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Abstract
A reliable method to estimate population sizes of wild turkeys

(Meleagris gallopavo) using unmanned aerial vehicles and ther-
mal video imaging data collected at several field sites in Texas
is described. Automating the data processing of airborne survey
videos provides a fast and reproducible way to count wild turkeys
for wildlife management and conservation. A deep learning se-
mantic segmentation pipeline is developed to detect and count
roosting Rio-Grande wild turkeys (M.g. intermedia) which appear
as small faint objects in drone-based thermal IR videos. The pro-
posed approach to detect roosting turkeys that appear as small
objects, relies on Mask R-CNN, a deep architecture semantic seg-
mentation algorithm. This is followed by a post-processing data
association and filtering (DAF) process for counting the num-
ber of roosting birds. DAF was used to eliminate false positives
like rocks and other small bright objects, which often have noisy
detections across temporally adjacent video frames, that can be
filtered using appearance association and distance-based gating
across time. Transfer learning was used to train the Mask R-CNN
network by initializing using ImageNet weights. Drone-based
thermal IR videos are extremely challenging due to the complexity
of the natural environment including weather effects, occlusion of
birds, terrain, trees, complex tree shapes, rocks, water and ther-
mal inversion. The transect videos were collected at night at sev-
eral times and altitudes to optimize data collection opportunities
without disturbing the roosting turkeys. Preliminary performance
evaluation using 280 video frames is promising.

Introduction
The ability to obtain accurate population estimates is vital

for effective wildlife management, however cryptic behavior and
high mobility make direct observation of many wildlife species
difficult. Thus, despite the importance of wild turkey (Melea-
gris gallopavo) as a game species in the U.S. no widely-accepted
methodology exists to estimate wild turkey population densities in
an unbiased manner over large spatial scales. The development of
a method to directly survey wild turkey populations that could be
implemented by state agencies responsible for managing popula-
tions would provide an important tool to track population changes
over time and provide information necessary to manage the re-
source effectively. Wild turkeys are a diurnal species that roosts
in tree canopies at night. Taking advantage of this behavior, un-
manned aerial vehicles (UAV’s) with thermal imaging capabilities
could be a useful tool to survey turkeys over large areas, provided
roosting turkeys can be detected at night by on-board cameras.

During winter of 2019, we performed a pilot study to assess
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Figure 1. Mask R-CNN for turkey detection in infrared drone videos

the ability of UAV-mounted thermal imaging to detect roosting
Rio Grande wild turkeys (M.g. intermedia) at four field sites in
north-central Texas. At each site wild turkeys were captured us-
ing walk-in traps [1], and one to three turkeys were fitted with
UHF/VHF GPS back-pack transmitters [2] programmed to col-
lect GPS locations at regular intervals throughout he night. This
allowed researchers in the field to remotely download the GPS
location of a roosting wild turkey in near-real time. UAV’s were
flown over the known location of roosting GPS-tagged turkeys
while recording thermal image video. Flights consisted of 200
m transects that intersected the focal turkey’s location. We con-
ducted flights each night one hour after sunset, at midnight, and
one hour before sunrise. Eight transects were flown at each time
at various altitudes and speeds. Turkeys were clearly visible in all
flights, regardless of altitude, speed or time of night, and the UAV
did not flush birds from roosts.

Qualitatively, turkeys were more clearly discernible at lower
altitudes, with the trade-off being that a narrower field of view
is surveyed as altitude decreases. The application of UAVs to
survey wildlife populations has seen considerable attention in re-
cent years [3–8] however, our work is unique, fully automated,
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Figure 2. Manual annotation of bird masks with expert assistance for train-

ing shown in red color and then converted to binary masks visualized in

different colors to indicate multiple objects (birds). The left part represents

zoomed in area from the right part

robust, and oriented towards detecting and counting turkeys from
thermal video footage. Although more research is needed, our
results suggest that UAV-mounted thermal imaging and our auto-
mated process could be useful tools to survey turkeys over large
spatial scales. The motivation behind developing our automated
approach is the tedious, time consuming and error prone work of
manually counting small objects in IR videos, especially for sur-
veys which can cover a wide area and include multiple videos.
Developing a computerized algorithm is the optimal solution for
many such problems including detection and tracking vehicles in
aerial Wide Area Motion Imagery (WAMI) [9–11], as well as de-
tecting and tracking small, thin objects in biomedical applications
with very heterogeneous backgrounds [12–17], both of which mo-
tivated and guided our approach for counting birds in drone-based
thermal IR videos.

