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Abstract. Detecting changes in an uncontrolled environment using
cameras mounted on a ground vehicle is critical for the detection
of roadside Improvised Explosive Devices (IEDs). Hidden IEDs are
often accompanied by visible markers, whose appearances are a
priori unknown. Little work has been published on detecting unknown
objects using deep learning. This article shows the feasibility of
applying convolutional neural networks (CNNs) to predict the location
of markers in real time, compared to an earlier reference recording.
The authors investigate novel encoder–decoder Siamese CNN
architectures and introduce a modified double-margin contrastive
loss function, to achieve pixel-level change detection results. Their
dataset consists of seven pairs of challenging real-world recordings,
and they investigate augmentation with artificial object data.
The proposed network architecture can compare two images of
1920× 1440 pixels in 27 ms on an RTX Titan GPU and significantly
outperforms state-of-the-art networks and algorithms on our dataset
in terms of F-1 score by 0.28. c© 2019 Society for Imaging Science
and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2019.63.6.060402]

1. INTRODUCTION
Small-object change detection in an uncontrolled envi-
ronment compared to an earlier moment in time is a
challenging yet important problem for security applications.
Basic applications include detecting roadside markers for
Improvised Explosive Devices (IEDs) [1], litter detection,
or detecting suspicious abandoned objects in public spaces.
Detection of IEDmarkers is themain reason for this research,
as real-time automated detection can reduce IED casualties
by spotting suspicious objects at a safe distance. In addition,
the detection of unknown objects becomes particularly
complicated when data is captured from moving ground
vehicles. The use of moving vehicles is motivated because it
enlarges the field of exploration significantly compared to
existing change detection and anomalous object detection
systems, which mostly rely on static cameras. This motivates
the desire for real-time automated detection from a ground
vehicle.
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Real-time mobile automated systems for the detection
of small objects have been explored in the past. Specifically
for IED detection various techniques may be used, such
as LiDAR [2], ground-based monocular camera imagery
[3–5], ground-based stereo imagery [6, 7], or imagery from
unmanned aerial vehicles [8]. What these methods have
in common is that they search for small environmental
changes compared to imagery captured at an earlier moment
in time. More general methods for change detection from
ground vehicles using camera imagery focus on background
subtraction techniques [9, 10] or deep learning [11–13].
The background subtraction research for non-static cameras
primarily distinguishes the objects from background based
on motion, while we are interested in static objects. Research
ondeep learning focusesmore on changed areas in the image,
instead of searching specifically for unknown objects. Finally,
a system for abandoned object detection from a ground
vehicle is proposed in [14], which works well in controlled
indoor environments. However, none of these methods are
sufficiently capable of detecting small-object changes in the
outdoor environments of our dataset due to severe lighting
differences and dynamic backgrounds, such as moving tree
branches. An example of these challenges in our dataset is
shown in Figure 1.

This research is an extended version of [15]. It focuses
on change detection between two aligned videos from
different moments in time, with robustness to illumination
differences, dynamic surroundings and small alignment
errors, using a novel Convolutional Neural Network (CNN)
architecture. The videos are acquired from a moving ground
vehicle. Image alignment is performed using the system of
Van de Wouw et al. [6]. This system consists of a processing
chain using GPS-based image retrieval to recover a past
image with the best possible viewpoint overlap, depth image
generation from stereo cameras, and image alignment based
on both features and depth information. These aligned
images are suitable for 2D change detection. Van de Wouw
et al. [6] used heuristics and post-processing to detect the
changes, which yielded false positives on both dynamic
backgrounds and complex lighting changes, especially hard
shadows. The purpose of this article is to replace the decision
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(a) Live image (b) Closest reference image based on viewpoint overlap

Figure 1. Visual example of a frame pair with significant lighting and dynamic background changes.

made by our novel CNN architecture, aiming at improved
detection while maintaining real-time operation.

Our contributions are fourfold. First, we propose a novel
CNN architecture that can perform change detection in real
time (around 27 ms per frame) on high-resolution imagery
(1920 × 1440 pixels), where the network is inspired by
proven concepts from related domains, i.e., object detection,
patch matching, and semantic segmentation networks, thus
allowing us to experiment freely with architectural design
decisions. Second, we propose the use of an extended
double-margin contrastive loss function for the training
of general Siamese networks for change detection. Third,
we extensively investigate the generalization power of the
network by training and testing on different object classes
and artificially augmented images. Fourth, we optimize the
speed of the network with a more efficient architecture
choice, optimized post-processing, and the use of publicly
available optimization tools. Contributions 3 and 4 are new
compared to [15]. All contributions are extensively validated
on our own experimental datasets of ground-based images,
containing changes in the form of static objects.

2. RELATEDWORK
Change detection is a broad subject that can be applied
to various types of data, such as 1D time series, images,
graphs, or videos [16].We limit ourselves to change detection
in images (extracted from videos), surveys of which can
be found in [17, 18]. These surveys focus primarily on
conventional computer vision image processing, which we
found to be insufficiently robust to dynamic backgrounds
and strong lighting differences. Hence the focus of this
section lies on deep learning-based approaches due to their
recent success and advances in multiple computer vision
problems.

CNNs can be used for change detection in various
ways. In the absence of training data, CNNs pretrained
on the ImageNet dataset [19] may be used as a feature
extractor. The Euclidean distance in feature space is then

used to generate a difference image [11, 20–22]. This is
shown to outperform handcrafted features, especially when
employing features from multiple layers in the network [21].
However, the CNN features were never specifically trained
to be well-separable by Euclidean distance, which may limit
change detection accuracy. Furthermore, most existing algo-
rithms employ either VGG-16 [23] or Alexnet [24] as their
feature extractor. VGG-16 is computationally expensive,
which prevents real-time performance on high-resolution
images. In contrast, Alexnet has relatively poor detection
performance compared to current state-of-the-art networks.
Our preliminary experiments have shown that the use of
pretrained networks as feature extractors without retraining
is not suited for the complex outdoor scenes in our dataset
due to poor accuracy, especially in the presence of hard
shadows. Instead of using a pretrained feature extractor
network, it is possible to learn the important features per
image by using auto-encoders [25–28]. This unsupervised
method learns the features at test time. However, this is
too slow for real-time performance, requiring minutes of
processing time per image.

If training data are available, supervised networks can
be used to learn change detection features directly from the
training data. For static cameras, the CDnet dataset [29]
is commonly used for this purpose, though for moving
cameras no commonly used benchmark dataset exists.
Non-static camera change detection is studied extensively
in remote sensing [30–38] and mobile ground-based im-
agery [12, 13]. However, none of these works use pretrained
weights to initialize their networks, even though it has a
proven value for classification and object detection tasks,
especially when only a limited amount of annotated data
are available [39]. Our dataset is relatively small, hence
pretrained weights are essential. Khan et al. [40] and Yang et
al. [41] indeed exploit a pretrained network, but otherwise
focus on weakly supervised training with computationally
expensive components which are not suited for our purpose.
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None of the methods mentioned in this paragraph pay
particular attention to computational efficiency.

