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Abstract 

We are using image systems simulation technology to design 
a digital camera for measuring fluorescent signals; a first 
application is oral cancer screening. We validate the simulations by 
creating a camera model that accurately predicts measured RGB 
values for any spectral radiance. Then we use the excitation-
emission spectra for different biological fluorophores to predict 
measurements of fluorescence of oral mucosal tissue under several 
different illuminations. The simulations and measurements are 
useful for (a) designing cameras that measure tissue fluorescence 
and (b) clarifying which fluorophores may be diagnostic in 
identifying precancerous tissue.  

Introduction 
Tissue autofluorescence can be used to discriminate between 

normal and precancerous tissue [1]. This finding has motivated the 
design and implementation of imaging systems for non-invasive 
in-vivo measurements of tissue autofluorescence [2].  

In most cases, the autofluorescence signal is very weak 
compared to reflected light. Consequently, one must design special 
purpose imaging systems that separate the reflected and fluorescent 
photons. This paper quantifies the autofluorescence signals 
available for one application - oral cancer detection.  We combine 
knowledge about these signals with image systems simulations to 
design illuminant and sensor combinations that can help clinicians 
measure the autofluorescence of oral mucosal tissue and ultimately 
identify specific signals that are diagnostic of oral cancer. 

Related work 
Several light-based devices help dentists visualize oral 

mucosal abnormalities associated with precancerous and cancerous 
lesions (e.g Velscope®, OralID®, Identafi®). These products use 
short-wavelength LEDs to excite endogenous fluorophores present 
in oral mucosal tissue.  The clinician wears glasses that block the 
short-wavelength reflected light from the LED illumination, 
rendering the middle- and long-wavelength fluorescence signals 
visible. These devices are designed around the observation that 
unhealthy tissue has a weak level of fluorescence [1,3-5].  Hence, 
the physician looks for dark areas on the tongue and in the oral 
cavity where the fluorescence is absent.  

A decrease in certain types of tissue fluorescence is associated 
with precancerous and cancerous tissue. Many researchers have 
proposed that changes in endogenous tissue fluorophores are 
responsible for the decreased fluorescence. For example, some 
have attributed the decreased fluorescence to a reduction in FAD 
(flavin adenine dinucleotide), a molecule that plays an important 
role in cell respiration and metabolism, and to changes in collagen 
and elastin that occur with cellular damage [6-10].   

 
 

1 https://github.com/iset/isetcam/wiki 

An increase in other types of tissue fluorescence has been 
associated with cancer.  For example, several investigators have 
reported an increase in fluorescence caused by NADH (the reduced 
form of nicotinamide adenine dinucleotide) associated with the 
progression of cancer [8,11].  Investigators have also detected the 
distinctive spectral signature of porphyrin fluorescence in 
cancerous lesions [3,6,12–15].  However, because porphyrin 
fluorescence is also measured on the dorsal side of healthy tongues 
[9], porphyrin fluorescence has the potential of producing false-
positive outcomes when it is used as a diagnostic for oral cancer in 
humans [12]. 

Multiple changes in tissue fluorophores may occur with the 
progression of cancer, and there may be new discoveries about 
additional causes of a change in tissue autofluorescence. To build a 
diagnostic tool we must create an imaging system that separates 
the effects of these multiple fluorophores.  Ultimately through the 
acquisition of quantitative data about the fluorescent signals from 
clinical cases, we may be able to implement meaningful diagnostic 
tools.  An early diagnosis of oral cancer can be lifesaving. 

The main goal of the work described in this paper is to build a 
special purpose camera system that can be used to acquire and 
interpret measurements of tissue fluorescence in the oral cavity.  
Image systems simulations enable us to explore the relationship 
between fluorophores, illuminant spectra and fluorescence. We aim 
to design and build a calibrated camera that can replace the eyes and 
clinical judgment of the clinician with measurement data that can 
quantify the amount and type of tissue fluorescence in a large region 
of the oral cavity.  Aggregating these data and monitoring patient 
outcomes, should enable us to improve oral health predictions. 

Image systems simulation 
We use image systems simulations to investigate how well 

fluorescence can be detected as we make different choices of the 
illuminant spectral power, the camera filters and the sensor color 
filter array. To perform the simulations, we use the Image Systems 
Engineering Toolbox for Cameras (isetCam), a freely available, 
open-source, Matlab toolbox1. The software has been described 
and validated in several other applications [16–18]. 

We begin by modeling a camera of the type we propose to 
acquire data and show that the camera model accurately predicts 
measured sensor responses (RGB values) for both reflective and 
fluorescent calibration targets.   Then we describe simulations of 
tongue reflectance and the fluorescence of molecules that are 
known to be present in the healthy oral cavity.  The simulations are 
based on information from the literature that characterize the 
excitation and emission properties of endogenous tissue 
fluorophores. We created a second open-source, available Matlab 
toolbox2 to document the data and fluorescence computations.  
Finally, we simulate the design of an illumination source and 

2 https://github.com/iset/isetfluorescence/wiki  
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camera that can image, detect and quantify the autofluorescent 
signals from the mouth. 

