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Abstract
The United States of America has an estimate of 84,000 dams

of which approximately 15,500 are rated as high-risk as of 2016.
Recurrent geological and structural health changes require dam
assets to be subject to continuous structural monitoring, assess-
ment and restoration. The objective of the developed system is tar-
geted at evaluating the feasibility for standardization in remote,
digital inspections of the outflow works of such assets to replace
human visual inspections.

This work proposes both a mobile inspection platform and
an image processing pipeline to reconstruct 3D models of the out-
flow tunnel and gates of dams for structural defect identification.
We begin by presenting the imaging system with consideration to
lighting conditions and acquisition strategies. We then propose
and formulate global optimization constraints that optimize sys-
tem poses and geometric estimates of the environment. Follow-
ing that, we present a RANSAC frame-work that fits geometric
cylinder primitives for texture projection and geometric deviation,
as well as an interactive annotation frame-work for 3D anomaly
marking. Results of the system and processing are demonstrated
at the Blue Mountain Dam, Arkansas and the F.E. Walter Dam,
Pennsylvania.

Problem Statement
Dam safety relates to the risk a dam imposes in the case of

structural failure to the environment in the path of flooding. A

dam can be rated ”safe”, ”unsafe” and ”emergency unsafe” (criti-
cal condition) according to a structural evaluation. The status ”un-
safe” is generally achieved when the dam is declared inadequate
to handle a Probable Maximum Flood (PMF)[13], or when struc-
tural failure is likely during geological and seismic activity [4]. A
set of dams have been subject to damage due to excessive loading,
geophysical phenomena or have suffered aging with unknown ef-
fects on integrity [4]. A primary failure point are the flood gates
which are used to control the water flow. For dams that have water
outlet channels that need to be inspected or the gates themselves,
inspectors are put at direct risk of the holding capability of the
gates. Materials used in construction of dam outlet works are vul-
nerable to corrosion and fatigue issues that may compromise the
structural integrity of the system and put personnel entering the
conduit/tunnel at risk. US Army Corps of Engineers (USACE)
maintains many of these aging structures in need of an updated
inspection, but placing personnel, including inspection personnel,
inside dam outlet works of a facility in an unknown or deterio-
rated condition presents unacceptable risk to personnel and does
not comply with current safety requirements. This motivates the
development of remote imaging systems that are deployed on re-
motely tethered and controlled rovers or on fully autonomous sys-
tems.

Informal and formal inspections are encouraged by Federal
agencies to note change in visible and measurable features [5].
Visual inspection of accessible dam interiors contribute to a ma-

Figure 1: TunnelCAM deployed to inspect the water evacuation tunnel at the Francis E. Walter Dam, Philadelphia, USA
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jor component to asset assessment and is conducted by trained
individuals. Thorough documentation strategies are encouraged
by federal agencies [5], however it is common to only take low-
resolution focused on defects and rely on hand notes for anomaly
location. Research and Development efforts are evaluating high-
resolution 3D structure documentation for standardization in in-
spections and temporal data analysis.

We summarize the project into a set of hypotheses that drive
both methodology and system.

• It is possible to complete remote digital inspections of dam
outflows

• Data reconstruction can achieve human equivalent acuity
• Geometric deviation is possible to be applied to outflow tun-

nel evaluation
• Digital models can serve as Building Information Model

(BIM) records
• The imaging system requires self-illumination and HDR
• Geometric alignment & accuracy can be achieved with only

exterior GCPs
• We can constrain inter-camera pose to accelerate and im-

prove reconstruction
• We can initialize pose using VIO from the Realsense T265

camera

The development of the TunnelCAM imaging system is a
result of collaborative efforts between the University of California
San Diego Center of Advanced Imaging and the the U.S. Army
Corps of Engineers, Engineer Research and Development Center
to evaluate diagnostic imaging of dam interiors.