Because computational efficiency is crucial for real-time
systems, existing change detection CNNs are less suited for
our use case. Hence, we prefer building a network from
more basic components, by borrowing techniques that have
been proven to work well in other computer vision tasks.
The research fields from which we draw inspiration for our
network are classification, semantic segmentation, and patch
matching.

Classification: Canziani et al. [42] provide an overview
of speed considerations for recent popular classification
networks. This overview supports a base network choice
that operates in real time and may also achieve good
change detection performance. It shows that especially
ResNet variants [43] have high performance for relatively
low computational cost. Deeper networks generally do not
improve the detection rate of small objects [44], whichmakes
efficient shallow networks especially viable for our use case.

Semantic segmentation: Change detection requires cre-
ating a pixel-level prediction based on image data, which
makes it closely related to the field of semantic segmentation.
Recent work focuses on segmentation networks that can
operate in real time, e.g., LinkNet [45] or ERFNet [46]. These
efficient networks achieve surprisingly good performance
compared to state-of-the-art expensive semantic segmenta-
tion networks such as RefineNet [47] and DeepLab [48],
or memory-intensive networks like DenseNets [49], which
are incapable of fitting all feature maps in memory on most
hardware for high-resolution images.

Patch matching: Patch matching is closely related to
change detection, as it compares two patches and determines
their similarity score, while ignoring irrelevant differences
such as illumination, translation, and rotation. In general,
three main architecture options exist for patch matching:
Siamese, Pseudo-Siamese, and stacked (or ‘‘2-channel’’)
networks [50]. Both Siamese and Pseudo-Siamese networks
consist of two branches that each take an image patch as
input, where Siamese networks exploit the extra assumption
that the order of the two input images does not influence
the change detection result. Stacked networks process image
patches jointly as a single 6-channel ‘‘image’’ and are themost
common in change detection literature [12, 13].

From the above discussion, we have concluded that
designing a network based on classification, semantic seg-
mentation, and patch matching is a viable approach because
these aspects are considered essential for building a change
detection network. Although broadly used, straightforward
use of pretrained networks without fine-tuning is not
adopted due to poor performance. Designing our own
network from scratch will allow us to perform pixel-level
change detection in real time.

The article continues as follows. First the design of
the network is described, after which the loss function
is elaborated upon. Third, we introduce our new post-
processing approach. Next we describe the creation of
the datasets, including the insertion of artificial changes.

The results cover a speed versus performance trade-off,
additional speed optimization, loss-function exploration,
state-of-the-art comparison, and network generalization
experiments.

2.1 ESOCNet: Proposed Architecture
This section presents the network architecture consisting
of a Siamese encoder–decoder architecture. It is structured
as follows. First, it describes a method for achieving
efficient pixel-level features through a smart choice of
encoder and decoder. Second, we show the extension of
this basic network to make it specifically suited for change
detection with the definition of an appropriate loss function.
Third, a post-processing operation to suppress invalid
detections is proposed, which is uniquely coupled to our
network architecture. Finally, all parameters are listed for
reproducibility.

The architecture is dubbed ‘‘Efficient Small-Object
Change detection Network’’ (ESOCNet), and is an updated
version of our previous ECDNet [15] architecture, for
real-time change detection between aligned images. The
network consists of a Siamese encoder–decoder architecture,
as shown in Figure 2. The diagram portrays all feature maps
with their corresponding resolutions and layer depths (result
of the number of used filters in that layer) of the encoder,
decoder, and integrated post-processing.

2.2 Achieving Efficient Pixel-level Features
Finding a good trade-off between computation speed,
performance, and memory requirement is crucial to allow
for real-time processing of high-resolution images. The most
influential component for this trade-off is the encoder, which
acts as a feature extractor. The choice of the decoder network
is less influential, as it only upsamples the features back to
original resolution.

2.2.1 Encoder Network
This work employs a ResNet-18-based encoder architecture,
inspired by the accuracy versus speed trade-off analysis
from [42]. In the proposed architecture, ResNet-18 is cut-off
after the fourth residual block. This enables the detection of
small objects, which may otherwise vanish due to excessive
downsampling. The encoder choice is verified in the results
section, through comparisons with deeper and shallower
ResNet variants.

2.2.2 Decoder Network
A decoder is employed to expand the downsampled encoder
features back to pixel-level features. Similar to ERFNet [46],
we employ a decoder with fewer filters than the encoder,
which improves speed at the expense of a small loss in
accuracy. We draw inspiration from the decoder from
ERFNet [46] for its simplified one-dimensional (1D) residual
blocks, which results in the partitioning of the residual blocks
intomultiple 1D convolutions for faster processing at the cost
of growth in memory. A comparison of regular ResNet-18
blocks versus non-bottleneck 1D blocks is shown in Figure 3.
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Figure 2. Proposed architecture for change detection (ESOCNet). White blocks refer to the encoder: ResNet-18, which is cut-off after the Res4b layer.
Colored blocks highlight the decoder, consisting of bilinear upsampling blocks (blue, bold) followed by residual blocks (red). Top and bottom networks
share parameters, indicated by vertical dotted lines. The numbers show activation map sizes after each block for default input size (1920×1440), but
the network can operate on arbitrary image sizes. Dashed lines indicate that parts are only present during inference, not training.

Figure 3. Non-bottleneck 1D block and regular residual block schematics.
Rectangular blocks depict convolutions. In-place operations (ReLU or Batch
Normalization (BN) layers) are shown on the arrows where applicable.

Here, any ResXa or ResXb block (where ‘‘X’’ stands for a
number: 2, 3, 4, or 5) can be transformed to a non-bottleneck
1D block. Finally, we replace the deconvolution layers in the
decoder by bilinear upsamplers and notice an improvement
in both accuracy and speed, while simultaneously having
fewer trainable parameters.

2.3 Extending the Network for Change Detection
A Siamese encoder–decoder architecture enables pixel-level
change detection. In contrast to using a fixed pretrained
network as a feature extractor, our network maximizes
Euclidean distance separability between outputs, provided
that it is used with an appropriate loss function.

