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Abstract
Simultaneous Localization and Mapping (SLAM) solves the

computational problem of estimating the location of a robot and
the map of the environment. SLAM is widely used in the area of
navigation, odometry, and mobile robot mapping. However, the
performance and efficiency of the small industrial mobile robots
and unmanned aerial vehicles (UAVs) are highly constrained to
the battery capacity. Therefore, a mobile robot, especially a UAV,
requires low power consumption while maintaining high perfor-
mance. This paper demonstrates holistic and quantitative perfor-
mance evaluations of embedded computing devices that run on
the Nvidia Jetson platform. Evaluations are based on the execu-
tion of two state-of-the-art Visual SLAM algorithms, ORB-SLAM2
and OpenVSLAM, on Nvidia Jetson Nano, Nvidia Jetson TX2, and
Nvidia Jetson Xavier.

Introduction
Automated Guided Vehicles (AGVs) have been used in the

industry for many years. AGVs are mainly used to speed up var-
ious industrial processes and reduce industrial accidents in haz-
ardous environments. Typically, AGVs use guide wires or a digi-
tal floor layout for navigation. Due to this reason, a road map of
the floor plan needs to be designed in an optimum way for an AGV
to perform efficiently. Even though AGVs are good for executing
a specific task in a controlled environment, designing a road map
for an AGV is a challenging task due to various reasons, such as
different layouts, AGV specifications, and task prioritization [1].
Since AGVs road maps designed manually, it lacks any sense
of unanticipated changes in the environment unless the specific
change is pre-programmed to the map. That can lead to various
performance issues that require more tasks to be pre-programmed
towards task prioritization, according to variations in the environ-
ment.

Simultaneous Localization and Mapping (SLAM) solves the
task prioritization problem by estimating the location of the robot
and mapping the environment, simultaneously. Therefore, SLAM
systems can perform given tasks independently with varying envi-
ronmental conditions. Due to this reason, research studies predict
that more than 15 million SLAM-enabled commercial and indus-
trial robots, such as Autonomous Mobile Robots (AMRs), will be
used by the year 2030 [2].

There are two common SLAM methods that are being used
in most of the applications, LiDAR SLAM and Visual-SLAM [3]
[4]. The LiDAR SLAM method uses LiDAR sensors, and the Vi-
sual SLAM method use cameras to extract features and map the
environment [5]. In the past, LiDAR SLAM was more popular
than Visual SLAM due to its high precision mapping capability
over the Visual-SLAM method. This is mainly due to the lack

of availability of high-quality cameras that can extract more fea-
tures from the environment. However, in recent years, the Visual
SLAM method started to draw considerable attention from the Li-
DAR SLAM due to the advancement in high-end camera develop-
ment and the availability of such cameras at a low cost. Compared
to 3D LiDAR SLAM, which uses expensive 3D LiDAR sensors,
the Visual SLAM uses inexpensive cameras as sensors [5]. Even
though the price of the 3D LiDAR sensors is at least 100 times
higher than Visual SLAM camera sensors, Visual SLAM has a
higher computational cost compared to LiDAR SLAM. There-
fore, the main trade-off between the LiDAR SLAM and Visual
SLAM is the sensor cost and higher computational cost [6].

This paper mainly focuses on state-of-the-art Visual SLAM
methods such as ORB-SLAM2 [7] and OpenVSLAM [8]. Since
Visual SLAM methods are computationally expensive because
of the nature of local computation on embedded systems, mo-
bile robots, especially UAVs, require maintaining a lower power
consumption while maintaining high performance [9]. Therefore,
choosing a development platform is an essential task. In March
2017, NVIDIA introduced an embedded development platform,
the Jetson TX2, which is the game-changer of handling the state-
of-the-art Visual SLAM algorithm like ORB-SLAM2. Since the
Jetson platform can handle state-of-the-art Visual SLAM meth-
ods, three different devices, Nvidia Jetson Nano, Nvidia Jetson
TX2, and Nvidia Jetson Xavier are selected to evaluate Visual
SLAM methods. The two state-of-the-art Visual SLAM algo-
rithms we used to test the hardware for the performance and ef-
ficiency are ORB-SLAM2 and OpenVSLAM. Comparing the re-
sults obtained by testing power consumption, metrics accuracy,
and the processing frame rate on Nvidia Jetson embedded sys-
tems, it is shown that the Nvidia Jetson TX2 is the best suitable
hardware for most Visual SLAM applications rated for industrial
applications.

