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Abstract

In order to explore the design space of a new, potentially un-
conventional, sensor or to optimize sensor characteristics for a
given computer vision application, an image acquisition process
simulator has been designed. Its aim is to be simple and modular,
yet complete and accurate enough to match the physical phenom-
ena involved. The approach has been described in this paper to
highlight the different steps of the acquisition process and to ex-
plain the implementation choices and the hypotheses that were
made. The simulator has been tested on images of point sources,
on simulated test patterns and on real high definition pictures and
has proven realistic.

Context and approach

The design of a new sensor can benefit from simulation to
test different sets of parameters without really manufacturing the
sensor, all the more when unconventional pixel organizations are
explored, to save time and money. Indeed, sensors are complex
systems with a large set of parameters that can and should be co-
optimized.
Moreover, the development of robotics and embedded systems de-
sign involve a lot of computer vision algorithms to become less
computationally and energetically expensive, more and more real-
time and to drive their latency down, while keeping their perfor-
mance and accuracy high. Optimizing the image aquisition pro-
cess - through simulation -, so that no unuseful information is
aquired and sent to the processing units for example, helps meet-
ing those embedded systems requirements.
High fidelity simulators of this kind of systems do exist but, to the
best of our knowledge, they often focus only on the optical part of
the process and rely on ray-tracing or multi-physical simulations,
which are computationally intensive and may not be needed for
the precision required in the modeling we want to achieve. Be-
sides, their use usually requires a high level of expertise. Sim-
pler simulators exist, like ISET that delegates the most complex
optical simulation to third party tools (Zemax, Code V) [1]. De-
signed by Farrell et al., it simulates the optics as well as the pho-
toconversion, like we do. It is a good compromise but is still
not lightweight enough to allow the generation of long video se-
quences. The main differences are : 1) ISET is more versatile in
terms of input data (it can work with 3D input) and optical trans-
fer functions (though we can quite trivially add the shift-invariant
ones), 2) it modelizes the display, 3) it uses Zemax or Code V to
account for distortion whereas we use empirical, yet, image anal-
ysis wise, accurate enough, distortion models, 4) our simulator
offers more possibilities in the image plane to define unconven-
tional pixel organizations and acquisition modes, 5) our simulator
is lighter, thus faster.

IS&T Infernational Symposium on Electronic Imaging 2020
Imaging Sensors and Sysfems

In order to make design space exploration easier and faster, we
propose a pragmatic model of the image acquisition (see Figure
3) : from a high quality source picture, we modelize the propa-
gation of the energy through an optical system and its integration
and conversion on photosites located on the focal plane of the sys-
tem, taking into account various significant physical phenomena
and noise sources. The most challenging part is to simulate the
optics in a functional high level fashion to test numerous algo-
rithms on various image sensors architectures. Once in the sensor
plane, the simulation is more direct. The main characteristic of
this simulator is to be modular (Figure 1) in order to allow the
user to perform many tests.
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Figure 1. A modular architecture (blue : data, yellow : function)
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Any third party optical model can be used, provided it can
issue a power map in the focal plane, but we propose, by default,
to use a simple one : the light is diffracted by a diaphragm, it is
focused by a lens on its focal plane and distorted according to an
empirical model. For a global overview of the system, see Figure
3 and [2]. Notations are given on Figure 2.

(X, Y, H+D)

(Xo, Yo, H+D)
Center of the
diffraction spot

sensor

Figure 2. The notations used

The entry signal of the system is an image considered up to an
unknown multiplying constant as the square root of a radiance
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Figure 3. Model overview [2]

matrix (in W2.m~2.sr—1.A~1). For each pixel and each wave-

length, we need the optical system PSF. Even if in our examples,
we usually take into account only 3 wavelengths, it is possible
to model any arbitrary number of wavelengths. We use a simple
model where each pixel of the source picture is seen as a point
source emitting a spherical wave whose equation is :

A(x,y) = A(xo,yo)e (17 M
A is the amplitude of the wave (in w2 m-! .sr’l/z.l”/z), wis
its pulse, F its wave vector and 7 = ! (x —x0,¥ —y0,2) since zg =0.
We consider the wave propagation to the pupil, immediately fol-
lowed by a lens, where we apply the Huygens model as in [2].
This allow us to derive a model that takes into account vignetting
and diffraction.