2.3.1 Loss Function
The loss function that we employ to optimize Euclidean
distance separability between changed and unchanged pixels,
is the contrastive loss, which has been proven effective for
patch matching [51]. Let X1 and X2 be two aligned input
images shown to the system, and GW (X1) and GW (X2)

the corresponding outputs of the Siamese network. The
parameterized distance function DW to be learned is then
defined as the Euclidean distance between the outputs

DW (X1,X2)= ‖GW (X1)−GW (X2)‖2. (1)

Here W refers to the learnable network parameters
and ‖ • ‖2 refers to the L2 norm over channel dimension,
resulting in a single-channel output image. To simplify
notation DW (X1,X2) is written as D. This D can be viewed
as a simple 2D difference image, similar to a difference image
obtained by subtracting two images as commonly used in
change detection. The output binary change mask Ŷthresh
can now be computed by thresholding parameterD by some
threshold T , as

Ŷthresh =D> T , (2)

with> the per-pixel boolean larger-than operator.
The contrastive loss from [51] can be re-defined to

pixel-level operation to make it useful for change detection,
similar to [34]. The pixel contrastive lossL (W ) for an image
batch of size P is then defined as a sum over pixel coordinates
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(i, j) as follows:

L (W )=
1
P

P∑
k=1

L(W , (Y,X1,X2)
(k))

=
1

2P

P∑
k=1

∑
i,j
(1−Y (k)i,j )(D

(k)
i,j )

2
+Y (k)i,j max

× (0,m−D(k)i,j )
2, (3)

where k is the image number in the batch, L(k) is the
pixel-level contrastive loss of the kth image in the batch, Y (k)i,j
is the pixel label of the kth image at position (i, j), with 0
indicating no change and 1 denoting change, and m > 0 is
a margin parameter beyond which changed pixels no longer
influence the loss [51]. The margin parameter m can be
chosen arbitrarily, as the network will accommodate itself to
the margin, although a bad choice may impact convergence
speed during training [52].

The above-defined regular contrastive loss suffers from
three problems. First, as images cannot be aligned perfectly,
for example, due to differing occlusion under different
viewpoints, aligned images will have unmatched pixels.
These pixels should receive a ‘‘don’t care’’ label Y (k)i,j = 2. The
loss function is altered such that pixels with this label do not
contribute to the loss, regardless of the value ofD(k)i,j , which is
a simple masking operation on the per-pixel loss with valid
mask M (k)

i,j = (Y
(k)
i,j 6= 2). The total loss is normalized to the

number of valid pixels, to ensure that it does not depend on
the number of ‘‘don’t care’’ pixels and the input resolution.

Second, our dataset is severely imbalanced, where fewer
than 1 out of 5000 pixels is a change pixel, hence class
balancing is crucial. Class balancing is implemented as
average frequency balancing on a per-image basis. To be
partially invariant to object size, the balancing weights are
computed per image instead of over the entire training set.
This ensures that finding a single small object is equally
valuable as finding a single large object in an image. This
results in balancing weights wC , where C = 1 for changed
pixels andC = 0 for unchanged pixels. The balancingweights
are defined for the individual loss terms by the inverse of the
frequency of these pixels (f (k)C ) as

w(k)C =
K
f (k)C
=

0.5

ε+ 1
N
∑

i,j(Y
(k)
i,j == C)

, (4)

where N is the number of valid pixels (M (k)
i,j == 1), K is a

constant to avoid balancing for a perfectly balanced dataset
(0.5 for 2 classes), and ε is a small constant to prevent division
by zero.

Third, the margin only affects changed pixels. Un-
changed pixels contribute to the loss, even if their distance
is already close to zero, see Figure 4(a). This can lead
to deteriorated performance due to compression of all
unchanged pixels into a single point (overfitting), as has
been shown for patch matching networks by Lin et al. [53].

Because of this behavior of the loss function, they propose
a double-margin contrastive loss, which adds an additional
margin to the left side of the loss equation, see Fig. 4(b).
In contrast to [53], we leave the squaring operations at the
same positions as in the regular contrastive loss. This slightly
increases computation time, but prevents non-differentiable
points (kink) and non-convexity in the loss graph. Lin et
al. [53] also argue that bothmargins can be chosen equal, but
if we do so with our smooth loss, the loss gradients vanish
near the value of m, which makes thresholding unlikely to
neatly split the two classes. This case is shown in Fig. 4(c) for
our double-margin contrastive loss. Instead, we choose both
margins to be unequal.

The final loss function now becomes as follows:

L (W )=
1

2PN

P∑
k=1

∑
i,j

M (k)
i,j

{(1−Y (k)i,j )w
(k)
0 max(0, (D(k)i,j )−m1)

2

+Y (k)i,j w
(k)
1 max(0,m2−D(k)i,j )

2
} . (5)

Equation (5) shows two separate parts with their own
balancing weights, one part for the changed pixels and one
part for the unchanged pixels. As shown in Fig. 4(d), the
unchanged pixels are no longer forced to zero distance, and
the function is smooth and convex.

2.4 Post-processing
The network architecture is able to distinguish between
objects added or removed from a scene, even though this
information has not been annotated in the training data. The
assumption is that, for a dataset with mostly uninteresting
background and a few small changes in the form of objects,
a single Siamese network branch learns a low-magnitude
response for uninteresting areas and a high-magnitude
response for potential suspicious areas (a sort of ‘‘objectness’’
score). Then, if ‖GW (X1)‖2 > ‖GW (X2)‖2, at some position
(i, j), the change pixel will have been caused by strong
features in the live frame that were not present in the
reference. Network responses for which this does not hold
can be suppressed, as we are generally not interested in
objects removed from the scene. In case an object has
been replaced by a different object, the relative feature-map
magnitudes are no longer informative. To prevent filtering
out an arbitrary half of these cases, all pixels of the live frame
that have sufficient response by themselves are kept in the
mask, regardless of the relative magnitude. This results in a
post-processing maskMpost defined by

Mpost = (‖GW (X1)‖2 > ‖GW (X2)‖2)∨ (‖GW (X1)‖2 > T ),
(6)

where symbol > is again the per-pixel operator and T is
the same threshold as applied on D in Eq. (2). The final
binary change map is then computed as (D�Mpost) > T .
We specifically choose to use the same threshold as for
the creation of the binary change mask, because in the
most extreme case a value in Di,j = T is caused by
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(a) (b) (c) (d)

Figure 4. Loss functions and their imperfections. (a) Contrastive loss [51]: Unchanged pixels are compressed into a singularity. (b) Double-margin
contrastive loss [53]: Gradient problems for low-distance change pixels, non-convexity and kink. (c) Proposed double-margin contrastive loss with equal
margin. (d) Proposed double-margin contrastive loss with two different margins.

‖GW (X1)‖2 = T and ‖GW (X2)‖2 = 0 at that position (i, j).
Hence identical thresholds guarantee that all changes caused
by the live frame are preserved.

