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ABSTRACT

Automatic detection of crowd congestion in high density
crowds is a challenging problem, with substantial interest for
safety and security applications. In this paper, we propose a
method that can automatically identify and localize congested
regions in crowded videos. Our proposed method is based on
the notion that pedestrians in the congested region follow a
particular behavior. Pedestrians in the congested areas cannot
move freely due to space unavailability and tend to undergo
lateral oscillations. In our method, we first extract trajectories
by using particle advection technique and then compute os-
cillatory features for each trajectory. Trajectories with higher
oscillation values and with less proximity are clustered, indi-
cating the congested regions. We perform experiments on a
diversity of challenging scenarios. From the experimental re-
sults, we show that our method provides precise localization
of congested regions in crowd videos.

Index Terms— Crowd analysis, crowd congestion,
anomaly detection, pedestrian dynamics.

1. INTRODUCTION

Crowd congestion is a frequent phenomenon in large gather-
ings such as those related to sports, festivals, concerts, and re-
ligious events which attract thousands of people in a restricted
environment. As the security of computer networks and re-
sources are important for an organization [1, 2], congestion
detection and managing the visual scene has paramount im-
portance for the public safety. In order to ensure public safety,
it is important to understand crowd dynamics and conges-
tion circumstances. However, despite several strides in crowd
management, safety measures and the adoption of technology,
crowd disasters still occur with consistent frequency.

The current practice of understanding crowd dynamics is
often based on manual analysis of video data. Based on rules
of thumb gained from previous experience as well as simula-
tion models [3], limits on the number of people that can be si-
multaneously present at a venue are decided. For understand-
ing crowd dynamics, several physicals models have been pro-
posed. The popular among them are the dynamic model [4],

social force model [5] and cellular automata [6] which model
pedestrian dynamics on a microscopic level. In [7], the basic
social force model is extended in order to incorporate effects
of panic by adding further random forces. Empirical studies
are performed in [8,9] to understand human behavior and im-
prove the existing physical models by incorporating more pa-
rameters such as crowd density, speed, flow, and crowd pres-
sure. There are many limitations of the physical models. For
instance, the results and observations are based on experimen-
tal data (captured in a constrained environment) while physi-
cal models require proper calibration and validation by means
of real-time data.

Surveillance cameras are used as an alternative approach
for understanding crowd dynamics. Usually these kinds of
analysis involve analysts sitting in a control room and looking
for specific activities. However, these kinds of video analysis
lead to human errors due to limited capabilities of human op-
erators to analyze and infer critical information from multiple
videos over a long period of time [10]. Therefore, as a solu-
tion, there is an increased interest in automated crowd anal-
ysis [11]. Since there has been an interest in understanding
of crowd dynamics [12] in general, detecting crowd conges-
tion has not been studied in depth. Most of the recent work
in crowd analysis has focused on tracking [13], segmenta-
tion [14], crowd flow understanding [15], and anomaly detec-
tion [16]. It is worth noticing that anomaly detection methods
do not include congestion detection in general [17]. Most of
the methods in the literation consider panic situation and cir-
culation of non-pedestrian entities in the crowd as anomalies.
However, a congested situation in a crowded scene is charac-
terized by different dynamics.

Crowd congestion is a condition when individuals in a
crowd are prevented from moving smoothly due to over-
crowding, and are unable to make progress towards their de-
sired goal at normal speed. Our goal in this paper is to use
only easily measurable motion features to reliably localize
pedestrian congestion in surveillance videos in a variety of
scenarios. It has been reported in crowd dynamics literature
that individuals in a crowd tend to undergo lateral oscilla-
tions, that is, to and fro motion orthogonal to their desired

IS&T International Symposium on Electronic Imaging 2020
Intelligent Robotics and Industrial Applications using Computer Vision 072-1

https://doi.org/10.2352/ISSN.2470-1173.2020.6.IRIACV-072
This work is licensed under the Creative Commons Attribution 4.0 International License.

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.



direction of motion [18]. This is attributed to the shifting of
weight from one foot to another, termed swaying, as longi-
tudinal progress is restricted [19]. We exploit this feature to
look for groups of trajectories that change from smooth mo-
tion to oscillatory harmonics, as this corresponds to a change
from unrestricted flow to a substantial restriction in the ability
to make progress towards the desired goal. We show that an
oscillatory metric derived on this principle can reliably local-
ize and highlight areas of congestion in diverse scenarios.

2. RELATED WORK

Most similar works are reported in [20–23]. In [20], the au-
thors propose an automatic vision system for detecting con-
gestion in real-time videos. In their proposed framework,
dense optical flow is computed between two consecutive
frames of the input video. After optical flow computation,
two-dimensional histograms of motion magnitude and motion
direction of flow vectors are computed. Next, k-means clus-
tering algorithm is adopted for clustering two-dimensional
histograms. Computed histograms show small motion (low
magnitude) along major directions reflecting lateral oscilla-
tion of people which is a potential indicator of congestion sit-
uation. Similar approach is adopted in [21], where entropy
is computed as an indicator to crowd congestion and captures
the dispersion of velocity distribution of magnitude and direc-
tion simultaneously. To the best of our knowledge, these are
the only reported vision based methods that detect congestion
in real-time videos. The limitations of these methods are: (1)
perform global analysis of video and can not localize con-
gestion (2) experiments are carried out using only one video
which limits the effectiveness of their methods when applied
to more diverse scenarios.

