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Abstract
Camera sensors are physically restricted in the amount of

luminance which can be captured at once. To achieve a higher
dynamic range, multiple exposures are typically combined. This
method comes with several disadvantages, like temporal or align-
ment aliasing. Hence, we propose a method to preserve high lu-
minance information in a single-shot image. By introducing a
grid of highlight preserving pixels, which equals 1% of the total
amount of pixels, we are able to sustain information directly in-
camera for later processing. To provide evidence, that this num-
ber of pixels is enough for gaining additional dynamic range, we
use a U-Net for reconstruction. For training, we make use of the
HDR+ dataset, which we augment to simulate our proposed grid.
We demonstrate that our approach can preserve high luminance
information, which can be used for a visually convincing recon-
struction, close to the ground truth.

Introduction
Current camera sensors are physically restricted in the

amount of photons, which can be captured by the full well ca-
pacity of the individual sensor elements. This results in an overall
limited luminance range for the whole sensor, which is usually
controlled by aperture and electronic gain. Especially in the field
of HDR creation this limitation is problematic, as the dynamic
range of most sensors is smaller than the dynamic range of the
scene to capture. To overcome this limitation several solutions
were introduced. Firstly HDR-Burst, where a certain amount
of images with different increasing exposures are shot in a short
timespan to reduce the amount of photons per exposure and hence
gain a high virtual full well capacity for the final exposure, which
is one of the most commonly used methods [1]. These images
are then aligned and processed to combine the contained informa-
tion [1]. Similarly methods include RED Digital Cinemas HDRx,
which combines one normal and one short exposure frame to gain
additional information in the highlights [2] and DualISO, where
the dynamic range is extended through different AD converter or
denoising algorithms to get a low-noise signal to preserve high-
and lowlight information [3]. Another approach is to combine
two camera sensors, as proposed by Tocci et al.[4] and applied
by Froehlich et al.[5] who used a stacked camera system, one
for low- and one for high luminance, to preserve a high dynamic
range, which is then later combined in post-production. Although
these techniques show impressive results, they come with several
disadvantages, like temporal aliasing, the need to align the indi-
vidual images / videos and longer processing times or enormous
costs and camera system size increase, in case of Froehlich et

(a) LE-pixel with k = 10 (b) LE-pixel with k = 10 rotated 45�

Figure 1. The used grids in this paper in figure (a) the standard grid as pro-

posed, and the same grid rotated 45�(b). The rotated distance is calculated

through Pythagorean theorem, then rounded into N.

al.[5]. On the other side of the spectrum are technologies, for
example the work of Hasinoff et al.[1] which propose a Hybrid
Dynamic Range Autoencoder for predicting HDR Images based
on LDR input, or the work of Banterle et al.[6], which used in-
verse ToneMapping to achieve the same goal.

Methods
To solve some of the mentioned disadvantages, we propose

a different method with the aim to preserve more information in
high luminance image areas for later processing and enable sen-
sors to gain a higher dynamic range. Similar to other approaches
we also adapt different exposures / sensor sensitivity to preserve
high luminance information. In contrast to related techniques
we propose a system, that does not concatenate the sensor tem-
porarily or physically for capturing more information. Instead
our method is based on an k⇥k grid of pixels, as shown in figure
1, which are altered on a sensor to be less light sensitive and as a
result highlight preserving. As we also tried a 45� rotation of the
grid, it was therefor calculated as

gridrot = krot⇥krot +(1.5⇤ krot)⇥(1.5⇤ krot)

with krot = k ⇤
p

2 and krot,k 2 N
(1)

Due to technical limitations krot was rounded to N.
With k = 10, which is mainly used in this paper, only every 100th
pixel is modified, which equals 1% of the total amount of pixels.
This value for k was chosen as it was found in internal studies
at HdM, that images with an amount of 1% replaced dead pix-
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(a) Augmented ground truth image