Camera modeling 
We model an imaging system that was built by FengYun 

Vision Technologies to capture reflectance and fluorescence 
images of the oral cavity. We refer to the imaging system as the 
“OralEye camera”.  The camera includes a light source that 
illuminates oral mucosal tissue with either a broadband spectral 
(white) LED light or narrowband short wavelength (blue) LED 
light with peak energy at 385 nm (Figure 1).  The two different 
lights enable the user to measure both tissue reflectance and 
fluorescence.  The image system includes sharp wavelength cut 
filters that limit the spectrum of the illuminant and allow the 
sensors to respond mainly to the fluorescence wavebands. The 
exposure duration and sensor gain can be pre-programmed to use 
exposure bracketing. 

The OralEye camera includes a longpass filter that blocks 
wavelengths less than 475 nm from reaching the imaging sensor.  
This filter is necessary because tongue fluorescence is 
approximately 10,000 times less than the blue light that is reflected 
from the tongue (see Figure 1).  The camera also has a shortpass 
filter in front of the blue LED lights so that wavelengths greater 
than 475 nm do not reach the tongue where it would be reflected.  
Finally, the OralEye camera has an NIR blocking filter to block 
wavelengths greater than 700 nm.  

We can efficiently represent the combined effect of the 
spectral transmittances of filters and the spectral quantum 
efficiency of the imaging sensor in a 3xW matrix, S, where W is 
the number of wavelength samples. This combination represents 
the spectral quantum efficiency of the whole system (Figure 1c), 
including the longpass and NIR blocking filters. We use this 
matrix to predict the raw sensor camera values for spectral 
radiance input. 

Validation 
To validate the model, we captured OralEye camera images of 

a miniature version of a Macbeth Color Checker (MCC) 
illuminated with the broadband (“white”) LEDs using 5 and 10 
msec exposure durations and with the uv (“blue”) LEDs using a 30 
msec exposure duration. All camera images were captured with the 
same gain and no ambient illumination.  

The images shown in Figure 2 represent the sensor RGB 
values (unprocessed) for the Macbeth ColorChecker captured 
under two different illuminants. For each camera image, we 
extracted the mean raw RGB values for the 24 color patches. The 
rectangle superimposed on each color patch indicates the image 
area used to calculate the mean R, G and B values for the 24 color 
patches. The data are stored in a 3x24 target matrix, T.   
 

  

 
Figure 1.   A) Spectral energy in the short wavelength (“blue”) and 
broadband (“white”) LEDs, plotted on in units of log10.  The dashed 
box marks the cutoff frequency of a long pass filter that passes 
spectral energy greater than 425 nm and a shortpass filter that 
blocks spectral energy greater than 700 nm. B) Spectral energy 
measured from a tongue (red line) and a white calibration target 
(black solid line) using a spectroradiometer equipped with a 425 
nm longpass filter. The dashed line plots the tongue reflectance 
multiplied by the short-wavelength light, representing the expected 
tongue radiance based on reflectance only. C) Spectral quantum 
efficiency of the OralEye camera, including the effects of the 425 
nm long pass filter and the NIR blocking filter. 

 
The white broadband illuminant produces RGB values that 

create a recognizable test chart. The blue UV LED illuminant 
produces an image in which a few of the diffusely reflecting non-
fluorescent surfaces are violet/bluish.  Several other surfaces 
appear orange, brown and green, indicating that these materials 
have fluorescent pigments. The MCC pigments absorb energy in 
the UV light and emit energy in the longer wavelengths, like 
certain biological tissues. Thus, calibrating with respect to this 
target is a useful approach to validating the camera model with 
respect to the goal of measuring tissue fluorescence. 
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Figure 2. Raw camera images captured when the MCC is 
illuminated with the broadband “white” LEDs (shown on the left), 
and short wavelength “blue” LEDs (shown on the right).  The 
rectangles superimposed on the images indicate the image area 
over which the mean R, G and B pixel responses were calculated. 
Many of the patches include fluorescent pigments that are visible 
when illuminated by the “blue” light.  The fluorescence will also be 
present when illuminated by the “white” LED light, but the number 
of fluorescent photons is very low compared to the number of 
reflected photons. 

 
We used a spectroradiometer (PhotoResearch PR670) to 

measure the spectral radiance of each of the 24 color patches under 
these two different lights and stored each set of measurement data 
in a Wx24 matrix, R. The fluorescence emitted by the MCC 
pigments illuminated with UV light is four orders of magnitude 
weaker than the reflected light.  Like the OralEye camera, the 
dynamic range of the PR670 spectroradiometer is not high enough 
to simultaneously measure both the reflected and fluorescing 
photons.  Hence, we place a longpass filter with a cut wavelength 
of 425 nm in front of the PR670 to measure the spectral radiance 
of each of the 24 color patches illuminated with the UV light.  