Following the introduction, the next section consists of an
overview of the background and related work of Visual SLAM
on embedded systems. Then a section that describes a review of
NVIDIA Jetson hardware. The next two sections are dedicated
to describing the methodology and obtained experimental results.
The last section is dedicated to the conclusion and future work.

Background and Related Work
The ORB-SLAM2 is the state-of-the-art indirect visual

SLAM algorithm. It is a complete SLAM system that works with
monocular, stereo, and RGB-D cameras. It comes with map reuse,
loop closing, and re-localization capabilities. It is designed to
work in real-time in standard CPU. In the past four years, hun-
dreds of research papers have been published related to ORB-
SLAM2. ORB-SLAM2 works in a wide variety of environments,
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ranging from small hand-held sequences indoor to a car driven on
the street. Inspired by PTAM (Parallel Tracking and Mapping),
ORB-SLAM2 uses ORB (Oriented FAST and rotated BRIEF)
feature for feature extraction, which performs better than PTAM’s
FAST corner detection, especially in rotation [10]. ORB-SLAM2
has three main parallel threads, as shown in Figure 1: tracking,
local mapping, and loop closing. The tracking thread is consid-
ered to be the bottleneck of ORB-SLAM2 because it takes most of
the time, and each new frame can not be processed until the cur-
rent frame is completed [9] [11]. However, based on the nature of
the FAST detection and ORB feature extraction, there are many
tasks that can be parallelized and offload to GPU from CPU if the
computing device has capable GPU on it like the Nvidia Jetson
boards [12] [13].

Similar to ORB-SLAM2, the OpenVSLAM is an indirect
Visual SLAM algorithm with sparse features, besides the differ-
ence in performance, it adds the applicability of a various type of
camera models, such as fisheye and equi-rectangular. The fully
modular design makes it more straightforward to be understood
and modified. Compared to ORB-SLAM2, it can save and
load maps, and localize new image based on the prebuilt maps.
The OpenVSLAM also comes with the BSD 2-clause license.
Compare to the GPL-V3 license of ORB-SLAM2, OpenVSLAM
allows commercial use [8].

Figure 1. ORB-SLAM2

Hardware
This section introduces NVIDIA Jetson Systems in details.

Also, the developed power meter to measure the power consump-
tion in all systems while running SLAM algorithms.

NVIDIA Jetson Systems
The Nvidia Jetson platform is an AI platform for mainly au-

tonomous navigation, introduced by Nvidia in 2014. Each Jet-
son module has complete system on it with CPU, GPU, DRAM
and flash storage. It is extensible and can be easily customized
for each application’s requirement. Since the Jetson family of
modules share the same architecture and SDKs, the deployment
is seamless [14]. The Jetson Nano has Quad-core ARM pro-
cessor and 128-core Nvidia Maxwell GPU, with 4GB LPDDR4
Memory. The Jetson TX2 has Quad-core ARM processor with
Dual-core Denver CPU and 256-core Nvidia Pascal GPU, with
8GB LPDDR4 Memory. The Jetson Xavier has 8-core Nvidia
Carmel ARMv8.2 CPU and 512-core Nvidia Volta GPU, with
16GB LPDDR4x Memory. For this study Nvidia Jetson family

Figure 2. Nvidia Jetson Developer Kits

are selected due to the variety of specification offers by the Jetson
systems. The detailed specifications are listed in Table 1.

Figure 2 shows a comparison in size and weight among three
Nvidia Jetson developer kits. The Jetson Nano, which is an entry-
level Jetson platform, has the lightest weight and size, it has a
passive cooling system. Jetson TX2 developer kit is a TX2 mod-
ule mounting on a very versatile carrier board that comes with
many useful I/O for development. This is the mainstream Jetson
board on the market now. The Jetson Xavier developer kit is a
heavy metal box that weighs 674g, most of the weight is from its
massive metal heat sink.

Power Meter
Tegrastats Utility is a convenient and powerful tool that

comes with the Nvidia Jetson platform. It reports memory usage
and processor usage for Jetson-based devices, also can monitor-
ing the power consumption of the Jetson module but not the entire
developer kit. The developer kit includes the Jetson module, the
carrier board, and the other devices on the carrier board. The real
power consumption is higher than the power consumption mea-
sured by Tegrastats Utility. This motivates us to create a physical
power consumption meter to evaluate the overall power usage of
the developer kit works with our mobile robot and UAV (UAV is
more sensitive to the battery capacity and weight). The Architec-
ture of the evaluation system is shown in Figure 3(a).