As an additional simplification, we are looking for a simple ana-
lytical expression. This requires the Gauss conditions : the source
should be far from the pupil and the angles between light rays
and the optical axis should be small, therefore the pupil should be
small compared to other distances :

a<H and a<D @)
Those conditions may not be verified in a real system but have not
brought on noticeable errors so far in our simulations. Besides,
focusing occurs on a curved surface whereas we suppose we work
in a focal plane, this approximation is once again only valid for
small angles, near the optical axis.

Under the conditions mentioned above, each point of the pupil can
be considered as a secondary source of a spherical wave whose
amplitude is obtained from energy conservation considerations.
Then, the power received by a point (X,Y) in the sensor plane is
the continuous sum of the contributions of each point (xq,y) of
the source plane :

2 3
roxya) = [f (AO(’“,‘X?;?)”O) o5 ()
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2
FT{T(ry )} (=20 — X 20 Y AR v
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With pg the size of a source pixel, T'(x,y,A) the dimensionless
transparency function of the optical system. Typically, we chose :

{

P is the spectral power density in W.m 2.A1~!, Ag is in
W1/2 m=1 sr=1/2 1 =1/2 and the Fourier transform of T is homo-
geneous to an area.

It should also be noted that we postulate that the whole source pic-
ture is located in the same source plane, thus we do not account
for defocus.

1
0

ifx*+y’<a

T(x,y,2) else

(C)

Discretization

Because the source energy plane is already a picture, it is dis-
crete ; thus we choose to sample the energy plane accordingly. It
also implies a discretization of the optical system’s optical trans-
fer function, so the simulator does not enable to define apertures’
radius a smaller then a given threshold. Let (M, N) be the dimen-
sions of the source picture, the condition is then :

HA

a> pomin(M,N) ®)
This condition arises from limiting the discretization error when
approximating Equation (3) with a finite sum. It can be an issue
when the simulated aperture’s radius is close to the previous value,
it can cause the aperture to be approximated by too few pixels and
energy conservation to be violated. To overcome this limitation,
we contemplate oversampling the output but the best solution is
still to use as large source images as possible.

Optical distortion

To make our simulator more realistic, we introduced dis-
tortion empirically, assuming, as a simplification, that distortion
and optical transfer function can be decoupled. We explored two
distortion models : the Brown - Conrady model [4] and Scara-
muzza’s FishEye model [5].

The Brown - Conrady distortion model
It aims at modeling both barrel and pincushion distortion
through the use of n radial distortion coefficients ki, ...,k, and
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n tangential distortion coefficients ry, ...,7,,. We implement a sec-
ond order distortion model. The normalized distorted coordinates
(x}},¥%) of a point of the image plane corresponding to the normal-
ized undistorted coordinates (x]},y7) are given by Equation (6).
The normalized coordinates are the special case of homogeneous
coordinates where the third coordinate z equals 1.

{ %= =t Hord) 2 k(2007 o

u
V= yi = Vi (kira +korg) + 2rxyt + 1y (r2 +2(y1)?)

With 72 = (¥1)2 + (y1)2.

Then, to convert the real pixel coordinates X? = (x”,yP,z") of a
given point to its normalized coordinates X" = (x",y",7" = 1),
and vice-versa, a conversion matrix K is needed, it is determined
through calibration too and X” = KX" with :

fx 0 ¢
K= froe
0 0 1

fx and f, being the focal length expressed in pixels in the x and y
directions respectively, and (cy,cy) is the optical center in pixels.

FishEye undistortion model

It was developped by Scaramuzza et al. [5], it links an
undistorted viewing direction expressed in normalized coordi-
nates (x,y%.zl = 1) to the "unstretched” distorted pixel coordi-
nates of an image point on the sensor plane (&,/,2/).

X ) Boi
vil=5=1 7
VGH
1 f(7

With 7 = /#+5), f(F) = ao + aoi? + a3 + a47* and
ap,a»,as,ay the coefficients of the Scaramuzza model. Then, to
obtain the real distorted pixel coordinates X/ = (xs7ys,zg ), we
need a distortion matrix S and a center of distortion vector C.

X c d\ [## Cy

Ya e Ya Cy
——— ——

N C

Implementation
To implement both distortion models, the method was :

1. To distort the foothold of the picture (its border points) us-
ing the direct distortion model to get the distorted foothold.
This step was direct for the Brown-Conrady model ; it was
more complex for the FishEye model, we based our imple-
mentation on OCamCalib Toolbox [5, 6, 7] .

