
Estimating Vehicle Fuel Economy from Overhead Camera 

Imagery and Application for Traffic Control 

Thomas Karnowski,a Ryan Tokola,a Sean Oesch,a Matthew Eicholtz, b Jeff Price, c Tim Gee, c  
aElectrical and Electronics Systems Research Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 
a Department of Computer Science, Florida Southern College, Lakeland, FL 33801 
cGRIDSMART Technologies Inc., Knoxville, TN 37931 

 
Abstract 

In this work, we explore the ability to estimate vehicle fuel 

consumption using imagery from overhead fisheye lens cameras 

deployed as traffic sensors. We utilize this information to simulate 

vision-based control of a traffic intersection, with a goal of 

improving fuel economy with minimal impact to mobility. We 

introduce the ORNL Overhead Vehicle Data set (OOVD), consisting 

of a data set of paired, labeled vehicle images from a ground-based 

camera and an overhead fisheye lens traffic camera. The data set 

includes segmentation masks based on Gaussian mixture models for 

vehicle detection. We show the data set utility through three 

applications: estimation of fuel consumption based on segmentation 

bounding boxes, vehicle discrimination for vehicles with large 

bounding boxes, and fine-grained classification on a limited number 

of vehicle makes and models using a pre-trained set of convolutional 

neural network models. We compare these results with estimates 

based on a large open-source data set of web-scraped imagery. 

Finally, we show the utility of the approach using reinforcement 

learning in a traffic simulator using the open source Simulation of 

Urban Mobility (SUMO) package. Our results demonstrate the 

feasibility of the approach for controlling traffic lights for better fuel 

efficiency based solely on visual vehicle estimates from commercial, 

fisheye lens cameras. 

Keywords: computer vision, reinforcement learning, image 

segmentation, data sets 
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Introduction 
The United States uses 28% of its energy in moving goods and 

people, with approximately 60% of that utilized by cars, light trucks, 

and motorcycles.1 Consequently the increasing energy resource 

requirements of transportation systems for metropolitan areas 

require research in methods to improve and optimize control 

methods. In this work, we explore the ability of commercial 

overhead-mounted, fisheye lens cameras to provide real-time 

information to the traffic infrastructure, particularly with respect to 

fuel consumption. These cameras sense the presence of vehicles at 

intersections to replace more conventional sensors. The ultimate 

goal of our work is to leverage these sensing capabilities to improve 

the energy efficiency aspects of traffic control. Surveys from 

Department of Energy (DOE) national laboratories estimate that the 

fuel cost of idling is 6 billion gallons wasted annually2 which gives 

a bound on the problem this proposed solution could address. 

We seek to determine the degree that overhead traffic cameras 

can learn to estimate fuel consumption of vehicles in their visual 

field. We also seek to teach a traffic controller (or a grid of 

controllers) how to use such information to more efficiently control 

traffic flow from an energy and mobility standpoint. 

This paper is organized as follows. First, to determine the 

ability of cameras to estimate fuel consumption, we describe a data 

set acquired at Oak Ridge National Laboratory (ORNL) using 

overhead cameras with the assistance of higher-resolution, ground-

based sensors. We explore use cases with this data set and describe 

efforts to more thoroughly understand and bound the ability to 

estimate fuel consumption from visual sensors. Second, we perform 

some basic simulations that leverage visual models to improve 

traffic efficiency using open-source simulation packages. We 

conclude by summarizing our findings and recommend next steps 

for further development. 

Approach 

Overhead Vehicle Data Set 
Using vehicle imagery to estimate fuel consumption is 

challenging. We note that fuel consumption models use both vehicle 

characteristics and dynamic information.3 In this work we assume 

the vehicle characteristics are a good first approximation for fuel 

consumption for two main reasons: first, vehicle dynamics 

measurements require calibrated cameras which are generally not 

available in this domain; and second, vehicle visual classification 

provides insight into traffic characteristics.  

We ground our work in the real-world practice of computer 

vision traffic sensing, and assume our imagery is obtained from a 

well-engineered system that detects vehicle traffic to replace 

ground-loop induction sensors. Machine learning for visual object 

recognition has made great advances with the publishing of large 

labeled data sets and deep learning algorithms.4 The technology is 

ubiquitous but a large problem is the lack of data to customize and 

train algorithms to attain desired accuracies, particularly regarding 

real-world conditions (weather and lighting variations). 

Therefore, we began with data collection on the ORNL campus 

to identify vehicle types with a high-resolution image and map these 

classifications onto the overhead camera view. The resulting data set 

is dubbed the ORNL Overhead Vehicle Data set (OOVD).  

(https://www.ornl.gov/project/ornl-overhead-vehicle-dataset-oovd) 

and leverages a ground-based sensor (GBS) system that captures a 

relatively high-resolution image of the vehicle of interest 

simultaneously with an overhead imager. The GBS image is 

classified by some method (e.g., manual inspection, the use of 

auxiliary information such as license plates, or machine-learning 

based object classification), which creates labels for the overhead 

images. Although there are data sets for fine-grained vehicle 

classification, they are largely from web-based URLs and therefore 

are different from the automated “real world” images captured from 

the GBS and overhead camera. 