Counting small bird objects in drone-based thermal IR
videos is extremely challenging. Some of the challenges include
small object size of wild turkeys, lack of salient visual features
in infrared video, a turkey’s body may not always be fully vis-
ible due to thermal insulation or occlusion from branches, the
bright head of turkeys in the thermal band is similar to small warm
background objects on the ground (e.g. stones and rocks), several
turkeys may be close to each other, and the complexity of the nat-
ural environment. To overcome these difficulties, we developed a
computerized approach that adapted Mask R-CNN [18], a state-
of-the-art deep learning network for detection and semantic seg-
mentation in computer vision, with a post processing algorithm to
filter out false detections which we refer to as Data Association
and Filtering algorithm (DAF). Our automated method is charac-
terized by accurate and consistent detections of turkeys in video
frames across time with inconsistent detections of other small ob-
jects robustly filtered out.

Computerized Bird Counting Using IR Video
Our automated algorithm consists of two part: first, a well

known semantic deep learning network called Mask R-CNN,
shown in Figure 1, that has been adapted to detect and identify
wild turkeys in IR thermal videos. Second, a post processing al-
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Figure 4. Positive and negative anchors for one bird

gorithm DAF to eliminate spurious results that have been mis-
identified by our first network. Figure 7 describes in a flowchart
all the steps of our computerized approach, the gray elements rep-
resent the DAF algorithm. The following two sections describes
the two parts in detail.

Adapting Mask R-CNN for Wild Turkey Detec-
tion

Recently, several powerful networks for identifying objects
have been introduced in the literature [19,20,20–23], however, all
those networks provide a bounding box around the object that in-
cludes some background pixels. Instance segmentation is a detec-
tion that delineate the boundaries of the detected objects, besides
a regressed bounding box. Mask R-CNN [18] is the state of the
art network in instance segmentation. Our first task is to detect
and segment wild turkeys. We’ve adapted Mask R-CNN [18] to
produce reliable detection for our thermal videos. The network
consists of several modules:

1. Backbone: Our adapted model uses Residual Network with
50 layers, ResNet50 [24], as a convolutional neural network
(CNN) for feature extraction.

2. Region Proposal Network (RPN): this network obtains re-
gion proposals predefined by anchors with different scales
and ratios using sliding window operation over the last con-
volutional feature map layer. This process solves the mem-
ory and time limitations of the selective search algorithms
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Figure 5. Image augmentation during training process for one bird pro-

posal. The top part contains the positive proposal with corresponding mask,

the bottom part contains two augmented proposals and their corresponding
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Figure 6. Confusion matrix before and after DAF, TN is written as NA

because we don’t use this measure since it is not suitable for precision and

recall (most of the image pixels are TN)

in predecessor detection networks. RPN selects the positive
proposals using a parameter called Intersection over Union
(IoU), see Equation 1, where PBx is the predicted bounding
box and GTBx is the Ground Truth bounding box. IoU com-
putes area of overlap versus area of intersection between PBx
and GTBx. If IoU of the proposal compared to the ground
truth above a predefined value, it is considered as a positive
candidate, and if IoU is less than that value, it is considered
as a negative candidate. Parameter settings and predefined
values are discussed in the experimental results and discus-
sion section. Figure 3 shows positive anchors for birds for
one of the frames in the training process and Figure 4 de-
scribes the process of applying positive and negative anchors
in different scales and ratios for one bird.