2. For each pixel of the rectangular bounding box of the dis-
torted foothold, to calculate its source point in the undis-
torted picture using the inverse distortion model and to in-
terpolate its value. Unlike the previous step, the FishEye
undistortion model can be used directly whereas to inverse
the Brown-Conrady model, the work of Heikkil [8], for in-
stance, can be used. In the following example, we used a
custom inversion algorithm.
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For a given camera, to get its (un)distortion parameters, we used
MATLAB® Calibrator App.

Validation

To validate this approach, we tried to reproduce a picture
taken by a Mobius ActionCam camera, which introduces signif-
icant optical distortion (see Figure 4), using the FishEye model.
Here are the optical parameters we used in our simulation :

Source pixel size 11.6 um

Square root of radiance ~1uSl

Distance between scene and 0.56 m

aperture

Focal length 22 mm

Distortion polynom coefficients | 1.57e+03,-2.75e-04,
3.76e-08,-3.64e-11

Picture to simulate,
Acquired with a Mobius ActionCam

Simulated picture (R channel)

( Simulator\ :

5

FishEye
Distortion -~
parameters

\

Intrisic
matrix

cnd

Distortion A
parameters. | Corrected picture
» | = «source » picture

I

Picture acquired with a reflex (focal length f = 14 mm)

Figure 4.  Optical distortion testing on Mobius ActionCam using FishEye
distortion model. The difference between the real and the simulated pictures
results from a misalignment of the cameras.

Quantitative assessment of the precision was not possible because
the position of both cameras during acquisition was not monitored
accurately enough, we realized afterward that the optical axes and
centers were not properly aligned. Thus, the geometric error is
largely contaminated by this misalignment.

Photoconversion and noises modelization

After the optical module, the result is a ”spectral power den-
sity map”, that is a matrix representing the energy distribution
in the focal plane. We then integrate this power in time (cho-
sen integration duration) and space, converting it into a number
of photons received by each photosite of the sensor that is simu-
lated. The photosites can be defined as a classical matrix of pixels
or as a list of pixels for each of which its size and position are
given. This second option makes it possible to explore more ex-
otic architectures such as the ones cited in [9]. Currently, only the
integration mode of a sensor can be simulated, however it could
be interesting to model spiking and other modes too, in the future.
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Figure 5.
derived from tabulated values found in [9]

A typical polynomial approximation of Si quantum efficiency,

After having converted the energy into photons, they are them-
selves converted into electrons through the quantum efficiency
function. The quantum efficiency function simulated is a poly-
nomial interpolation of tabulated values (see Figure 5). We could
replace it by a simpler constant piecewise function or on the con-
trary by a more complex function. We can also add spectral fil-
tering (so as to simulate bayerisation for instance) ; practically, it
is just another filter whose effect mixes with quantum efficiency,
and they can be implemented as one. The filters implemented can
be seen on Figure 6.
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o
S
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Figure 6. Bayerisation RGB filters

On Figure 7, we represent a caricatural example : we take Lena
gray level picture as a mono-wavelength radiance map respec-
tively at 450, 550 and 620 nm and we mix the 3 channels into one
single bayerized RGB picture.

Figure 7. Bayerization example

The last step is to convert the electrons into a voltage value that
can be saturated by a given threshold V, and quantized on N
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bits, Vs, and N being fixed by the user. Quantization is done on a
linear scale but it would be interesting to make it variable, to ac-
count for high dynamic range sensors for example. Quantization
and bayerisation are optional as is the consideration of the various
noises described in the following section.

Noises
Several types of noises can be accounted for, see [10], for
instance, so far we have implemented (see Figure 8) :

e Photo-noise : the number of photons that can actually be
detected by the photosensitive elements follows a Poisson’s
law of parameter the theoretical number of photons that get
to the photosensitive element’s area. It can be approximated
by a Gaussian law when this number is greater than a few
tens, which is almost always true. Doing this approximation
is computationally much more efficient than calculating the
real Poisson’s law.

e kTC : for 3T pixels, we consider kTC noise which is a zero
average Gaussian noise whose standard deviation is k7T°C,
with k the Boltzmann constant, 7 the temperature and C the
capacity of the photosite.

e Crosstalk : We only consider electronic crosstalk that is
due to the diffusion of electrons in the silicium before they
are detected. We do not account for optical cross-talk, we
suppose the integration time we want to simulate are long
enough for it to be negligible. After trying some more
complex models, it was finally chosen to model it as a
simple convolution by a constant matrix whose values we
found in [11] but can be changed according to the sensor
that is simulated.

e Readout noise : it is a zero average Gaussian noise with
parametrized standard deviation. This noise is predominant
for low light levels.