In contrast to earlier literature, we focus on localizing con-
gestion in a variety of scenarios, such as religious rituals,
concerts and train stations. We characterize congestion as
a spatio-temporal phenomenon, and model it as an evolving
and dynamic characteristic of crowd motion. Therefore, we
demonstrate congestion localization in diverse scenarios.

3. CROWD CONGESTION

In this section, we discuss our proposed method for conges-
tion detection in crowded scenes. Our method first divides the
input video into multiple overlapping temporal segments. We
then extract motion information (trajectories) from each seg-
ment by particle advection technique. After extracting trajec-
tories from each segment, we compute oscillation feature for
each trajectory and generate corresponding oscillation maps.
After quantizing oscillation maps, we select candidate critical
locations. We then employ spatial and temporal filtering to
the oscillation maps. Locations with high oscillation values
and low proximity are identified as congestion locations.

3.1. Computation of oscillatory feature of trajectory

In this section, we discuss how do we compute oscillatory
feature of a trajectory. For a given trajectory S {Π, β}, where
Π represents the spatial (horizontal and vertical) coordinates
and β represents orientations, with S containing k points, we
perform the following steps,

1. Compute circular mean, i.e, βµ of β as in [24] for the
given trajectory S.

2. Compute circular distance η from the mean for all tra-
jectory points, i.e, ηi = (βµ − βi), with 0 ≤ i < k and
where βi is ith point of the trajectory.

3. Compute an indicator of oscillation

Ii =

{
1, if ( βµ - βi ) < ρ where ρ is set to 0.785
0 otherwise

4. Compute the overall trajectory oscillation indicator

I =

∑k−1
i=0 Ii
k

Fig. 1(a) shows a sample frame from a video. Fig. 1(b)
shows the corresponding oscillation map. As illustrated in
Fig. 1(b), small oscillation in pedestrian trajectories indicates
smooth motion of pedestrians and higher values indicate that
the motion of pedestrians is blocked, leading to congestion
as shown in Fig. 1(c). However, similar higher oscillations
are also observed in pedestrian trajectories during loitering
behavior of pedestrians. These trajectories do not belong to
congested regions and hence treated as false positives.

In order to suppress false positives and detect precise con-
gested regions, we quantize oscillation map into 5 layers (lay-
ers). Oscillation map is a spectrum of different oscillation
values ranging from 0 to 1, where 0 represents smooth tra-
jectory with no oscillations and 1 represents highest oscilla-
tion in the trajectory. We quantize the oscillation map with a
step of 0.2, i.e, [0, 0.2], (0.2, 0.4], (0.4, 0.6], (0.6, 0.8], (0.8,
1]. We encode the layers with colors. Layer1, layer2, layer3,
layer4, and layer5 are annotated in white, cyan, yellow, blue
and red, respectively. We then sample trajectories from the
highest layer, i.e, 5th (red) as shown in Fig. 3. Fig. 2 illus-
trates the step-wise process of achieving critical blobs. As
obvious from the Fig. 2(c), some false positive are also de-
tected as potential congested locations. Since these blobs are
produced at random in space and time, therefore, they can be
suppressed by employing a sptio-temporal filter.

3.1.1. Spatial and Temporal Filters

The critical blobs obtained in the previous section need to be
refined in order to suppress false positive blobs which are pro-
duced due the reasons discussed before. The oscillations in
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(a) (b) (c)

Fig. 1: (a) Sample frame, (b) Corresponding oscillation map and (c) Detected congested area.

(a) (b) (c)

Fig. 2: (a) sample trajectories of highest level, (b) gaussian filter and local peaks are clustered (in green circles) (c) detected
critical blobs.

Fig. 3: Quantized oscillation map with color encoded layers.

trajectories of pedestrians gradually decrease, if we go away
(in the reverse direction of the flow) from the epicenter of the
congested area. This phenomena is understandable by Fig. 3,
where the oscillation map is quantized in color encoded lay-
ers. Critical blobs (in red) are the actual congested blobs if
followed by the subsequent layers, while the false positive
blobs do not follow the same phenomena. For each critical

blob (in red) Bi, we move in the reverse direction of the flow
and sample layer’s color. Critical blob Bi will be classified
as congested blob, if all the subsequent layer’s color are sam-
pled. As obvious from the Fig. 3, critical blobs created by
pedestrian’s loitering and other behaviors could not sample
the subsequent layer colors and are suppressed. We then ap-
ply a temporal filter to the remaining set of blobs. We define a
temporal window of size 5 video segments. For each blobBi,
we find the number of detections of blob Bi in the given tem-
poral window, i.e . we suppressed the blob, if the following
ratio is less than 50 %.

