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Abstract 

This paper presents a prototype linear response single 

exposure CMOS image sensor with two-stage lateral overflow 

integration trench capacitors (LOFITreCs) exhibiting over 120dB 

dynamic range with 11.4Me- full well capacity (FWC) and maximum 

signal-to-noise ratio (SNR) of 70dB.  The measured SNR at all 

switching points were over 35dB thanks to the proposed two-stage 

LOFITreCs. 

Introduction  
In recent years, sensing technology using CMOS image sensor 

(CIS) has been widely used. Some sensing applications in 

automotive, medical, factory automation fields need to capture 

subjects with strong contrast of light illumination. For CIS in those 

usage, wide dynamic range (WDR) with linear response is highly 

required. In addition, for WDR image sensors types synthesizing 

multiple signals over different illuminances, in order to obtain a 

high-quality image, the signal-to-noise ratio (SNR) of over 32dB is 

needed at the switching point of signals [1]. 

Several WDR technologies have been reported so far; 

logarithmic compression [2-7], multiple exposure [8-15], 

combination of photodiodes (PDs) [16-19], dual conversion gain 

[20-22], lateral overflow integration capacitor (LOFIC) [1, 23-27] 

and lateral overflow integration trench capacitor (LOFITreC) [28], 

and combinations of above [29-32]. The logarithmic compression 

approach utilizes the logarithmically compressed photocurrent 

output by using the sub-threshold characteristic of MOSFET in high 

light condition. The multiple exposure approach captures some 

images with different exposure times. The approach with 

combination of PDs captures an image with multiple PDs with 

different size or light sensitivity in a single exposure. The dual 

conversion gain approach changes conversion gain (CG) by 

controlling a switch connected to a capacitor and floating diffusion 

(FD) in a pixel during horizontal blanking period. The LOFIC and 

LOFITreC approach accumulates overflow-electrons from PD and 

FD capacitor and reads out signals with different sensitivity in a 

single exposure. This approach allows independent design of CG 

and full well capacity (FWC).  Previously reported LOFIC CIS 

achieved 100dB dynamic range (DR) and over 32dB SNR at 

switching point [24]. However, achieving both single exposure 

WDR over 120dB and over 32dB SNR at switching points is still 

challenging [16, 21, 31].  

The purpose of this work is to develop a CIS with an over 

120dB DR and over 32dB SNR at all switching points. In order to 

achieve high SNR at the switching points, two-stage LOFITreCs is 

newly developed. The structure and performances of the developed 

CIS are described as follows. 

 

 

Developed image sensor  
Figure 1 shows the circuit block diagram of the developed CIS. 

The pixel consists of a pinned PD, a transfer gate (T), a FD, a source 

follower driver (SF), a select switch (X), a first overflow switch (S1), 

a LOFITreC1, a second overflow switch (S2), a LOFITreC2, and a 

reset gate (R). In this work, the 67fF LOFITreC1 and 1.5pF 

LOFITreC2 are integrated adjacent to the PD. The values of the 

capacitances are designed to achieve sufficient SNR at signal 

switching points.  The developed prototype chip has three pairs of 

parallel analog outputs and they are converted by differential 

analog-to-digital converters (ADCs) outside the chip. When 

column-parallel ADCs are introduced, its suitable circuit 

architecture needs to be examined. 

Figures 2 and 3 show the operation timing diagram and the 

potential diagram of the two-stage LOFITreCs operation, 

respectively. After the PD reset, a reset signal for the highest FWC 

signal S3 converted at FD+LOFITreC1+LOFITreC2 is read out at 

t1. A reset signal for high FWC signal S2 converted at 

FD+LOFITreC1 is read out at t2. When a high intensity light is 

irradiated to the pixel during the integration period (t3), overflow 

photoelectrons from PD and FD are accumulated in the LOFITreC1 

and overflow photoelectrons from LOFITreC1 are accumulated in 

the LOFITreC2. A reset signal for high sensitivity signal S1 

converted at FD is read out at t4. Photoelectrons accumulated in the 

PD are transferred to the FD at t5. A high sensitivity signal 

converted at small capacitance FD (S1) at t6, a high FWC signal 

converted at FD+LOFITreC1 (S2) at t7 and a highest FWC signal 

converted at FD+LOFITreC1+LOFITreC2 (S3) at t8 are read out to 

achieve WDR under a single exposure.  