Figure 9.  Variable readout noise. Readout = 0, 50, 200 e-. Maximum

number of photons received by one pixel = 6000. Full well = 7000 e-.

o [Fixed Pattern Noise : pixel-wise and column-wise Gaussian
noise whose standard deviation we chose to set to a given
percentage of the saturation voltage and whose mean we
chose to consider as null. It originates from technological
dispersion of the reading circuitry. For one sensor, we de-
fine a random matrix of the same size as the final picture,
its coefficients follow a normal centered law whose stan-
dard deviation is 2% of the maximum voltage value. For
columnar noise, we only need a random vector whose coef-
ficients follow the same law and whose size is the number
of columns in the final image matrix.
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Figure 8. Overview of the noises along the image sensor electronic chain
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Figure 10. Columnar Fixed Pattern Noise generated by the simulator

e ADC non ideality : here we give the example of the impact
of Differential Non-Linearity (DNL). For each quantized in-
terval, for each column, we define a random value who fol-
lows a Gaussian centered law whose standard deviation is
0.5 the value of the least significant bit. This value is added
to the pixel value before quantization.

Figure 11.  Non realistic DNL noise example generated by the simulator.
Left : without noise, right : with noise

Voltage value

50 100 150 200 250
Pixel index
Figure 12.  Non realistic DNL noise example : one column of the previ-
ous image. Red : analog value, green : quantized value on 4 bits, blue :
quantized value on 4 bits with DNL
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Examples of parameters values

Foveal Distortion

simulation simulation
Integration time 1/30's 1/60 s
Sensor pixel size | afew um 2.2 um
Readout noise 1e- 1e-
Capacity ~1071BF | 48x10°1BF
Voltage range 3V 3V
Number of bits 8 8

Applications and prospects

This simulator has been used to optimize a sensor’s matrix
of pixels size for given applications, for instance for an optical
flow application. Let € be the precision we need to ensure, M the
dimension of the matrix and p; the size of the pixels and let us say
that the computation complexity of our application is linear in M.
Thus, we want to minimize M - if we want to maintain the same
foothold for the acquired picture, then we will have to increase
ps - under the constraint that the precision is greater then €. The
simulator is especially designed for this kind of application.
It would also be useful to inquire into unconventional architec-
tures, such as foveal sensors, see Figure 13. The blind spot at the
center of the picture is due to a design constraint we imposed on
pixel minimum size.

Figure 13. Foveal sensor exploration

A less advanced version of the simulator has been used to explore
the design space of a multi-resolution sensor that has been
designed and produced in our team [12].

All along the paper, we have seen the flexibility of the sim-
ulator, it makes it possible to add functions or enhance its
user-friendliness for instance. Without using neither ray-tracing,
nor multi-physical simulation, we get a good reliability for a
moderate complexity. Indeed, complexity is &'(Npix log(Npix)
(With Npix the number of pixels in the source picture) without
taking into account distortion, it leads to generating images in less
than a few seconds using MATLAB® (the largest source image
we used was 4640x8256), even when we define unconventional
pixels such as in the foveal geometry. For comparison, on the
same picture (used in Figure 14), our simulator took 0.3 s for
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the whole process whereas ISET took around 20 s for the Optics
and Sensor modules to run. When simulating distortion, the
computation with our simulator took up to about 6 minutes.

pixelsize =10 u

pixelsize =4 u pixelsize = 1 u

Figure 14. 4 zones multi-resolution sensor simulation [2]. [Source image :
Géoportail]

The scope of possibilities to use this tool is wide open, and
could also include data augmentation for deep learning in clas-
sification and denoising. Indeed, for offline training of neural
networks, it can be useful to have numerous images taken un-
der different conditions or to be able to take into account artefacts
resulting from image sensors limitations.

We are currently considering making our code open-source.
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