Considering that the final result will be thresholded at
T after post-processing to achieve binary detection values,
Eq. (6) can actually be implemented more efficiently by a
simplified alternative, specified by

Mpost−alt = ‖GW (X1)‖2 >D. (7)

Although this does not result in the same Mpost, in practice
it results in approximately the same binary change map
after thresholding. The reason for this is that thresholding
ensures, by definition, that only pixels for which D > T
holds, remain in the final binary change map. Hence the
‖GW (X1)‖2 > T–part of Eq. (6) is automatically satisfied by
Eq. (7). The rare exception in which Eq. (7) is slightly stricter,
is that pixels for which D> ‖GW (X1)‖2 > T holds, are now
also filtered out. In practice, the values in the 16-channel
output are simultaneously high in all channels where an
object is present, and low in all channels where there is no
object, allowing D to be approximated by ‖GW (X1)‖2 −

‖GW (X2)‖2|. This means that in practice this rare exception
only occurs when ‖GW (X2)‖2 > ‖GW (X1)‖2 + T (i.e., a
replaced object, for which the original object had a much
stronger activation in the historic frame than the new object
in the live frame). This case occurs so rarely that it has not
appeared in any frame of our dataset. As for the left side
of Eq. (6), ‖GW (X1)‖2 > ‖GW (X2)‖2, this adds nothing
new to the mask. The only theoretical case where the
addition would be useful, is when the following three cases
hold: ‖GW (X1)‖2 > ‖GW (X2)‖2 and ‖GW (X1)‖2 <D and
D> T , which, due to the channel property described earlier
in this paragraph, does not occur in practice either. Now
the expensive 1920× 1440× 16-sized L2 norm computation
‖GW (X2)‖2 is avoided.

2.5 Network Parameters
All networks are trained with the dual-margin contrastive
loss as defined earlier. The Adam optimizer [54] with
learning rate 10−4 is used. We initialize the encoder
with ResNet-18 weights pretrained on ImageNet and the
decoder with Xavier initialization [55], since it empirically

outperforms the more recent initialization of He [56] in our
setup. Networks are trained for 10 epochs, since this appears
to be sufficient for our relatively small dataset, when using
pretrained weights.

Batch size is set to unity to allow a high input image
resolution. To cope with limited memory, 512× 512-pixel
crops are used during training for all network comparisons
unless otherwise specified. The crops are chosen such that
at least one change pixel occurs in each training crop to
speed up training. In addition, on-the-fly data augmentation
in the form of random horizontal mirroring is applied.
Batch normalization layers in the encoder (with pretrained
weights) are allowed to be updated in a moving-average
sense. At test time, the final network can execute on full
resolution of 1920× 1440 pixels, because networks require
less memory when backpropagation is not required. A
summary of our parameters is shown in Table I. These
parameter settings are used for all experiments unless
explicitly noted otherwise.

3. EXPERIMENTAL RESULTS
This section describes the experimental validation of both
our network and several state-of-the-art alternatives. In
this work, all networks are implemented in the Caffe
framework [57] and the reported test times are achieved on a
GTX 1080Ti. For inference, we also port our network to the
TensorRt framework for improved performance and exper-
iment with an RTX Titan to obtain a 16-bit floating-point
computation speed enhancement (unsupported by GTX
1080Ti). The first three subsections provide information
on the dataset and evaluation metrics. Afterwards, the
following experiments are described in separate subsections:
(1) investigation of the impact of architectural choices on
the speed and accuracy of the network; (2) measuring the
effect of several additional speed optimizations; (3) impact
assessment of our changes to the contrastive loss function
and comparison to three other commonly used losses; (4)
comparison to state-of-the-artmethods; and (5) experiments
to improve understanding network behavior, including (a)
generalization to different environments, (b) generalization
to different object types, and (c) the effect of training and
testing with artificially inserted object changes.
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Table I. Default network parameters.

Parameter Value

Training parameters
Batch size 1
Crop size 512× 512
Epochs 10
Encoder initialization ImageNet Pretrained
Decoder initialization Xavier
Adam optimizer

Learning rate 10−4

β1 0.9 (Caffe default)
β2 0.999 (Caffe default)
ε 10−8 (Caffe default)

Contrastive loss
m1 0
m2 1.0

Test-time parameters
Crop size 1920× 1440
Change threshold T 1.3

3.1 Data Acquisition
The training and validation dataset consists of four pairs of
videos (1882 image pairs), with a resolution of 1920× 1440
pixels, captured in forest-like environments. A single video
pair features a recording prior to the placement of test objects
(the reference (historic) images) and one afterward (the
live images). The 57 unique test objects consist of, among
others, colored blocks, bottles, rope, and a large tree trunk,
which serve as the changes to be detected. Reference images
are aligned to their corresponding live images, as in [6],
but without optical flow refinement. This alignment cannot
match all pixels, hence the unmatched pixels are masked out
(as will be shown in Figures 7(a) and 7(b)). Colored boxes
depict interesting areas of the image, namely objects added
to the scene (light blue), objects removed from the scene
(green), object-like image regions present in both images
(yellow), and red boxes which are explained later.

A separate dataset consisting of three videos (1,884
image pairs) is employed to test the system and highlight the
strengths and weaknesses of the network. This involves video
pairs with the following properties: (1) video pair obtained
by driving twice the exact same trajectory, resulting in a
pair of videos with practically no alignment errors (‘‘Test
Easy Objects Small Misalignment’’); (2) video pair with a
deliberate 5-meter offset in driver path between live and
reference videos, causing larger alignment artifacts (‘‘Test
Easy Objects LargeMisalignment’’); (3) video pair in a dunes
environment instead of a forest environment, which features
different objects compared to the training set (‘‘Test Hard
Objects’’). The three test videos contain 50 new unique
objects.

3.2 Dataset Creation
The datasets consist of the videos described in the previous
section, with ground truth annotated at pixel level. Further-
more, for some experiments, the datasets are augmentedwith
artificial objects as changes. Both aspects are now discussed.

3.2.1 Semi-automatic Ground-truth Annotation
Ground-truth changes are manually labeled by specifying
bounding boxes around such changes. The bounding boxes
are then automatically converted to pixel-precise annotations
with a simple algorithm based on SNIC superpixels [58],
where incorrect pixel-level annotations are manually cor-
rected. Our segmentation algorithm extracts a fixed number
of SNIC superpixels in a local neighborhood around each
bounding box, where the neighborhood size is a multiple of
the bounding-box size. Pixels inside the bounding box are set
to ‘‘change’’ if they are part of a superpixel that sufficiently
overlaps with the original bounding box. All other pixels in
the bounding box are set to ‘‘don’t care,’’ to prevent small
label errors from impacting the training. Furthermore, all
pixels that are not matched by the alignment are set to ‘‘don’t
care.’’ The assumption is that the object in the bounding
box is approximately the same size or slightly smaller than
the bounding box itself, and distinct from its immediate
background.Objects forwhich this assumption does not hold
may result in errors, which are manually corrected.

The pixel-level annotated train/validation dataset is split
randomly into a training set (80%) and validation set (20%).
After this split, training-set images without any change are
discarded, which leaves the final numbers at 981 training
image pairs (all with at least some change) and 376 validation
image pairs (most with change, some without any change).

3.2.2 Introducing Artificial Objects
Convolutional neural networks (CNNs) benefit from having
more training data available, but manually recording videos
with and without changes and annotating them is immensely
time-consuming. Additional training data can be obtained
by inserting artificial objects into real scenes, using either
rendered or real objects. Blending real objects into real scenes
has been proven effective for instance detection [59], hence a
similar technique is applied to augment our dataset. For this
purpose, object cut-outs are obtained from the COCO2017
dataset [60], using the provided polygon annotations as
cut-out masks. Objects that are truncated at the edge
of an image, or disjoint, are discarded. Each resulting
object cut-out (blob) is then blended into the scenes
using one of the multiple blending methods (as in [59]):
direct pixel pasting, Gaussian blurring, or Poisson blending.
We also test modified Poisson blending [61], since it
better preserves original object colors than regular Poisson
blending. Example images of all blendingmethods are shown
in Figure 5. Relevant parameters for reproducibility are
shown in Table II.