We use the spectral radiance measurements of the MCC color 
patches (R) and a linear model for the camera sensors (S) to predict 
the mean MCC RGB camera values (T’). We start with a linear 
model based on the combined effect of the spectral transmittances 
of all filters (including the longpass and NIR blocking filters) and 
the spectral quantum efficiency of the imaging sensor provided by 
the filter and sensor manufacturers (see Figure 1c).   

The predicted raw camera RGB values for each of the 24 
color patches illuminated with the two different illuminants are 
calculated as T’ = S . R .  Figure 3a shows plots the predicted RGB 
values (T’) against the measured RGB values (T) normalized by 
dividing by exposure duration.  Figure 3b shows that it is possible 
to improve the fit between predicted and measured RGB values by 
applying a linear affine transformation to the sensor model, S.  
Figure 3c compares the original sensor model that is based on data 
from the filter and sensor manufacturers and the improved sensor 
model based on the linear transformation. This figure illustrates 
that the improved fit has more crosstalk between the R and B 
channels and an increased gain in the B channel.  There is also a 
small but insignificant additive term (0.003) 

The results shown in Figure 3 confirm that the camera model 
accurately predicts measured sensor responses (RGB values) for 
both reflective and fluorescent calibration targets. In the next 
section of our paper, we combine the camera model with 
knowledge about the spectral properties of fluorophores in order to 
evaluate the effect that the spectral energy of the illuminant will 
have on tissue fluorescence and, consequently, sensor responses.  

 

 
 
Figure 3.  Predicted and measured camera sensor responses to the 
Macbeth ColorChecker patches under different lights after accounting 
for exposure duration. R, G and B values are represented by red, 
green and blue symbols, respectively.  Open circles represent the 
RGB values for the white light and asterisks represent the RGB 
values for the ultraviolet (UV) light. The data plotted in the first figure 
(A) are predicted by the original sensor model-based data provided 
by the filter and sensor manufacturers.  The data plotted in the 
second figure (B) were obtained by applying a linear transformation of 
the original sensor model in order to improve the fit between 
predicted and measured camera RGB values.  The figure on the 
bottom (C) compares the original (dashed lines) and linearly 
transformed (solid lines) sensor models. 

Fluorophore simulations 
The development of light-based oral cancer screening devices 

were inspired by scientific reports that precancerous (dysplastic) 
and cancerous tissue fluoresce less than healthy tissue 
[3,19,20].  The lower fluorescence in cancerous tissue has been 
attributed to lower concentrations of FAD, collagen and elastin 
[9,21].  Further work on fluorescence in cancerous tissue suggested 
that there are higher concentrations of NADH [8,22] and 
porphyrins [8,22,23].  The opposing effects require us to separately 
measure the decrease in fluorescence (FAD, collagen and elastin) 
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from the increase in fluorescence (NADH and porphyrins).  We 
use image systems simulation to assess how well we can separate 
the effects from these two groups of fluorophores. 

Each fluorophore is characterized by an excitation-emission 
matrix (EEM).  The columns of the EEM contain the relative 
spectral emission for each excitation wavelength.  Typically, as 
observed by Stokes [24], the emissions arise only at wavelengths 
that are longer (lower energy) than the excitation wavelength; 
consequently, the EEM is triangular.  The EEM is also called the 
Donaldson matrix. 

Biological tissues often contain multiple fluorophores, each 
with a different EEM.  The emissions from this mixture can be 
calculated by a weighted sum of their separate contributions 
[25].  We use the spectral energy of the illuminant, the EEM data 
for NADH, FAD, collagen, elastin and porphyrins (provided by 
[26]), measured tongue reflectance, and the sensor model to predict 
the OralEye RGB values (Figure 4). 

 

 
 

Figure 4: The simulated OralEye RGB values.  The illuminant 
spectral energy of the 385 nm light multiplies the weighted sum of the 
fluorophore EEMs plus the tongue reflectance.  This calculation 
generates an expected spectral radiance energy.  The OralEye 
sensor model responds to the radiance to produce the camera RGB 
values.  