IoU =
PBx∩GTBx

PBx∪GTBx
(1)

3. Multi-class classifier, regressor and binary classifier: af-
ter producing the bounding boxes with the corresponding
scores, Fast R-CNN works as a classifier to decide whether
each region of interest (ROI) contains an object or not and a
regressor to predict bounding box coordinates. In parallel to
that process, a fully connected network is added to achieve
pixel level segmentation to generate object masks in pixels-
level commonly known by instance segmentation.

Data Association and Filtering Algorithm (DAF)
DAF filters out false positives by using multi-objects data

association across time. The gray elements in Figure 7 repre-
sent our DAF process. For every detection, the algorithm will
check whether there is a detection in the next video frame within
a square generated from the bounding box coordinates provided
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detection in the frame

Check whether it has a corresponding 
detection in the next frame within a square 

generated from detection coordinates

Has a corresponding 
detection ?

Keep the
detection

Delete the detection 
from the frame

Start

Detect turkey birds using Mask R-CNN 
trained model in each frame

More detections

More frames

End

Yes

No

Figure 7. Flowchart for the inference stage of our computerized approach,

the gray elements represent our DAF algorithm steps

by Mask R-CNN detection. If there is a corresponding detection,
the algorithm keeps this detection as there is a large possibility it
is a bird, however, if the detection does not exist, the algorithm
eliminates it. Our DAF process takes advantage of that fact that
roosting wild turkeys do not fly at night because there is mini-
mal change in a bird’s location in subsequent frames. Figure 8
describes the process of our filtering process in one sequence of
consecutive frames. Blue bounding boxes are the true detections
while red bounding boxes are false positive detections. It is ob-
vious that DAF was able to eliminate 6 out of 7 false positives,
the top part contains frames sequence before DAF, whereas, the
bottom part includes the same sequence after DAF. For clarifica-
tion, Figure 9 shows the DAF process on only two consecutive
frames. DAF eliminates one false positive detection since it has
no correspondence in the next frame. The algorithm keeps only
the true objects if they have corresponding detections such as the
one bounded by the blue square.

Evaluation
We evaluate our bird detection results based on annotated

ground-truth, which represent individual wild turkey masks. To
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Fr# 63 Fr# 64 Fr# 65 Fr# 66 Fr# 67 Fr# 68

A sequence 
before DAF
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Figure 8. We present here one sequence of six frames (frame 63 - 68). The top row is the sequence after Mask R-CNN detection and before applying

DAF algorithm, the bottom row is after DAF. Our expert recognizes the detections bounded by the blue rectangle as a turkey, detections bounded in red as

false positives. It is clear that the top sequence has 7 false positive detections, while the bottom sequence after applying DAF has only one false positive with

consistent detection for the bird across all frames.

Frame #102 before filtering                                                     

Frame #102 after filtering                                                     

Frame #103

Video-Based Bird Counting: Multiobject Data 
Association Improves Accuracy

Figure 9. Eliminating spurious identification of our computerized approach

using our post processing process DAF. One false positive detection has

been eliminated since it has no correspondence in the following frame. White

squares represent the area in which DAF searches inside for a corresponding

detection. Blue square represents the true positive that has been kept or

identified as birds after DAF

evaluate our results, we compute True Positive (TP), False Posi-
tive (FP), False Negative (FN), and True Negative (TN):

• TP: means a bird is present in GT and detected by the auto-
mated algorithm (true detection).

• FP: means a bird not presents in a GT is detected by the
automated algorithm (false detection).

• FN: means a bird is presents in a GT and not detected by the
automated algorithm.

• TN: means a bird is not presents in a GT and is not detected
by the automated algorithm (we don’t have number for TN
here since it is not a valid case)

Our evaluation considers the standard performance metrics
Recall, Precision, and F1 measure for evaluating our detection
results and comparing them to the expert gold standard. Recall is a
statistical measure used to assess how well the birds are detected.