Figure 4(a) shows the layout of the 16μm pitch pixel of the 

prototype CIS developed in this work and 4(b) shows the pixel cross 

sectional diagram. The trench capacitors were integrated inside each 

pixel as LOFITreCs to achieve high FWC and a sufficiently high fill 

factor (FF). The TEM images of LOFITreC are shown in Figure 4(c-

d). A deep p-well (DPW) was formed around the LOFITreC in order 

to form a potential barrier between inversion layer of LOFITreC and 

the buried n-type layer of pinned PD. The concentration of DPW 

was optimized to obtain a uniform capacitance in the signal range of 

LOFITreC. To suppress leakage current of charge integration node 

of LOFITreC, overflown-photoelectrons from PD and FD 

capacitance are accumulated at the n+-doped poly-Si buried 

electrode. The inversion layer induced at the Si substrate side 

interface and n+ layer are connected to ground.  

 
Chip measurement results 

Figure 5 shows the micrograph of the fabricated chip with 

128H×128V effective pixels. The number of pixels is easily 

extendable under the same design. The chip was fabricated by using 

a 0.18µm 1-Poly-Si 5-Metal layer CMOS image sensor technology 
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with 20µm thick p-epitaxial layer on n-type Si substrate. The die 

size is 3.65mmH  4.64mmV.  

Figure 6 shows the measured photoelectric conversion 

characteristics of the developed CIS. An over 120dB WDR with 

linear response was obtained by S1, S2 and S3 signals under a single 

exposure. The FWC of S1, S2 and S3 were 17.8ke-, 50.9ke- and 

11.4Me-. And the spatial efficiency of the FWC were 69.5e-/μm2, 

199e-/μm2 and 44.5ke-/μm2, respectively. The SNR at S1/S2 and 

S2/S3 switching points were 35dB and 47dB, respectively. The high 

SNR at two switching points were successfully achieved due to the 

introduced two-stage LOFICTreCs. 

Figure 7 shows the sample images of a light bulb, a grayscale 

chart, printed paper and two stuffed animals captured at 285fps with 

F# 4.0 lens. The stuffed animal on the left was illuminated with high 

intensity lights from both its front and back to simulate the gray 

phenomenon. The other stuffed animal on the upper right was placed 

in a dark box. Figure 7(a), 7(b) and 7(c) were captured by the S1, S2 

and S3 signals, respectively. The S1 signal captured the upper right 

stuffed animal under low light condition. The S2 signal captured the 

printed paper on the back and the grayscale chart under high light 

condition. The S3 signal captured the bulb filament and the stuffed 

animal on the left under very high light condition. The results show 

that the developed CIS exhibits a single exposure WDR 

performance.   

The performances of the developed CIS are summarized in 

Table I. 

The pixel pitch can be scaled while maintaining its high spatial 

efficiency of FWC thanks to the LOFITreC. In addition, backside 

illumination and stacking technologies can increase the spatial 

efficiency of FWC further even if decreasing the pixel pitch.  

Conclusion 
In this work, a CMOS image sensor with two-stage LOFITreCs 

was presented which achieved over 120dB WDR with linear 

response and over 35dB SNR at all switching points in a single 

exposure. The developed CMOS image sensor is highly adaptive to 

many applications with strong contrast of light illumination. 
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Figure 1. Circuit block diagram of  

the developed CMOS image sensor with two-stage LOFITreCs 
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Figure 3. Potential diagrams of a two-stage LOFITreCs operation 

Figure 4. (a) Pixel layout and (b) pixel cross sectional diagram of line A-A’, and cross sectional TEM images of (c) line B-B’, (d) line C-C’ 

 

VPIXEL_OUT

Tϕ

Rϕ

S1ϕ

Xϕ

HCLKϕ

t1 t2t4 t6

S2ϕ

t7 t8 t3t5
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Table 1. Performance summary of the developed CMOS image sensor 

Figure 5.  Micrograph of the developed CMOS 

image sensor chip Figure 6.  Measured photoelectric conversion characteristics 

Figure 7. Sample images by (a) S1, (b) S2 and (c) S3 signals captured at 285fps with F# 4.0 lens 
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Process technology
0.18μm 1-poly-Si 5-Metal CMOS 

with pinned PD

Power supply voltage 3.3V

Die size 3.65mmH×4.64mmV

# of effective pixels 128H×128V

Pixel size 16μmH×16μmV

Fill factor 52.8%

Maximum frame rate 685fps @ 20MHz

Capacitance

FD 2.1fF

LOFITreC1 67fF

LOFITreC2 1.5pF

FWC

Spacial
Efficiency

High sensitivity S1 17.8ke- (69.5e-/μm2)

High saturation S2 50.9ke- (199e-/μm2)

High saturation S3 11.4Me- (44.5ke-/μm2)

SNR

S1/S2 switching point 35dB

S2/S3 switching point 47dB

Maximum S3 70dB

Dynamic range >120dB

Spectral sensitivity range 200nm-1100nm
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