We made a versatile power meter for this project. This power
meter consists of an INA219B breakout board and an Arduino
Mega 2560 board, which is shown in Figure 3(b). The INA219
board is a current shunt and power monitor. It monitors the shunt
voltage drop and bus supply voltage. Current in amperes can be
easily read, and multiplying register will calculate power in watts.
The measurement range of current and voltage is large enough for
Jetson TX2, Jetson Xavier, and Jetson Nano. The power con-
sumption of Jetson systems showed in Table 1 are theoretical
maximum values. The power consumption of Jetson TX2, Jetson
Xavier, and Jetson Nano are difficult to measure due to the Jet-
son modules are installed on the carrier boards because the other
electronic components also generate power usage. Since the Jet-
son module cannot be used solely, measuring the real power con-
sumption of the entire system including the carrier board is more
meaningful for this project. We design a replaceable power jack,
which is shown in Figure 3(b). Jetson TX2, Jetson Xavier and Jet-
son Nano have different power plugs. A replaceable power jack
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Table 1. The comparison on specifications of NVIDIA Nano, Jetson TX2 and Xavier
NVIDIA Nano NVIDIA Jetson TX2 NVIDIA Xavier

CPU
Quad-core ARM

Cortex-A57 MPCore processor

Dual-core Denver 1.5 64-bit CPU
and quad-core ARM Cortex-A57

MPCore processor

8-core NVIDIA Carmel ARMv8.2
64-bit CPU

GPU 128-core NVIDIA Maxwell GPU 256-core NVIDIA Pascal GPU 512-core NVIDIAVolta GPU
Memory 4 GB 64-bit LPDDR4 25.6GB/s 8 GB 128-bit LPDDR4 59.7GB/s 16 GB 256-bit LPDDR4x 136.5GB/s
Storage 16 GB eMMC 5.1 32 GB eMMC 5.1 32GB eMMC 5.1

Ethernet 10/100/1000 BASE-T Ethernet
10/100/1000 BASE-T Ethernet

WLAN
10/100/1000 BASE-T Ethernet

Power 5W / 10W 7.5W / 15W 10W / 15W / 30W
Price 129 USD 479 USD 999 USD

(a) The architecture of Evaluation System

(b) Power Meter

Figure 3. Evaluation System

can fit all of the power plugs. We use a computer connected to
the power meter to record the real-time power consumption. This
power data along with the time stamp helps the analysis of the
power usage behavior of these Jetson boards.

Method
We set up a testing system for the evaluation of the power

consumption, performance, and accuracy shows in Figure 3 (a):
Nvidia Jetson board is running Ubuntu 18.04 with OpenCV 3
and CUDA 9 for testing ORB-SLAM2 and OpenVSLAM, a cus-
tomized power meter, and a laptop for recording the power mea-
surements and timestamps. Jetson Xavier, Jetson TX2, and Jetson
Nano were used to compare the throughput and power efficiency,
the specifications of these Jetson boards are shown in Table 1.
A Logitech C920 UVC (USB video class) camera is used to test
the real-time tracking performance [15]. It runs on fixed 720P,
30FPS. The results of real-time tracking FPS for all boards are
shown in Figure 4.

Each Jetson board has a function called Dynamic Energy
Profile, which allows users to enable or disable a certain num-
ber of CPU cores and limit the frequency or total power con-
sumption. In our experiments, we tested several power settings
for each board, but for a fair comparison, we compare the perfor-

mance with the maximum power setting to study the bottleneck of
the hardware. It is noteworthy that Jetson Nano supports up to 5V
4A through the Barrel Jack connector, if a jumper is put on the J48
header on the board. Also, Jetson Nano will limit its power con-
sumption and the 4GB RAM is not enough for some applications.
Therefore, we enabled the feature called Swapfile in Linux for
Jetson Nano. The 8GB RAM in TX2 and 16GB RAM in Xavier
is capable of the Visual SLAM algorithms we performed.

To evaluate the GPU acceleration enabled power consump-
tion and pose estimation accuracy of OpenVSLAM and origi-
nal ORB-SLAM2, we used the Technical University of Munich
(TUM) RGB-D SLAM dataset for the experiments. It contains
sequences from RGB-D sensors grouped in several categories to
evaluate indoor scene reconstruction and visual odometry meth-
ods under different texture, illumination, and structure conditions
[7]. This benchmark system also provides synchronized ground
truth camera poses for the camera, recorded by a precise motion
capture system [7] [16]. Then the benchmark system is used to
evaluate the accuracy. Detailed discussion of evaluation test is
available in the experimental results section.