Figure 2: TunnelCAM system, left: as-built, right: CAD model

TunnelCAM System
In this section we will briefly describe the TunnelCAM sys-

tem as it was built. The motivation behind this design is to fa-
cilitate a user friendly integration of consumer grade mirror-less
cameras while maintaining synchronization of the sensors to sat-
isfy the timing constraints imposed by the post processing stages

of the workflow. We highlight the engineering details in support
of 3 assumptions we define for the reconstruction algorithm: 1) it
is reasonable to assume sensor synchronization to <1 millisecond
such that all cameras have been subject to the same rigid-body
transformations τ between subsequent captures; 2) intrinsic pa-
rameters remain constant for every respective camera over cap-
ture runs and 3) the relative pose between cameras remains con-
stant for all captures due to the rigid mechanical assembly of the
system.

During the reconstruction stage, the captured image data is
processed through a structure from motion pipeline that allows us
to estimate the intrinsic & extrinsic parameters for every camera at
every location, as well as the geometry of the scene itself. While
sparse scene estimation is done using a sparse subset of features,
we employ dense methods to achieve model resolutions required
for geometric and texture based inspection.

System Description
The present TunnelCam system is comprised of seven Sony

A7R II mirror-less digital cameras [2], arranged in two offset
rows of three cameras and one upward-facing camera, as shown
in green in Fig. 2; a configuration that aptly accommodates for
spherical panoramic image capture while keeping the mass of
the system as close to the center as possible. The back illumi-
nated CMOS sensors provide a maximum image resolution of
42.2 Megapixels at an aspect ratio of 3:2. Each camera is fitted
with a Voigtlander Ultra Wide Heliar 12mm Aspherical III lens,
rendering rectilinear images with a diagonal Field of View(FoV)
of 121◦. This sensor-lens combination provides a visual acuity of
3.77 millimeters per pixel at a focal distance of 10 meters, exceed-
ing human visual acuity [16]. The choice of a rectilinear lens was
to minimize radial distortion compared to a fisheye lens known to
cause issues when not properly modeled in intrinsic rectification
[11]. The image sensor of the a7R II provided improves signal
to noise ratios for amplification of electrical signals from the pix-
els. This is a key characteristic when acquiring low-light images,
especially when exposure times need to be kept at <1/100th of
a second for minimizing motion blur [17]. Driving the choice of
consumer grade cameras was the availability of sensor shifting
technology provided by Sony. A 5-axis stabilization allows for
the sensor to be shifted such as to compensate for motion dur-
ing exposure time. While this is of great importance for low-light
capture where the integration time is large enough to affect blur-
ring. This does however open questions about how reasonable it
is to uphold assumption 2 as individual

Five double rows of PWM dimmable LED rings are used
on the system to provide a total luminous flux of approximately
32760 lumens, as shown as the blue features on Fig. 2. For the
cameras pointed directly at the tunnel walls, the illumination is
sufficient to completely illuminate the field of view to within 2
stops, so it is reasonable to push the exposure in the darker areas
while retaining detail. For the off-axis cameras, exposure brack-
eting for longer exposures can compensate for the decreased illu-
mination due to increased distance further down the tunnel. Due
to the reflective nature of the wet tunnel, these off axis viewpoints
are also important to minimize direct specular reflection when the
LEDs reflect directly into the cameras shooting normal to the tun-
nel surface. We can approximate the luminosity distribution in the
inside of the tunnel by assuming the LED on the TunnelCAM to
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Figure 3: Simulated illuminance of a tunnel with 7 meter diameter
and central point light source of 32760 lumens

be represented as a single point source uniformly radiating light.
Fig. 3 shows this distribution along with a set of planes which in-
dicate the fall-off limit equal to 2-stops. These 2 stops are equiv-
alent to a quarter of the luminance from the inside of the tunnel.
We consider this to be the area which is sufficiently illuminated
to correctly fill the dynamic range of the sensors.

