dataset1, the task is to translate the images with
poor texture quality to those with higher texture quality. Some ex-
amples of input, generated and ground-truth images are shown
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in Figure 3. It can be observed from these visualizations that
the model successfully learns to fill the low-quality texture pixels
with higher quality, realistic-looking textures. For Dataset2, the
task is more complex and challenging. Here, we take low-quality
input images with 8 channels: {R, G, B, Near-infrared, Red-
edge, LiDAR, Edge-maps, Semantic-maps} and try to generate
higher-quality images with 5 channels:{R, G, B, Near-infrared,
Red-edge}. The Edge-maps and Semantic-maps are only used as
inputs to guide the Generator and are not produced in the outputs.
After training, the model learns to map the low quality 8-channel
inputs to the higher quality 5-channel outputs. We also tried train-
ing the network with several other combinations of input and out-
put channels for this dataset and observed their results. Among all
these experiments, the aforementioned experiment was the most
complex one, and produces good results on par with the results
of other, simpler experiments. Hence we only show the results of
this experiment. The composite as well as individual channels of
a sample test input, generated and ground-truth images are shown
in Figure 4. From these visualizations, it can be observed that the
images generated by the model are more realistic than the low-
fidelity input images. These however are still not as perfect as the
ground-truth images, which leaves a scope of improvement and
further research in this area.

Conclusion
In previous works, Conditional GANs have been demon-

strated to work on image-to-image translation tasks involving
RGB images. In this paper, we explored their use for multispectral
image-to-image translation and demonstrate their feasibility on
this task. We specifically focused on low-quality to high-quality
translation of aerial images of an urban scene, but cGANs being
a general purpose architecture, this approach can be generalized
to work on any type of multispectral images given sufficient data.
The qualitative results show that the presented method produces
images with a reasonably good quality, however, further scope of
improvement remains in order for such approach to be a complete
alternative to present methods of high-fidelity image generation.

Figure 3. (Continued on next page.)
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Input RGB Synthesized RGB Ground-truth RGB
Figure 3. Two examples of synthesized RGB images(center) from input low texture quality RGB images(left) of Dataset1 test samples. The
corresponding high texture quality ground-truth images(right) are shown for comparison.

Input RGB Synthesized RGB Ground-truth RGB

Input {Near-infrared, R, G} composite Synthesized {Near-infrared, R, G} composite Ground-truth {Near-infrared, R, G} compos-
ite

Input Near-Infrared Synthesized Near-Infrared Ground-truth Near-Infrared
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Input Red-edge Synthesized Red-edge Ground-truth Red-edge

Input Red Synthesized Red Ground-truth Red

Input Green Synthesized Green Ground-truth Green

Input Blue Synthesized Blue Ground-truth Blue

Figure 4. Composite and single channel visualizations of a synthesized multi-spectral image(center) from an input low-quality image of
Dataset2 test set. Corresponding ground-truth high-quality visualizations are also shown(right).
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