Experimental Results
In [13] shows the GPU acceleration performance on the orig-

inal ORB-SLAM2 algorithm. As shown in in Figure 4, for this
study, we have combined the performance results obtained by
the ORB-SLAM2 algorithm with performance results obtained
with OpenVSLAM. The real-time tracking FPS for each algo-
rithm and each board are shown in Figure 4. The OpenVSLAM
has a slightly better performance than ORB-SLAM2, but on Jet-
son Nano it is still below 10FPS. Note that the OpenVSLAM has
optimization for the X86 processor, however, optimization is dis-
abled since the Nvidia Jetson hardware are based on ARM pro-
cessors [8].

From the test of one sequence in the TUM RGB-D SLAM
dataset, we generated a plot, which is shown in Figure 5. The
Figure 5 shows the energy cost of processing each frame on Jet-
son Nano, TX2, and Xavier. For a fair comparison, we only list
the power efficiency chart with one sequence with the maximum
power setting. When comparing the power efficiency, it is clear
that the TX2 is the overall winner among all boards. It is worth
mentioning that the TX2 developer kit we test boots from an ex-
ternal SSD, which consumes additional power, therefore the real
energy cost of TX2 should be less.

With the evaluation of performance and power consumption,
accuracy is also evaluated in our experiments [17]. The Abso-
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Figure 4. Real-Time Tracking FPS

Figure 5. Power Efficiency

lute Trajectory Error is used for the evaluation. We did not find
any significant difference in accuracy among the original ORB-
SLAM2, ORB-SLAM2 with GPU acceleration, and OpenVS-
LAM. Also, in [8] it shows the accuracy of OpenVSLAM is sim-
ilar to ORB-SLAM2 in most of the sequences of EuRoC MAV
dataset (monocular). We also did the test on the TUM RGB-D
SLAM dataset. The results is shown in Figure 6.

(a) fr2 desk ORB SLAM2 CPU (b) fr2 desk ORB SLAM2 GPU

(c) fr1 desk ORB SLAM2 CPU (d) fr1 desk OpenVSLAM CPU

Figure 6. Estimated trajectory (blue) and groundtruth (black) in TUM
RGB-D dataset

Conclusion and Future Work
We presented the study of the integration for ORB-SLAM2

and OpenVSLAM on the embedded GPU systems: Nvidia Jet-
son Nano, Jetson TX2, and Jetson Xavier. Both of the algo-

rithms work well on desktops but not on these low-power embed-
ded systems, especially Jetson Nano. The Jetson Nano can not
reach our real-time embedded SLAM goal (at least 10fps) with-
out proper tuning by enabling GPU parallelism. The improvement
from using GPU to offload tracking thread from CPU is more sig-
nificant for Jetson Nano than others because it has a relatively
weak CPU on it. The OpenVSLAM has better performance com-
pare to ORB-SLAM2 because of its optimization based on ORB-
SLAM2.

In this project we did not test the performance of enabling
SIMD (Single instruction, multiple data) on Jetson-family boards
with ARM processors, from our experiments on PC with X86
CPU we have a 2-3% improvement in performance. However,
the current simulation result shows the outstanding potential of
starting new Visual SLAM applications with OpenVSLAM.

From our results, we consider Jetson TX2 has an overall
best balance for performance and power consumption for Visual
SLAM applications in industrial use. Nvidia also released TX2i
8GB, which is a rugged version TX2 for industrial robot use.
Also, it comes with 8GB RAM (with ECC support). The oper-
ation life of TX2i is 10 years 24/7, which is twice as TX2. As
an entry-level Jetson platform, Jetson Nano can barely handle the
real-time Visual SLAM applications without proper tuning. On
the other hand, the Jetson Xavier is capable of handling basic Vi-
sual SLAM applications but with a high cost of power consump-
tion.

For future work, ARM NEON (a packed SIMD architecture
for ARM-based processors) optimizations could also help to im-
prove the performance. Similar to GPU acceleration of the ORB-
SLAM2, re-implementation of feature extraction, feature match-
ing, PnP pose estimation for OpenVSLAM can boost the system.
We are currently testing a fisheye camera setup with OpenVS-
LAM.
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