Employing a different blending method for each object
cut-out ensures that it is harder for the network to overtrain
on recognizing the blending method itself, instead of the
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(a) Pixel paste (b) Gaussian blur (c) Poisson blending (d) Modified Poisson blending

Figure 5. Visual example of the 4 employed blending methods.

(a) Live image with real and artificial
changes, and distractors.

(b) Reference image with only distractors. (c) Ground truth with only real and
artificial changes. Black is ‘no change’,

grey ‘don’t care’ and white ‘change’

Figure 6. Visual example of an image augmented with artificial objects taken from the COCO dataset. Green boxes show the position of the five
artificially inserted changes, blue boxes show two real changes, red boxes show the five distractors. Best viewed in color and online.

Table II. Non-default blending parameters.

Blending method Parameter Value

Gaussian blur Kernel size 5× 5
Poisson blending [62] Method non-mixed
Modified Poisson blending [63] Color_param 10−3

object that is blended into the scene. Besides employing
multiple blending methods, we also add ‘‘distractor objects’’
to the scene. This further discourages the network to learn to
recognize the blendingmethod.Distractor objects are objects
added to both the live and reference image of a scene, but
using a different blending technique. Such objects aremarked
as ‘‘no change’’ in the ground truth, while regular artificial
objects are only added to one of the two images and marked
as ‘‘change’’ in the ground truth. An example augmented
image pair is shown in Figure 6.

The artificially augmented dataset consists of the same
four videos used for training, but augmented with five
artificial changes and five distractors per frame. Not all
COCO classes are deemed representative of the objects that
we search for, hence only the following classes are used:
bottle, vase, cup, backpack, handbag, suitcase, sports ball, and
baseball bat.

3.3 Evaluation Metrics
The effectiveness of change detection networks is generally
reported via the F-1 score or Intersection over Union, both
computed at pixel level. For fairest comparison to other
networks, we also report the pixel F-1 score. In addition, we
also report object F-1 scores, based on the number of changed
objects detected. In the context of IED detection, the number
of correct objects is a far more relevant metric, since it is
important to find all objects without being biased to larger
objects. The F-1 score is computed by

F1 =
2 ·Pre ·Rec
Pre+Rec

, (8)

where Rec denotes the recall which is the fraction of
real pixel/object changes that is correctly detected and Pre
represents the precision, which is the fraction of the total
pixel/object detections that is correct.

For qualitative evaluation of generalization capability,
several steps in the algorithm are visualized for an excep-
tionally challenging test image in Fig. 7. The network has
been trained exclusively on forest environments and dirt
roads, hence it has never seen paved roads, buildings of any
kind, or anything resembling the changes in this image (a
blue container and a wooden pellet). The L2 norm of the
activation maps of the live and reference images, and the
resulting distancemaps are shown in Figs. 7(c), 7(d) and 7(e),
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(a) Masked live image (b) Aligned reference image

(c) Live activation map of
one branch of the network

(e) Masked distance map
computed by taking the

Euclidean distance of the
network output feature maps

(g) Ground truth. Red denotes
‘don’t care’, blue ‘no change’,

and green ‘change’

(h) Thresholded changes,
where white pixels denote

change

(f ) Masked distance map
after filtering out ‘removed

change’ detections

(d) Reference activation map of
the other branch of the network

Figure 7. Visual example of a challenging test frame pair and associated
processing results. Red boxes show false-positive detections, light blue
boxes indicate true-positive changes appearing in the live frame, green
boxes show true-positive changes due to the reference. Yellow boxes show
object-like ‘‘things’’ present in both frames. Figure is best viewed online in
color.

respectively. An example of the effect of the post-processing
is shown in Fig. 7(f), which can be compared to Fig. 7(e) to
see that several false-positive detections are removed from
the change map. An example of the final detection output
after thresholding is shown in Fig. 7(h), where white blobs
indicate the final detections.

3.4 Speed versus Performance Trade-off
There are threemain choices that affect the speed and perfor-
mance of the network, in descending order of importance:
the choice of encoder network, the cut-off point of the
encoder, and the choice of the decoder network. To achieve
an extensive trade-off analysis, a parameter space exploration
over all combinations of these three architectural choices is
performed.

Encoder: As mentioned in [42], ResNet-18 obtains a
good speed-performance trade-off for classification. How-
ever, this does not ensure good performance for change de-
tection, hence both deeper and shallower encoder networks
are considered in the exploration: ResNet-10, ResNet-18,
ResNet-50, ResNet-101, ResNet-152. For the deeper net-
works, inference (not just training) has to be performed on
512× 512 blocks to fit in memory.

Network cut-off point in the encoder:The network cut-off
point affects the total number of parameters, the amount of
downsampling prior to the decoder, response smoothness
and localization, receptive field, and computation time. For
the exploration, each point immediately after a residual
block of the ResNet architecture is considered as a potential
cut-off point. Skip connections supposedly allow for deeper
architectures that maintain detailed pixel-precise outputs.
However, we find that skip connections affect performance
similarly to cutting-off the network earlier, without the
advantage of lower computational cost.

Decoder:Only two decoder options are investigated, the
entire ERFNet decoder and a simple bilinear upsampler, be-
cause it has a smaller impact than the other hyperparameters.

The results of the parameter space exploration are
shown in Figure 8. Several interesting interpretations can
be made from Fig. 8(a). First, deeper networks do not
necessarily perform better on our dataset, likely because of
both the small size of the objects and the small number of
image pairs in the dataset. Interestingly, the deeper networks
do not even necessarily achieve lower training loss after
convergence, hence overtraining is not the issue. The deepest
networks (those whose timings do not fit on the axes in
Fig. 8) also require smaller training crops to fit in memory,
which cause them to exploit less context during training,
so that they perform worse. Second, at first sight, it may
appear that blockwise processing is the cause of reduced
F-1 scores. However, this is unlikely, since applying it to the
ResNet-10 or ResNet-18 networks reduces F-1 scores by only
0.1%. Blockwise processing primarily affects execution time
negatively. Third, the inclusion of the ERFNet decoder blocks
improves performance in all cases over a single bilinear
upsampler at the end of the encoder (for the validation
video). However, the results for the ‘‘Large Misalignment’’
test video, see Fig. 8(b), do show several cases of reduced
performance. This may result from weaker generalization of
the decoder because it is trained from scratch. Fourth, the
red-filled square (our final choice) is the best in terms of F-1
score only on two of the three test videos, where the exception
is shown in Fig. 8(b). This possibly indicates overtuning of
hyperparameters to the validation set, although the effect
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(a) (b)

Figure 8. Performance trade-off and comparison of various architectural choices of the encoder (marker color), encoder cut-off point (marker shape), and
decoder (marker fill). The final network is denoted by a red-filled square. (a) Results evaluated on the validation set. (b) Results evaluated on the large
misalignment test video. Best viewed in color.

is much less severe for the other two test videos (not
shown due to space considerations), where our architecture
choice is still optimal, but with a smaller margin than in
the validation videos. Summarizing, the red-filled square
(i.e., ResNet-18 encoder cut-off after the 4th residual block
with the ERF decoder) results in the highest F-1 score, while
simultaneously achieving a fast execution speed, thereby
offering the best trade-off.