(b) Augmented image with k = 10, clipped with b = 0.5

Figure 2. Comparison of the ground truth in figure (a) against the aug-

mented network input, with our proposed low exposure pixel grid, rotated

45�(b). In (b) all values above 0.5 therefore derive from our low exposure

grid. For our proof of concept, the images were saved as compressed jpegs

and then reloaded at a later point to calculate the histograms.

els can not be distinguished from the original images, for typical
4K+ spatial resolution and viewing conditions of up to 1.5 pic-
ture heights. Hence, it is an amount which a manufacturer can
sacrifice without problem, because even if the technique can not
provide the desired result, the pixels could be marked as dead
without a significant impact on image quality.

As the grid is applied by means of a filter on the sensor,
its information can be captured at the same time of exposure,
without temporal artefacts, which makes it suitable for motion
picture applications. On top of that, the image characteristic
of the remaining pixels is not impacted and the low exposure
(LE) pixels’ solely purpose is to gain additional dynamic range.
Moreover this method can be easily applied to sensors, as there is
no significant change to the pixel design necessary. The required
grid structure could be applied by adding a new filter layer, by
changing the shape of the micro-lenses or by covering parts of
the pixel. This allows manufacturers to deploy this method in a
fast and easy way and deliver the reconstruction logic later on, as
algorithmic approach for their cameras over software updates or
in the proposed way as SDK addition.

For testing this hypothesis and to provide empirical evi-
dence, that a small amount of low exposure pixels can boost the
performance of highlight reconstruction and thus extend the dy-
namic range of sensors, we augment images to simulate a small
full well capacity, add our theoretic LE-Pixels and attempt to gain
the missing information back. As U-Nets have shown impressive
results in reconstruction challenges, we utilize a modified version
of it. The encoder part of an U-Net, see figure 4, is trained to
transform an high dimensional input to a low-dimensional repre-
sentation, which the decoder part is trained to reconstruct again
[7]. Through the low dimensional latent representation the U-Net
automatically has to perform a feature engineering while train-
ing, which allows us a faster and more flexible experimentation
[7, 8]. Additionally, U-Nets allow us to offer an automated pro-

(a) Input (b) without skip (c) with skip (d) ground truth

Figure 3. Magnification of reconstructions without (b) and with (c) skip-

connections. The autoencoder is able to reconstruct highlevel information,

but without the skip-connections detail information in higher frequency re-

gions is missing and prediction is blurred.

cess without user-defined hyperparameters. Taken into account
that convolutional networks are not fully predictable and results
sometimes vary, we build our baseline, the reconstruction without
LE-pixels, with the exact same network and training parameters
as the reconstruction with altered pixels. Thereby we ensure that
both methods have the same initial base for recreating the original
image. To make the results as comparable as possible, random-
izations are done with the same seed. Networks are trained for the
same number of epochs, where the weights of the epoch with the
lowest validation failure is taken. In this way we ensure to com-
pare the best result of each method against each other. Since we
were bound to a limited timeframe as well as technical equipment
we could not modify a real camera, so we simulated a camera
through data augmentation, as described in the following section.

Image Dataset
One of the key challenges for a learning based highlight re-

construction with a decent resolution is to gather a large enough
dataset. Especially in our case, the resolution was a keypoint to
simulate a realistic camera and grid structure. In contrast to si-
miliar work, e.g. Eilertsen et al.[9], who collected a large HDR
dataset as their basis, we used SDR data due to the fact that ag-
gregation and curation of HDR data is a time consuming process.
Based on the assumption that our theory works independent of
color / quantization domains, we do not apply any domain trans-
formations and only simulate the information loss. For a fast ac-
quisition of a large dataset, which contains a sufficient amount
of information in high luminance regions, the HDR+ Dataset by
Hasinoff et al.[1] was chosen. The dataset consists of 3640 im-
ages total, which were created through exposure stacking and
were then tonemapped into sRGB domain [1]. As the number of
images is not sufficient enough for training a good generalizing
network, the data was additionally augmented. Therefor the im-
ages were transformed and flipped, with reflection of the content
at the image border to prevent blank spaces. As it was important
to keep a realistic imaging, no color-shift or noise were applied in
the augmentation. The simulation of LE-Pixels was then applied
onto the augmented data so the grid keeps a static position while
the scenery changes, as it would be in a real world camera.
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Figure 4. U-Net used in this paper. Skip-connections are used to transfer