Number of detections of blob
window size (5 in this case)

× 100

4. EXPERIMENTAL RESULTS

This section discusses the qualitative analysis of the results
obtained from experiments. We carried out our experiments
on a PC of 2.6 GHz (Core i7) with 16.0 GB memory and video
sequences obtained from other research groups and acquired
through field observations. The videos have different field of
view, resolution, frame rates, and duration, yet our method
performed well in all cases. We first divide each video into a
set of temporal segments with 25% overlap.
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First row of Fig. 4 shows pilgrims sequence which was
taken in the context of the yearly pilgrimage to Makkah, Saudi
Arabia, and it shows a very high density situation. The reso-
lution of video is 1080 x 1440 pixels and composed of 28000
frames (18.66 min) long with frame rate of 25 fps. In this
video sequence, a large group of pedestrians are perform-
ing annual ritual by circulating around Kaaba. Another small
group of pedestrians (the direction of which is orthogonal to
large flow) trying to penetrate inside the large flow, blocking
the motion of the large flow. As the small group of pedestri-
ans penetrates forward, causes a congestions at different lo-
cations at different temporal segments. This video sequence
shows the example of dynamic congestion, where the location
of congested area changes with time.

Second row of Fig. 4 shows a station sequence which is
acquired from other research group. This resolution of this
video is 360 x 480 pixels and it covers a low density sce-
nario. The video is relatively short with 250 frames with 25
fps. In this video sequence, pedestrians try to get on and off
of a train; flows change in time due to the congestion that
arises near one of the entrances, and the density varies with
time. As a result of this variation in density which increases
with time, the area of congestion also increases. As obvious
from the second row, a smaller congested area is detected in
the first segment, where the density is low in comparison to
fourth segment, where larger congested area is detected. This
sequence represents a scenario of growing congestion, where
the size of congestion increases with time.

Third row of Fig. 4 shows a concert sequence which was
recorded in the context of the concert held in San Siro sta-
dium, Milan, Italy. This video sequence covers very high den-
sity crowd, the resolution is 1080 x 1920 with frame rate of
30 and it is composed of 5000 frames. This video sequence is
a special case of evacuation scenario, where large number of
pedestrians, after attending the concert trying to leave through
a narrow exit. Intuitively, such narrow exit creates congestion
which is efficiently detected by our method. This is a scenario
of a fixed congestion, where congestion of almost the same
area is created at the same locations in all temporal segments.

Since our proposed method focuses on congestion detec-
tion and localization, therefore, comparison with state-of-
the-art methods [20, 21] becomes irrelevant. Their methods
only detect congestion in a global fashion and are limited to
only one video sequence (LoveParade). LoveParade video se-
quence covers an evacuation scenario, and the problems of
congestion detection and localization in such sequence are al-
ready addressed in our concert sequence. Datasets that covers
congestion situations are rarely available, therefore, we lim-
ited our experimental results to our three but diverse video
sequences.

Additionally in order to show the robustness of our pro-
posed method, we use another video sequence which is down-
loaded from Youtube and recorded at Shibuya Crossing Japan,
one of the world busiest crossing and famous for its scramble

crossing. We asked all 20 coders to annotate the video.
To quantitatively evaluate the performance, we compute

two measures detection accuracy (DA) and localization ac-
curacy (LA). Detection accuracy is calculated by DA = # of
frames correctly detected / Total # of frames. Localization ac-
curacy is based on the overlap of detection region and ground
truth. Overlap among the detected and ground truth region
is calculated by C

max(N,M) , where C is the number of com-
mon points among detection and ground truth region, N is
the number of points in detected region where as M is the
number of points in ground truth region. We also compute
missed detection by (MD) = # of missed frames / Total # of
frames. Table 1 shows the quantitative results. In Table 1.
DA, MD and LA are computed for all video sequences. It is
obvious from the table that our proposed method detects con-
gestion with 100% detection accuracy in almost all the video
sequences. The reduce performance in Hseq01 videos is due
to the fact that relatively small blobs are produced in some
of the temporal segments of the videos which are filtered by
the threshold λ. λ represents the area of the blob size and its
value is fixed to 1000 pixels for all analysed videos. However,
the performance is increased to 100% when the value of λ is
reduced to 500 pixels.

Table 1: Quantitative results. We present the quantitative re-
sults in terms of correct detection, missed detection, and over-
lapped.

Video Correct detect Missed detect Overlap
Station 100% 0.0% 83.46%
Concert 100% 0.0% 82.42%
Hseq01 61.07% 38.92% 67.09%
Average 96.95% 3.04% 83.21%

All the video sequences in the dataset exhibit congestion
and our proposed method successfully models the dynamics
of congestion regardless of the scene characteristics. These
results further indicate that computing oscillation feature of
trajectory is capable of locating congestion in the regions of
crowd scene. Our method locates regions of congestion and
does not label individuals.

5. CONCLUSION

Using motion features, we generate oscillation map which is
exploited in a spatio-temporal fashion to detect and localize
congestion in diverse videos. The results of our method indi-
cate that the method is effective in detection and localization
of congestion in the crowd.
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Fig. 4: First row shows detected congestion locations in pilgrims sequence. Second row shows detected congestion locations
in station sequence and the third row shows detected congestion locations in the concert sequence. The columns represent
different temporal segments of the corresponding video sequences.
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