3.5 Optimizing Speed Further
Because low latency is crucial for real-time detection
of IEDs, several improvements have been implemented
with respect to [15] to reduce the 150-ms latency of the
optimal network and its CPU overhead. First of all, the
expensive computations for post-processing (computing D
and ‖GW (X1)‖ of Eq. (7)) can easily be performed on a GPU
by integrating them into the inference network, instead of
performing them separately on CPU. Second, a significant
execution time reduction can be achieved by optimizing the
network architecture specifically for the hardware on which
it will execute. This can be done using the TensorRt tools
(TensorRt is commercially available from NVIDIA: https://
developer.nvidia.com/tensorrt).

Since TensorRt does not support all Caffe layers for
conversion, specifically the slice layer and the element-wise
subtraction layer for our network, some changes to the
network have to be made to circumvent those original
layers without changing the resulting output. The original
Caffe network takes a single 6-channel image as input,
for easier lmdb-based training, followed by a slice layer
to obtain two 3-channel images. In the TensorRt inference
network, the slice layer is circumvented by switching to
two 3-channel inputs. Next, the summation over channel
dimension required for the integrated post-processing was
originally implemented as a slice layer followed by an
element-wise addition layer. This is now replaced by a 1× 1
convolution with fixed weights of unity. For the creation of

the difference image, we use an element-wise summation
layer in Caffe. Whereas Caffe’s element-wise layer also
supports subtraction, TensorRt does not. Therefore, this layer
has been replaced by two different layers: a scale layer which
multiplies one of the two Siamese branches by −1, followed
by a regular element-wise sum layer which sums the output
activation maps of both branches.

Applying TensorRt optimizations to our network re-
duces the computation time to 60 ms on the GTX 1080Ti.
Another common speedupmethod is doing computations in
16-bit floating-point precision on graphics cards that support
this. The GTX 1080Ti does not support such computations,
hence for this purpose an RTXTitan card is used. Its inherent
higher speed already results in an execution time of 41 ms on
TensorRt-optimized 32-bit floating-point computation, and
using 16-bit precision reduces that further to 27 ms. Using
16-bit precision may impact the accuracy of the predictions,
but we have found the difference to be negligible on our
dataset. The impact of each speed optimization is shown
in Table III. After all optimizations, the remaining CPU
overhead of 26 ms for reading the images becomes now the
main bottleneck and is difficult to optimize further.

3.6 Impact of the Chosen Loss Function
The effectiveness of our alterations to the contrastive loss
is evaluated in an ablation study. The results are portrayed
in Table IV, which shows that class balancing is crucial for
good performance. At first glance, it appears that disabling
‘‘don’t care’’masking slightly improves performance, albeit by
less than one standard deviation. However, disabling ‘‘don’t
care’’ masking slows training convergence by almost a factor
two, hence enabling it is still a valid improvement. The
double-margin addition to the loss function provides no clear
improvement. Thus, in a pixel-level change detection setting,
the singularity problem as mentioned in [53] is apparently
much less influential, probably due to the large number of
different background pixels in the dataset. Hence, byOccam’s
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Table III. Impact of speed optimization. GPU: RTX Titan. CPU: Gold 6146 Xeon(R) @ 3.20 GHz.

Optimization step GPU time (ms) CPU overhead (ms) Total time (ms)

Original network [15] GTX 1080Ti (Caffe) 150 132 282
Original network [15] RTX Titan (Caffe) 110 132 242
Difference image integrated (Caffe) 112 106 218
Post-processing integrated (Caffe) 121 26 147
Optimized post-processing (Caffe) 119 26 145
Optimized with TensorRt 41 26 67
16-bit floating-point precision (TensorRt) 27 26 53

razor, maintaining a single margin is the best solution with
fewest parameters.

Next, the proposed contrastive loss is compared with
commonly used losses, i.e., the softmax cross-entropy loss,
L1-norm loss, and L2-norm loss. To be able to apply these
losses, both branch outputs are concatenated, resulting in a
single 32-channel tensor, followed by a 1 × 1 convolution
to reduce the number of output channels to unity. This
single-channel output is then compared to the ground-truth
binary change map with one of these three loss functions.
The L1- and L2-norm loss are thus not to be confused with
L2 metric defined in Eq. (1), as they are computed between
different tensors. For the loss-function comparison, the loss
functions are used as a complete replacement of our proposed
contrastive loss. Table IV shows the results, where all scores
are computed with ‘‘don’t care’’ masking. As we expected, the
contrastive loss is more powerful for the current architecture.
For reproducibility of our results, the equations of the applied
softmax cross-entropy loss, L1-norm loss and L2-norm loss
with our ‘‘don’t care’’ masking are as follows:

LCross−Entropy(W )=
1
PN

P∑
k=1

∑
i,j

M (k)
i,j

× (−Y (k)i,j log σ(Y (k)predicted(i,j))) (9)

where σ is the softmax function, which normalizes the
network output to the unity interval,

LL1(W )=
1
PN

P∑
k=1

∑
i,j

M (k)
i,j |Y

(k)
i,j −Y (k)predicted(i,j)|, (10)

LL2(W )=
1
PN

P∑
k=1

∑
i,j

M (k)
i,j

(
Y (k)i,j −Y (k)predicted(i,j)

)2
.

(11)

3.7 Comparison to the State of the art
The proposed network is compared to the state of the art
in both conventional methods and CNNs in Figure 9. The
figure depicts (1) a baseline difference image-based change
detection method of Van de Wouw et al. [6]; (2) CDNet by
Sakurada et al. [12], which is a stacked Architecture; and

Table IV. Ablation study for the proposed contrastive loss function.

Loss-Function Comparisons Object F-1 Object F-1
Validation Test

Baseline: Our contrastive loss 0.67 0.60
no class balancing 0.22 0.17
no ‘‘don‘t care’’ masking 0.69 0.60
no double margin 0.67 0.60

Softmax cross-entropy loss 0.49 0.29
L1-norm loss 0.10 0.17
Euclidean (L2-norm) loss 0.01 0.06

(3) a Siamese network by Zhan et al. [34], who also
presented a Siamese change detection architecture. The
implementations are performed as follows.