Finally, a single Intel RealSense T265 camera [3] is posi-
tioned on one side of TunnelCam as seen in pink in Fig. 2, en-
abling ego-motion estimation by means of stereo visual odometry.
The Realsense T265 camera uses an internal Simultaneous Local-
ization and Mapping (SLAM) algorithm with hardware acceler-
ation to estimate the pose of the system [3]. This pose estimate
is used purely to initialize our optimization and may be omitted
in future revisions. Synchronization of the cameras is achieved
through the cameras’ USB PTP interface connected to a small-
form-factor Intel Next Unit of Computing (NUC). Necessary cap-
ture settings, such as bracketing HDR modes and exposures, are
managed by a custom backend based on libgphoto2. The NUC
is also responsible to aggregate and tag the pose estimation from
the RealSense camera with the respective captures of the Sony
A7Rii cameras. Captures are triggered by the GPIO output of an
Arduino Nano microcontroller, and can be induced by physical
trigger remote input or serial signals received from the NUC.

Acquisition Methodology
Acquisition runs of the TunnelCAM involve hand-carrying

as in Fig. 1 or rover mounting the system in the dam interiors. The
camera rig is first exposure set and LED power adjusted at the dam
tunnel entrance to ensure proper illumination of the surrounding
geometry through a live camera feed. Once initialized adequately,
the synchronized capture run of both the Realsense and Sony cam-
eras is begun through the NUC. The high-resolution Sony sensors
are manually triggered every time the system is moved by a de-
sired distance. This trigger commands the sensors to complete
3,5 or 7 exposures with bracketing (HDR) while simultaneously
instructing the NUC to register the pose from the RealSense cam-
era with that trigger. This is repeated for the extent of the scene
with an approximate translation of 20 centimeters between cap-
tures. The high-resolution Sony frames result in being captured at

Figure 4: TunnelCAM Data Flow for Capture and Processing

5-10 sec intervals while the RealSense camera runs uninterrupted
at 60 Hertz. Dam interior inspections are normally limited to sub-
hour periods to reduce stress build-up of accumulating water on
the reservoir side [4], which puts pressure for rapid imaging of
long interior sections. Changes in geometry may require the sys-
tem operator to adjust LED power and exposure times during the
course of the acquisition.

Processing Pipeline
Data is stored locally on the system while the acquisition

is running however no full 3D reconstruction is run in real-time.
After the acquisition, we can segment the processing pipeline in
two main parts: a multi-view dense reconstruction and a naive
panorama stitching pipeline. Fig. 4 highlights the use of the pose
estimates derived by the RealSense camera for both the initializa-
tion in the bundle adjustment as well as the approximate position
used to generate the 360 photo-sphere tours. Panorama image
stitches generally assume perfect rotation about the focal point of
the cameras [18], which does not hold true for this system due to
the physical separation of the cameras. As such, we expose this
method of processing and viewing the data to collaborators for
ease of generation but emphasize the benefits of full multi-view
reconstructions. This section will discuss the constrained local-
ization method leveraged with initialized pose parameters and the
densification step used to generate dense 3D point clouds.

Preprocessing
A set of image pre-processing tasks are completed prior to

the multi-view reconstruction part of the pipeline. Imaging in
dark environments with a lighting source introduces the issue of
deciding what exposure to choose such as to optimally represent
the lighting difference across the sensor with a finite number of
bits. The sensors used achieve 14-bit RAW bit depth [2]. The use
of multiple exposures enable the use of tone mapping [8] to re-
duce the multiple frames (3,5 or 7) of 14-bits into a single frame
with darker areas stretched for increased luminosity and brighter
areas darkened to prevent saturation. Tomasi et al [14] proposed
a bilateral filtering algorithm which is what we use to merge the
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Figure 5: Top: Bird’s eye view of reconstructed model, Bottom: side profile view of Blue Mountain Dam outflow works

multi-exposure frame sets. We further compress the images to
12-bit for ease of processing.