Table 1: Evaluation of Mask R-CNN detection before and after
DAF using three evaluation methods: recall, precision and F1
measure

Mask R-CNN Mask R-CNN after DAF
Recall 97.27 % 94.00%

Precision 74.58 % 86.55 %
F1 84.43 % 90.12 %

It is also called sensitivity and is given by

Recall =
T P

T P+FN
, (2)

Precision is an evaluation metric that indicates how well our
algorithm eliminates false detections.

Precision =
T P

T P+FP
, (3)

F1 combines those two measures to provide a better estima-
tion of overall performance.

F1 = 2× Recall×Precision
Recall +Precision

, (4)

Implementation Details and Data Augmenta-
tion

We’ve applied our computerized approach to one of the IR
videos that has been sampled to 280 total frames. The dimension
of each frame is 480×720. The expert annotated 37 frames man-
ually to train the deep learning detection network Mask R-CNN.
We’ve utilized the Firefly annotation tool [25] 1 to annotate birds
by polygons, followed by creating binary masks, Figure 2 shows
the process of annotation with corresponding masks, 25 frames
out of 37 are used for training, the rest (12 frames) are used for
validation. To train and adapt Mask R-CNN for birds segmenta-
tion, several parameters have been set such as: detection max in-
stances= 100, learning momentum=0.9, learning rate=0.001, num
of classes= 2 (either bird or background), num of epochs=10,

1http://www.firefly.cs.missouri.edu.
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Figure 10. Three examples that show three cases for our automatic detection. For all examples, the first column are the raw images, that second column are

the ground truth, and the last column are the raw images superimposed by our detections. The first example in the first row has perfect detection for all birds. The

second row has only one repetitive detection over one bird that has been solved by taking the non-maximum suppression for the two detections. The third row

has three detections, however two of them are examples of false positives that usually occur because of the similarity in terms of size and thermal appearance

between birds and other objects such as stones. Those two false positive objects are eliminated by our DAF algorithm, figure 8 provides more details about the

DAF process for the whole sequence.

steps per epochs=109, 2000 valid proposals [(’BG’, 1626), (Bird’,
374)], grid of anchors covers the full image across different scales
[8, 16, 32, 64, 128] with positive anchors use IoU > 0.7, negative
anchors have IoU < 0.3, neutral are excluded from the training
and finally the network has been trained with transfer learning
from ImageNet weights.

The data has been augmented using horizontal and vertical
flipping, affine transformation, brightness change of the original
value, and blurring. Two methods are randomly selected to aug-
ment each positive proposal. See Figure 5 for two augmented
images that are taken during training process.

Experimental Results and Discussion
After we utilized 37 frames for training and validation, our

mask R-CNN learned model is ready for testing the rest frames.
243 frames have been tested using the trained model for bird de-
tection, followed by DAF for filtering out false predictions. Table
1 shows the evaluation results for three standard metrics Recall,

Precision, and F1 measure. We note DAF succeeds in raising pre-
cision by 12% with only 3% loss in recall. This is also clear in
Figure 6 that shows the confusion matrix for TP, FP, FN, and TN,
it is noticeable that FP has been hugely decreased after DAF with
small decrease in TP. F1 measure is equal to 90% which means
that our computerized approach with DAF algorithm almost suc-
cessfully discriminates between FG (birds) and BG. Figure 10
shows three examples in three rows, the first example (first row)
represents perfect detection, the second example (second row) in-
cludes only one false positive detection that has been eliminated
by non maximum suppression since it is a repetitive detection, and
finally the third example (third row) provides an example about
filtering out two false predictions, bounded by two yellow ovals,
using our DAF algorithm.

Conclusions
In this work, we’ve developed a computerized approach to

identify and count roosting wild turkeys in thermal video footage.
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The automated algorithm consists of two parts: Mask R-CNN for
bird detection and DAF algorithm to filter out false predictions.
The performance is very promising, and gives us a strong motiva-
tion to handle and work with other videos covering different areas
with different altitudes. For future work, we will focus on evalu-
ating dependence on altitude, speed, time of night, etc. on count
accuracy. We want total count per unit area vs number of birds
per frame in video which is the input to geospatial analysis.
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