data from the encoder to the decoder to boost the performance of the net-

work. This architecture is not restricted to a fixed resolution, therefrom the

layer resolutions are given based on the 1024⇥1024 images, which where

used in training.

For creation of the artificial dataset, all images were processed in
sRGB Domain with the following function:

imgdualiso = mask⇥ imgorg +(1�mask)⇥ imgclip

with imgclip = min(b , imgorg) and b = 0.5
(2)

Consequently the non LE-pixels imgclip where clipped at half
their electronic values (EV), as shown in figure 2b. We are aware
of the fact that pixels under different exposures show different
noise levels, as it is dependent on the signal level [1]. Since this is
not our focus in this proof of concept work and autoencoders have
shown impressive result in denoising challenges, we therefore do
not apply any additional noise [7, 9].

Network Structure
As our focus was to provide a universal approach of recover-

ing the preserved information, we propose a generic U-Net for
this process. Referring to Eilertsen et al.[9], our design does
not make use of a fully connected layer for the latent represen-
tation and instead uses a multichannel low resolution representa-
tion of the input data [9]. Therefor this fully convolutional net-
work (FCN) approach is resolution independent, as long as the
input dimension is a multiple of the encoder downscaling factor
[9]. Since the latent representation of the network is defined as
widthinput

16
⇥ height input

16
⇥ 512 the resolution must be a multiple

of 16. The down-conversion to the latent representation inside
an U-Net means that high resolution information is lost and not
usable in the decoder, wherefore predictions are lacking them
[9]. To overcome this limitations skip-connections are used in

(a) MSE (b) Lin + MSE (c) Lmix (d) Lmix 45�

Figure 5. 7⇥ Magnification of the reconstruction using the MSE (a), with the

grid structure still visible as it yields no error. The linear interpolation layer

(b) improves the results, but generates dark spots. The mixed loss function

(c) shows nearly no grid structure left in the prediction, for the normal (c) as

well as the 45� rotated grid (d). All images were sharpened with the same

settings for better visibility of the LE-Pixel visibility problem.

U-Nets, which transfer information from the encoder into the de-
coder directly [10]. Our particular network structure adds skip-
connections between layers with the same spatial resolution in
both the encoder and decoder [11]. To achieve this, the output of
the encoder layer is concatenated along the feature axis of the de-
coder layer [10]. For a given layer in the encoder with W ⇥H ⇥K
the resulting decoder layer has the shape W ⇥H ⇥2K [9]. These
additional feature maps are then reduced by the decoder in the
next convolution step [10, 11, 9]. An example of the impact of
the introduced skip-connections is displayed in figure 3. Adding
the information transfer enables the network for a better recon-
struction of high frequency information. Our final structure, as
shown in figure 4, is mostly inspired by the work of Mansar [11]
and Ronneberger et al. [10] as this approach showed good perfor-
mance in image denoising and high flexibility between use cases
[11, 10]. Our ambition is to provide evidence and give a universal
approach, thus we do not introduce special domain transfer or use
case specific changes to the final network in contrast to Eilertsen
et al.[9] or Park et al.[12]. Furthermore, to present a convenient
and replicable system, we used the keras functional API with ten-
sorflow as back-end1.