Photogrammetric Reconstruction
Photogrammetry is known for the generalized problem of si-

multaneously solving for the 3D location of a set of points which
are observed from N cameras where each camera can be charac-
terized with camera matrix P [6]. SLAM solves for sensor pose
and environment geometry [12]. SLAM algorithms are generally
targeted at applications where image and IMU data is sequentially
acquired and where results are expected in real-time or near real-
time on the acquisition platform. Similar non-linear optimization
techniques are exploited in sequential bundles (windowed Bun-
dle Adjustment) [10] when compared to Photogrammetry meth-
ods which leverage optimizations over the full set of bundles.

Acquisition of the data is completed at intervals that are tem-
porally constant, but irregular motion yields in slightly different
rigid body transforms between captures. The TunnelCAM cen-
tering within the cylindrical tunnels, the spacing between cap-
tures, and the rotation of the system are all subject to random
human error. We hence have to derive the the 6- dof transforma-
tion τ j between subsequent captures { j = 0,1, ...,k} in the same
the world coordinate system. Since the cameras are mechanically
constrained we assume rigid body motion of the system and con-
sider the relative camera extrinsic parameters Ri, ti to be constant
for cameras {i = 1, ...,7}.

From a set of observed image features xi
j with corresponding

3D points X j viewed from the set of cameras with camera matrices
Pi over a set of captures, we minimize the re-projection error in 1
using a Levenberg Marquardt algorithm [9].

∑
i, j
||xi

j− (MiX j + t i)||2 (1)

Initial pose estimation can be obtained from onboard local-
ization systems such as the Realsense camera that computes VIO,
it is also possible to compute it from general photogrammetry

through software packages like Agisoft Metashape [1]. Differ-
ences in pose estimate performance will be later discussed in the
results section.

The goal is to achieve geometric and photometric recon-
struction of the outflow works at resolutions that are equivalent
or greater than human visual acuity. As the camera system re-
solves at 3.77mm/pixel resolution at 10m, slightly better than hu-
man acuity, it is necessary that reconstruction outputs have similar
number of world points as image points (unique pixel count over
overlapping areas) X j ∼ xi

j. We leverage the Semi-Global Match-
ing (SGM) algorithm [7] on image pairs for the dense reconstruc-
tion of the tunnel.For every camera we combine the frame with the
frame from the previous capture to form a stereo pair. This pair is
rectified to obey epipolar constraints between and the densifica-
tion algorithm is run. The subsequent depths for every respective
pixel are then projected with the intrinsic and extrinsic camera
parameters to 3D world points.

Primitive Fitting
The resulting reconstruction is in the form of a dense

point cloud where each point has a set of parameters - X j ∈
{{x,y,z},{r,g,b},{nx,ny,nz},c}, which are location, color, point
normals and point confidence respectively. The point confidence
is a value estimated from the number of image pairs that con-
tributed to the estimation of that point. We leverage the MLESAC
algorithm proposed by Torr et al. [15] to estimate a cylinder to
the dense cloud of the tunnel. The cylinder axis of the tunnel is
initialized by Principal Component Analysis (PCA) of the set of
dense points. Improved fitting is achieved through prior thresh-
olding of points that have c below a certain user-defined value.
This generally eliminates distant point estimates from poses that
deviate further from the tunnel geometry and can be considered as
noise in the dense reconstruction. The resulting cylinder equation
is used to calculate a point-to-cylinder distance for every point in
the model, that serves as our deviation estimate. All points are
then remapped into cylindrical coordinates to form a 2D cylindri-
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Figure 6: Walter dam gate model showing steel reinforcement warping.

cal image of the tunnel, with RGB and distance values for every
point.