Van deWouw’s Adaptive Threshold YUV:Van deWouw’s
method consists of adaptive thresholding on a difference
image in YUV color space [6] after refinement of the
alignment through optical flow. The results for this method
reported in the current work are poorer than the original
reported results, because our dataset is considerably more
challenging than those used in their experiments. Note that
the test sets in Fig. 9 have no error bars for this method
because themethod is not trained, hence cross-validation has
no effect on test accuracy.

Zhan’s Siamese Network: The network from [34] is
implemented and altered to improve its performance on our
dataset. We have used our improved contrastive loss with
class balancing and ‘‘don’t care’’ handling and have tuned
their parameters to our dataset. Their network also results
in noise pixels in the change map, which we remove using an
additional morphological filtering step.

Sakurada’s CDNet: CDNet [12] is implemented without
the additional optical flow input, which according to their
article should only change performance by a few percent.
The following additional design assumptions are made for
parameters not explicitly mentioned in [12]: concatenate
skip connections, ReLU in decoder, convolution padding
to maintain feature-map size, default dropout parameters,
and the Adam optimizer [54] with default parameters.
Furthermore, to achieve good results on our dataset, the
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Figure 9. F-1 scores and execution speeds on a GTX 1080Ti of our network versus the performances of state-of-the-art methods when applied to our
validation dataset, sorted on speed. *Execution times for Zhan and Sakurada is computed using overlapping 1024× 1024 blocks due to memory
constraints. With sufficient memory, the fps values would increase to 3.7 and 2.2, respectively.

following additions are necessary: morphological filtering,
replacement of the L1-norm loss by the softmax cross-
entropy loss, removal of the deepest three layers, and training
for four times as many epochs compared to our network.

The resulting F-1 scores and execution speeds in frames
per second (fps) on a GTX 1080Ti are shown in Fig. 9.
The error bars indicate standard deviations for five-fold
cross-validation. The proposed approach outperforms all
earlier work in terms of F-1 score, while having a smaller
computational cost than other CNN approaches. For this
test, 1024× 1024 crops have been used to train our network
to highlight its memory efficiency with respect to the other
networks. If the same 512 × 512 crops are used in all
networks, the object F-1 score of our network drops by
0.03–0.11 depending on the video, but it is still the highest
score for all videos.

Both Zhan’s and Sakurada’s networks perform poorly
under large misalignment errors, due to the vast numbers of
false positives. In contrast, our network performance is not
strongly affected by alignment errors, since a single network
branch approximately falls back to being an ‘‘objectness’’
detector provided that the misalignment is large. For
example, neither grass nor road result in ‘‘objectness,’’ hence
poor alignment that causes these two to overlap, does not
result in false positives in our network.

The F-1 score of the proposed network on the ‘‘Hard
Objects’’ video is similar to Zhan’s and Sakurada’s networks,
because the network has a difficulty in finding all pixels of
a large change. This means that our network likely contains
less scale invariance than Sakurada’s and Zhan’s networks.
The pixel F-1 scores of their networks on the ‘‘Hard Objects’’
video are high due to a few well-detected large objects.
Generally, Sakurada’s network is better at finding an accurate
object outline, while our network is better at finding objects
as blobs, not necessarily with an accurate outline.

Interestingly, the image differencing of Wouw still
performs reasonably well on the ‘‘Large Misalignment’’
videos, despite even optical flow not being able to repair
these alignments. This we attribute to the objects in those
videos having bright colors that are clearly different from
the entire environment. Finally, while the method of Wouw
is significantly faster than our base network, it cannot
be optimized further using TensorRt. Hence, after speed
optimizations, our network is both the fastest and best-
performing method compared to all three state-of-the-art
alternatives.

3.8 Understanding the Network Behavior
Up to this point, all experiments have focused on network
performance for the entire validation and test sets. This
section describes various experiments that provide insight
into specific situations, such as when and why does
the network perform suboptimally and the possibility of
alleviating these situations with artificial data.

3.8.1 Difference with Object Detection
For the proposed network, it is possible to use a single
branch of the network and ignore the output of the other,
resulting in a kind of object detector, or more precisely,
semantic segmentation with only 2 classes: ‘‘object’’ and ‘‘not
object.’’ Comparing the use of the network as an object
detector versus the change detectionmode shows that change
detection achieves higher object F-1 scores than pure object
detection by as little as 5% for the ‘‘Large Misalignment’’
video, up to as much as 21% for the ‘‘Hard Objects’’ test
video. Manual inspection of the frames reveals that false
positives are primarily caused by non-objects looking like
objects in either the live or reference frames, but not in
both. For example, a small white high-contrast patch of
sky between tree branches can be present in the live frame
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but not in the reference frame, due to an alignment error.
Such types of false positives indeed cannot be filtered by
comparing ‘‘objectness.’’ Furthermore, certain shapes of
sharp hard-shadow edges are sometimes detected as false
positives, though in general the network is robust to lighting
differences and shadows. These results appear to confirm
our opinion that the network has primarily learned to be an
‘‘objectness’’ detector that simply compares the ‘‘objectness’’
score between two images to determine changes. This also
explains the robustness of the system to most dynamic
backgrounds.

There is a type of environmental change that is relevant
in IED detection for which this ‘‘objectness’’ comparison
may fail: replaced objects. These are objects that were
initially present in the reference frame and were replaced
by a different object at the exact same location in the live
frame. However, this situation does not occur in any of
our recorded datasets. To verify this potential failure mode,
the replacement of objects in the real world is simulated
by placing artificial objects, not in the live frame, but in
the reference frame, at the same location as the real objects
occurring in the live frame. This indeed causes the object
F-1 score to drop from 0.66 to 0.36 on the validation
set. Performing the same experiment but now also adding
artificial ‘‘replaced objects’’ to the training set improves
this score to 0.48. These relatively low scores reinforce
the hypothesis that the normally trained network primarily
works with a difference in ‘‘objectness’’ score at the same
location in the image, which is small when an object is
present in both the live and reference frame. The gain
achieved with artificial ‘‘replaced objects’’ in the training set
seems to indicate that the network can learn to find these
types of changes, but the original training dataset simply
lacks replaced objects.

3.8.2 Change Object Generalization
The main difficulty of detecting IEDs is that markers come
in many forms, which means that the network should be
capable of detecting object classes it has never seen during
training. This generalization capability of the proposed
network is investigated by splitting the changes into three
broad categories: block, beverage object (bottles and cans),
and other. To prevent the amount of training data of having
an impact on the results, all training sets in this experiment
contain an equal number of training frames. Training and
testing on the same category is excluded, since it would
require using a relatively small number of training image
pairs to prevent overlap in train and test sets. The results are
shown in Figure 10.