The firsts results of the network contained excessive artefacts
from the LE-Grid, especially in the highlights of the image, as
seen in figure 5. This originates from a combination of mean
squared error (MSE) and max pooling, as the LE-Pixels inherit
the highest values, causing them to overweigh in the max pooling
layers. In addition, the LE-Pixels inherit the unchanged original
values and as a consequence have no contribution to the MSE. To
overcome this problem we temporarily introduced a specialized
linear interpolation layer to mask the LE-Pixels in the network
output. As this did not produce the desired results, as can be seen
in the following section and figure 5, this layer has been discarded
and is no longer utilized in the final notebook.

Loss Function

Despite the main goal of restoring information in high
luminance areas we decided against a cost function that is
formulated in linear quantization domain. One of the reasons was
that the available training data contained huge variation above our
defined clipping point, which in linear domain would have led
to an unsteady cost estimation [9]. Additionally it would result

1The network is back-end independent, except the loss function which
depends on tensorflow for SSIM
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(a) Input (b) Baseline

rec. w/o LE-Pixels

(c) Without skip

with LE-Pixels

(d) Linear Interpolation

and MSE

(e) Ours, Mixed Loss

Grid 45� rotated

(f) Ground Truth

Figure 6. Comparison of some of the methods mentioned in this paper, except for baseline (b) all methods could use the additional information to restore huge

amount of the structure in the clipped regions.

in an underestimation in lower range luminance [9]. To provide
a general cost function for reconstruction we initially used MSE
between the network output and the unaltered original image.
In the process of experimentation it became apparent that the
network predicted inaccurate color temperatures in the highlights
of the images, while using MSE as loss function. Especially in
skies the network resulted in a warmer color than the original
image. In addition even after intensive experimentation with
training parameters, the network still had visible problems with
the grid structure, which was still shown in the output. Despite
introducing a linear interpolation layer, the grid was noticeable
in homogeneous areas and the reconstruction of image structures
was lagging behind. To put more weight on visual perception
as well as stabilizing color reconstruction, the loss function
was altered to a combination of multi-scale structural similarity
(MS-SSIM) and mean absolute error (MAE/L1) as recommended
by Zhao et al.[13].

The new loss Lmix was then calculated with

Lmix = a ⇥ (1�LMS-SSIM)+(1�a)⇥LL1 (3)

with a = 0.84 as proposed by the original paper [13]. As shown
in figure 5, the changed loss function is capable of removing the
grid artefacts in the output and stabilizing the reconstruction of
color temperatures.

Metric Input Baseline LE LE 45�

PSNR mean 19.3359 26.8580 31.0810 31.2140

std. 4.3816 3.4907 3.6427 3.6648

SSIM mean 0.8968 0.9488 0.9541 0.9549

std. 0.0639 0.0315 0.0304 0.0301

MSE mean 0.0159 0.0026 0.0010 0.0010

std. 0.0109 0.0018 0.0007 0.0007

Table 1. Comparison of different metrics evaluated over the validation set.

Metrics where calculated on per image basis against ground truth, which

where then averaged.

Training

Training of the networks was performed with the ADAM op-
timizer, with a learning rate of 1e-4. The networks where trained
for 10 epoches using a mini-batchsize of 2 due to limitations
in processing power. Training with this settings takes around 6
hours on a NVIDIA GTX 1080. For a more flexible training pro-
cess the keras built-in, ReduceLROnPlateau was used for adaptive
learning-rate reduction when necessary. The reconstruction inter-
ference time is about 180ms, which makes the U-Net approach
currently to slow for real-time applications. As mentioned ear-

(a) Input (b) Baseline
rec. w/o LE-Pixels

(c) Ours
Mixed Loss, Grid 45� rotated

(d) Ground truth

Figure 7. Zoom-ins of reconstructions of complex light situation. As the

baseline (b) is not able to estimate the structure, as well as the luminance.

Our method (c) in contrast can not only estimate the correct brightness of the

highlights, but also reconstruct the structures close to the ground truth (d).
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(a) Input (b) Prediction (c) Ground truth

Figure 8. 7⇥ Magnification of reconstruction. The prediction of our method

(b) can not reconstruct all diagonal structures in the image, due to under-

sampling of the our proposed grid structure.

lier an algorithmic approach would be more suitable in real world
camera systems, considering the resources available on embedded
hardware.