Results
This section provides results from the TunnelCAM system

and proposed processing pipeline deployed at the F.E. Walter Dam
in Philadelphia, USA and the Blue Mountain Dam in Arkansas,
USA. The first served dam tests served primarily as an operation
test, and provided gate imaging results, while the Blue Mountain
dam allowed for imaging of the whole outlet works. A total of
7504 images were captured across the 7 cameras during the imag-
ing of the 300m Blue Mountain Dam tunnel. The captures were
set with a regular acquisition time interval of 5 sec, while the
system operators moved the system between subsequent captures.
The system was acquiring data starting at the tunnel entrance and
during it’s path in and out. At the end of the tunnel were 3 steel
gates that partially leaked water and prevented close-up imaging.
During acquisition, a live-stream served for a remote operator to
adjust exposure timing on the sensors and ensure that all captures
were synchronized.

The Blue Mountain Dam outflow works were also surveyed
in with a Faro ground LiDAR that was georeferenced with ground
control points located outside the tunnel. The photogrammetry
model derived from the TunnelCAM was evaluated to a known set
of points in the LiDAR model and the results are shown in Figure
7. It can be seen that the geometric consistency was on the order
of 0.17m throughout the length of the tunnel. This reflects global
accuracy of the model rather than the models local consistency
that shows geometric resolutions to a few mm.

The data processing pipeline used a set of image masks that
were derived manually from the system after it was mounted
on the boat vessel. This was to prevent the operators from be-
ing matched between frames and reduce mis-alignment instances.

The Realsense localization of the TunnelCAM system failed, as
seen in Figure 8, forcing the image processing without initial pose
estimates. The photogrammetry alignment was able to localize all
cameras with an average re-projection error of 2.31 pix, a spatial
resolution of 10mm/px at 3m, and a total dense point cloud point
count of 402 million points.

Figure 7: Accuracy results from LiDAR reference.

The cylinder fitting for the dense point cloud of the tunnel
section was relatively

The gate reconstruction was completed by moving the cam-
era array around the gate without specific pattern, but by maxi-
mizing coverage. This guaranteed that every point was ovserved
by at least 10 camera poses. Geometric and photometric recon-
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Figure 8: Mis-localized TunnelCAM system from Realsense localization unit.

struction results are seen in Figure 6. The plane deviation model
clearly identified the grid pattern behind the gate that was subject
to warping during the casting process.

Discussion and Conclusion
The results confirm that it is possible to achieve human

equivalent inspection of outflow works through remote data cap-
ture using a system like TunnelCAM. While spatial resolutions
of the reconstruction supports texture and local geometric consis-
tency, the global alignment accuracy of 0.2m is indicative that
the model is subject to warping and drifting. One potential is-
sue is the lack of intrinsic camera parameter consistency due to
the optical image stabilization. Furthermore, mis-matches in the
point features could also have contributed to reduced alignment
and reconstruction performance. Pose initialization can also be
improved with better low-light sensors and algorithms that are
more robust. This could also further increase the high-resolution
reconstruction accuracy, and reduce alignment time. The primi-
tive fitting algorithm showed larger deviations which were likely
due to the tunnel not being a perfect cylinder. We foresee better
deviation scaling if parametric surfaces would be used. Future
work will also investigate alternative imaging techniques such as
multi-spectral and X-ray transmission imaging for internal failure
analysis.

To conclude, this work has addressed the automation of diag-
nostic imaging in dam outflow works for structural inspection and
assessments. We have introduced a new self-illuminating camera
array with 7 cameras to cover a full viewing-circle at a total reso-
lution of 294 Megapixels. The array serves for handheld and rover
mounted data collection inside dam tunnels. A novel processing
pipeline is formulated that leverages the array to quickly derive in-
spection grade geometric and photometric cylindrical plans. We
generate a dense 3D point cloud which allow for geometric anal-
ysis of the scene. We provide a complete data collection and pro-
cessing results from the Blue Mountain dam as well as gate mod-
els from the the F.W. Walter dam in the month of October. The
results confirm the feasibility to complete remote inspections, and
that digital records can provide sufficient detail for digital docu-
mentation (BIMs) of such dam outflow works.
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