Camera chromaticity coordinates 
It is virtually impossible to illuminate the oral cavity 

uniformly.  To reduce the impact of the nonuniform illuminant, we 
use camera chromaticity responses to estimate the presence of 
different fluorophores 

 
r=R/(R+G+B), g = G/(R+G+B) 

 
The chromaticity coordinate values are a quantitative measure 

of the camera response that is invariant with the local illumination 
level.  Figure 5 plots the predicted chromaticity for different 
concentrations of each of the individual tissue fluorophores. The 
origin of the line is at the chromaticity of the tongue 
reflectance.  Introducing fluorophores at increasing concentrations 
shifts the camera chromaticity along a line. As the fluorophore 
concentration increases, the chromaticity shifts further from the 
tongue reflectance.  The impacts of NADH and collagen on the 
chromaticity is relatively small compared to FAD and elastin. The 
small effects of NADH and collagen are explained because their 
excitation sensitivities do not overlap significantly with the 
illuminant energy (385 nm).  FAD and elastin move along lines in 
a similar direction making their effects hard to discriminate. The 
porphyrins are different. The excitation sensitivity of the 
porphyrins overlaps with the illuminant energy making them 
bright, and the porphyrin emissions are primarily captured in the R 
channel. 

 

 
 
Figure 5:  The chromaticity coordinates of the simulated spectral 
radiance from the tongue for different fluorophores with a range of 
concentrations. The tongue reflectance under the 385 nm illuminant is 
shown by the black circle.  Simulating increasing concentrations of 
porphyrins produces an expected camera chromaticity along the red 
dashed line.  Each of the other colored symbols shows the effect of 
simulating various concentrations of the other fluorophores.  

OralEye images 
OralEye images captured under 385 nm illumination are 

shown for three participants (Figure 6, left side).  The image 
appearance is due almost entirely to fluorescence.  In the absence 
of fluorescence, the reflected light intensity would be below the 
sensitivity limits of the camera.  The teeth are very fluorescent, 
emitting light over many wavelengths.  The tongue fluorescence 
spans a more limited set of wavelengths that is characterized by a 
limited range of camera image pixel chromaticity coordinates. 

For each of the participants we selected a large region within 
the dorsal aspect of the tongue (white box).  The chromaticity 
coordinates for unprocessed camera image pixels in this region are 
plotted in the graphs (Figure 6, right side). The tongue 
chromaticity values span a similar line for the 3 participants shown 
in Figure 6, as well as other participants not shown here.  These 
camera image pixel chromaticity values span the expected values 
predicted by combinations of the key tongue fluorophores. The 
lines showing the expected chromaticity coordinates for separate 
fluorophores are the same as those in the simulation (Figure 5).  In 
all cases, one end of the chromaticity coordinates approaches the 
red line corresponding to different concentrations of 
porphyrins.  The other end of the chromaticity coordinates extends 
past the simulated line for FAD, elastin and collagen, approaching 
the simulated line for NADH. 

Had the data been scattered in chromaticity, it might be 
difficult to identify a quantitative expectation for healthy 
participants.  Thus far, we collected data from a relatively small 
number of subjects (10), but the very close agreement in these 
participants is encouraging.  It suggests that we might be able to 
define a narrow, quantitative expectation for the chromaticity 
range in the healthy dorsal tongue.  
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Figure 6:  The camera chromaticity coordinates from three participants 
measured with the OralEye camera. The images in the left column were 
captured under the 385 nm illuminant. Despite the very short wavelength, 
the images contain a wide range of colors that arise from the fluorescence 
of the tongue, teeth, face and clothing.  For each participant we selected 
two regions of interest and we plot the chromaticity coordinates in those 
regions in the graphs shown in the right column.  The dashed lines are the 
expected boundaries of the chromaticity coordinates based on fluorophore 
simulation. 

Discussion 
Endogenous fluorophores in biological tissue are widespread 

and provide an opportunity for non-invasive in-vivo diagnosis of 
tissue health and pathology [1]. The ability to detect radiance 
emitted by fluorophores in the mouth may be an important source 
of information for diagnosing oral cancer.  Many investigators 
have used specialized devices, particularly endoscopes, to measure 
these signals [2-4, 6-11].  

Even using slightly invasive and carefully calibrated 
radiometric instruments, the exact identity of the fluorophores 
remains uncertain.  The camera simulations confirm that the 
expected differences in the spectral radiance from some of the 
tongue fluorophores is small.  There is a small separation between 

the chromaticity from NADH and three fluorophores (FAD, 
elastin, and collagen).  The largest separation is between these 
fluorophores and the emissions from the porphyrins.  The 
measurements across the surface of the tongue in the participants 
that we have characterized thus far suggest that the range of 
measured chromaticity values may be fully characterized as the 
mixtures of these agents within a small expected range of 
concentrations. 

Summary 
We designed and built an imaging system that quantitatively 

and non-invasively measures fluorescence in the oral cavity. We 
used image systems simulation to model the response to known 
oral fluorophores. The measurements from the tongues of healthy 
participants are consistent with the simulations and suggest that 
our system can quantify the presence of these fluorophores.  The 
regularity in the measurements across these participants suggests 
that these measurements may provide a biomarker of the typical 
fluorophore concentrations in the healthy dorsal tongue. 
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