Blocks, bottles and cans are relatively similar in ap-
pearance, as can be seen from the examples in Figure 11.
This is reflected by how well the network performs when
training with one and testing on the other. The ‘‘other’’
class, which contains many different kinds of objects, suffers
substantially when not enough similar-looking objects occur
in the training set. Note that objects in the ‘‘other’’ set are
often much harder to detect by a human as well, since it

Figure 10. F-1 test scores on different types of changes using different
change types for training. Bar colors refer to the classes used for training.
‘‘Remaining 2’’ refers to training with the other two classes than the test
class and ‘‘All’’ refers to training with all three classes.

contains changes such as tree trunks and camouflage nets
instead of colored blocks. It is not surprising that training
with all classes performs best.

3.8.3 Artificial Object Insertion
To investigate whether training with artificial data can
improve the generalization of the network, we add artificial
data to the regular training set using the four different
blending methods, discussed earlier and shown in Fig. 5.
Three types of experiments are performed: training with
purely artificial changes, training with both real and artificial
data and training with only real data. Training with purely
artificial changes means setting the labels of real changes
to ‘‘don’t care,’’ since, we need to use the same frame pairs
for a fair comparison. The results are shown in Figure 12.
The four test datasets in this experiment are chosen to
highlight different aspects of training with artificial data.
First, the validation set provides a reference score for other
experiments in this work. Second, the ‘‘Large Misalignment’’
test set shows how well the network performs when falling
back to its ‘‘objectness’’ scores. Third, the ‘‘Dissimilar Real
Class’’ test set is a subset of the ‘‘HardObjects’’ test videowith
only the ‘‘other’’ subclass of objects, which shows how well
the network generalizes to difficult never-seen object types
in unknown scenes. Finally, the validation set with artificial
changes shows that the method can reasonably well detect
artificial object changes in scenes that are also present in the
training set.

We have made four observations from Fig. 12. First,
training with only real data allows the network to perform
almost as well on detecting artificially inserted changes as
real changes (compare the leftmost and rightmost bars of
‘‘All Real’’). This implies reasonable generalization to unseen
objects of classes that are slightly different from the training
classes, in known scenes. Second, the score on ‘‘Dissimilar
Real Class’’ is not improved by training with artificial data
(the green bar of ‘‘All Real’’ shows a higher score than any
of the blending methods). Possibly, the artificially inserted
changes are still not sufficiently representative for these
unseen object types. For example, the camouflage net change
in this set is unlike any of the classes in the COCO dataset.
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Figure 11. Examples of the object classes from the dataset. Top: Beverage objects. Middle: Block objects. Bottom: Other.

Figure 12. Results of training and testing on artificially inserted changes in the scene, for various different blending methods. Colors with no hatching
refer to training with a dataset with purely artificial changes, while hatching shows the score improvement of using real data on top of artificial data. The
‘‘All Real’’ experiment is the only experiment where no artificial data has been used. ‘‘All Blend’’ refers to training with artificial objects blended randomly
using one of the other blending methods.

Third, the ‘‘LargeMisalignment’’ video suffers severely when
training with artificial data. This can be due to more
environmental changes causing false positives, since they
may look similar to some of the artificial object types and
different from the original real object types. From this, we
conclude that ourmethod is only powerful for poorly aligned
images if the object types in the training set are representative
for the true object types to be detected. Detections on
well-aligned images are more robust to this problem, as
‘‘objectness’’ detections in the same location in both frames
cancel out. Fourth, training with purely artificial data always
yields poor performance on detecting real changes.

4. DISCUSSION
Despite its good performance on our dataset, the trained
network also contains several limitations. First, the network
is closer to an object detector than a pure change detector,
since the decision for change ismostly based on ‘‘objectness.’’
This causes the network to fail in recognizing the change
type ‘‘object replaced by a different object,’’ because both
objects will have a high ‘‘objectness’’ score. The network has
never learned this change type, as it is not present in the
training set. An experiment of adding artificially inserted
replacement objects into the training set already achieves

some improvement in the score (Object F-1 score from 0.36
to 0.48), thereby indicating the network is able to learn these
changes as well, given sufficient representative training data.

Second, almost all objects in the dataset are non-natural
objects that would normally not belong to the scene setting.
This is not necessarily the case for general IED markers in
practice. It is unlikely that the trained network will perform
well onmore natural changes, since the current ground-truth
annotations mark all natural changes as ‘‘no change,’’ which
means that the network is rewarded for suppressing them
actively. Future work could investigate this hypothesis and
test whether training withmore natural objects in the dataset
addresses this problem.

Third, the performance difference between a broadly
general method (YUV-space image differencing) and our
trained neural network becomes smaller, the more the
test data deviates from the training data. For example,
the current training data are recorded in forest and dune
environments, under sunny or overcast weather, with a
specific set of representative objects. When the system is
employed in a different environment (e.g., urban), under
weather conditions that strongly change the appearance
and contrast of the objects compared to the training data
(e.g., heavy rain, night, snow) or when applied on different
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objects, the performance will deteriorate. This type of issues
can largely be resolved by gathering training data in the
corresponding settings, which should make the network
invariant to variations that are not an inherent property of the
objects, given sufficient data. This means that representative
training data is crucial. Purely artificial object data appears
to be insufficient for this purpose. In conclusion, expensive
manual collection of real-world data is still on short term
required to achieve the high performance generalized over
new object classes reported in this work. However, in
the future, artificial data in the form of extensive data
augmentation by mimicking weather conditions and their
corresponding luminance and color variations, could still
offer significant value for improving the robustness of the
detection system.

Finally, while some of our improvements to the con-
trastive loss are powerful, the addition of the second
margin is non-contributing for change detection. Since the
single-margin loss is both simpler and achieves equal results
(for pixel and object F-1 scores), employing a single margin
is recommended.

5. CONCLUSION
We are the first to propose a neural network architecture
for small object-like change detection from high-resolution
ground-based vehicle imagery in real time, including the
following contributions. First, we have designed an efficient
Siamese encoder–decoder network based on ResNet-18
and ERFNet that significantly outperforms state-of-the-art
change detection networks for IED marker detection. The
network is also applicable to general small-object change
detection use cases. Second, we have developed extensions to
the contrastive loss function, by making it suitable for pixel-
level problems, adding class balancing, and allowing ‘‘don’t
care’’ label processing. These extensions are appropriate for
improving performance of any Siamese change detection
network. Third, the generalization strength of the network
has been extensively evaluated on both real and artificial
data and its execution speed has been optimized to allow
for real-world usage. Our architecture can be useful for
general mobile change detection platforms with imperfect
alignment, as long as representative training data can be
obtained.

Our experimental results have shown that for small-
object change detection, our network outperforms the state
of the art considerably on our datasets, both in terms of
pixel F-1 score and object F-1 score. Furthermore, after
speed optimization, the network is more than a factor two
faster than both a non-CNN baseline and two other CNN
approaches.

As long-term futurework, an interesting and challenging
possibility is to create a single end-to-end trainable network,
that no longer requires the alignment phase of the system,
but efficiently finds all changes based only on stereo input
images and the GPS coordinates of the cameras. Overall,
we conclude that the application of deep learning for

roadside IED detection can significantly improve robustness
of existing counter-IED change detection systems.
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