Results
In this section we present a number of examples, to verify

the quality of our proposed method. Additional examples can be
found in the supplementary material and on the project website
[14]. Furthermore the jupyter notebooks which contain all code
needed for training and prediction, as well as the corresponding
CNN weights can be downloaded from: https://github.com/
leisemann/low-exposure-pixel-grid

Test errors

To verify our assumptions and theories along the paper, we
evaluate the success of these in table 1. The error of each con-
figuration was calculated on 182 saved predictions from the vali-
dation set, at the scale of 1024⇥1024. The results shown in this
paper were likewise generated using the same image size. Error
was averaged over all images to prevent outliers in the data. Both
our proposed grids reach a significantly better result over all met-
rics. It was possible to lower the MSE below 50%, compared to
the baseline. Furthermore, PSNR shows a remarkable increase of
more than 15% and SSIM demonstrates a notably better result.

Predictions

Figure 6 demonstrates a set of predictions from the valida-
tion set, that have been transformed as the original training data
and simulate a camera with the matching grid structure. The
examples demonstrates successful highlight reconstruction, com-
pared to the baseline. The prediction without LE-Pixel grid is not
able to restore any high luminance structures in the upper exam-
ple, whereas our method can restore a significant amount thereof,
even in situations were only a small number of unclipped pixels
is left. In dayscenes, colors and intensities of high luminance,
reflecting surfaces can be recovered in a convenient way, even
sensitive gradients on the horizon. The same applies for the lower
example, where the baseline reconstruction is unable to restore
any of the highlight information, while our method successfully
is able to use the additional information for a plausible result.
Even in highly saturated areas where light reflections are close
to monochromatic, brightness and color could be matched as well
as complex light situations, as displayed in figure 7. In contrast,
the baseline can neither estimate the right luminance nor the right
shape of the highlights.

The difference between, the horizontal grid and its 45� ro-

tated counterpart is marginally in terms of metrics, as displayed
in table 1. On a perceptive level, the horizontal grid shows a
better reconstruction on horizontal and vertical structures, but
lags behind in predicting diagonal structures. In comparison the
45� rotated grid shows opposing performance, where diagonal
structures are better reconstructed. As horizontal and vertical
structures dominate typical images, the horizontal grid is recom-
mended.

Limitations

The limitations of this approach are content-dependent, as
the network produces convincing results in large structures like
clouds, it shows artefacts when trying to reconstruct small struc-
tures, as displayed in figure 8. As this is hardly surprising with
k = 10, which leads to 1% of information left, the method suf-
fers from undersampling / aliasing in this areas. Thus, clipped
structures smaller then the LE-pixel grid will mostly be restored
with matching luminance and color, but with vague guesses of the
original structure. We also experimented with smaller LE-Grids,
where already 2% LE-Pixels showed a significant improvement.
An important point to mention here is that the undersampling
problem derives partially from our ground truth, since the HDR+
dataset contains more information / structures in the highlights, as
this would be the case in a real world camera [1], where the algo-
rithm would be applied before tonemapping. In real world appli-
cation this limitation is most probably still existing, but therefore
significantly less visible. Additionally we tested this method only
in the context of still images, so for applications on video, further
work is needed, especially as videos introduce a temporal chal-
lenge, which makes it necessary for predictions to be continuous
over time.

Conclusion
Preserving and reconstructing highlights is an important and

challenging task in the development of better imagery. To give an-
other method to preserve high luminance information in camera,
we present a k⇥k with k = 10 grid of highlight preserving pixels
to sustain information directly in camera for later processing. To
provide evidence that a small number of pixels is enough to gain
additional dynamic range, we use a fully convolutional autoen-
coder for reconstruction, as one possibility of a fully automated
process. The functionality, quality and drawbacks of the method
are demonstrated through a number of examples.
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