Data collection consisted of accessing the overhead camera 

interface unit within the traffic instrumentation cabinet; for the case 
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of overhead cameras available from GRIDSMART, the adopted 

procedure used an external universal serial bus (USB) drive. A 1 TB 

drive stores roughly 10 days of data, organized by the hour, with 

approximately 26,000 images per hour at 7 frames per second. The 

accompanying ORNL GBS captures multiple images of a target 

vehicle and uses embedded algorithms to create a projected image 

where the wheels are aligned from image to image. 

There are multiple fine-grained vehicle recognition systems in 

existence.5,6,7,8 Consequently, a commercial application was 

identified to provide vehicle make and model from the high-

resolution GBS image. Other labeling methods were used including 

manual review and matching from the GBS system.  

We also sought to emulate an embedded system image 

processing pipeline using computer-vision-based tools that perform 

vehicle segmentation in real time. We used the MATLAB Computer 

Vision Toolbox9, to detect vehicles via a mixture of Gaussians 

model. The implementation used a foreground detector with 

parameters set to 25 learning frames, a learning rate of 0.005, a 

minimum background ratio of 0.7, automatic initial variance, and a 

Gaussian cardinality of 3. Foreground detection was followed by a 

sequence of screening and post-processing, including image dilation 

and an estimate of the vehicle location based on an observed 

trajectory map. 

We used the GBS collections as a screening process and only 

performed vehicle segmentation on the overhead imagery to target 

a particular GBS image. We identified a range of likely overhead 

frames that would contain the GBS collections, with a manual 

selection of the candidate vehicle in the overhead view due to slight 

timing offsets from synchronization drift between the overhead 

imagery and the GBS system. Additional data hygiene was required, 

including the selection of the vehicle of interest, an initial selection 

of the vehicle direction, and the lane of travel. A second process 

identified the highest resolution frame possible for each collection 

fusion. In this process, the vehicle of interest was selected using the 

ground-truth process where a point was placed on the vehicle 

segmentation “blob”. The vehicle was then tracked using speeded-

up robust features (SURF)10. In this algorithm, points that are likely 

to be highly unique are identified in subsequent frames, and then the 

points are matched to perform a tracking function. When the vehicle 

was closest to a selected point based on the lane of travel, the best 

frame was saved with information such as the vehicle bounding box, 

oriented length, and collection time. 

In addition to GBS-based collections, there were a number of 

unique vehicle types that we also identified through a segmentation 

process. These included larger vehicles that were not identified by 

the GBS sensor; we relied on our original segmentation process to 

identify these, given that they could be screened initially by the size 

of their bounding box and including “18-wheelers”, large multi-axle 

trucks, motorcycles and bicycles, and busses. We termed this 

segmentation process the “Wild non-GBS” data (WGBS). We were 

also able to identify vehicles that are used routinely at ORNL, 

including passenger utility vehicles such as the Chevrolet Express 

minibus and delivery vans. These vehicles typically lacked a 

year/make/model but were included for their utility. 

In the resultant data set, a total of 6,695 vehicles were identified 

in 685 different vehicle categories. The vehicle distribution is not 

uniformly distributed, as roughly 150 classes have a single vehicle 

and some have as many as 238.  We make no claims that each image 

is truly an independent vehicle sample; in other words, while the 

image may be taken at a different day or time, two images of a 2005–

2011 Toyota Tacoma may indeed be the same vehicle. Variation in 

environmental conditions and possibly vehicle location make this 

potential duplication worthwhile, but the only true way to avoid 

such issues would be to confirm single-vehicle entries using 

technology like automated license plate readers (ALPRs) in the 

collection process. We did attempt to prevent images that were too 

close in time from appearing in the data set (e.g., two images 

separated by a few seconds or less were deleted). Finally, we also 

reviewed each image and each GBS-overhead pair to ensure the 

classifications seemed correct and that the GBS-overhead images 

were the same vehicle. However, we must allow for possible errors 

in the data collection and screening process, and we ask that any 

errors found by researchers be shared for future corrections. 

The data set includes the vehicle segmentation mask, which is 

the same size as the intersection view. An example image is shown 

in Figure 1. Finally, the data set also includes an estimated fuel 

economy value from either the U.S. Department of Energy Fuel 

Economy archive11 or the alternate fuels archive.12 

 

Figure 1. Examples of vehicle capture, segmentation mask, and ground-
based sensor image from the OOVD data set. 

Application of Data Set 
The data set has multiple applications, including segmentation 

studies and shadow analysis. Here we demonstrate the utility of the 

set for estimating fuel and vehicle characteristics in three use cases 

(bounding box size, vehicle discrimination via classifiers that 

leverage bounding boxes, and a “fine grained” classification of 

vehicle make and model for a limited number of classes in the data 

set). 

Fuel Consumption from Bounding Box 
Our first experiment for determining fuel consumption 

estimates from overhead imagery used the vehicle bounding boxes 

generated by the aforementioned segmentation process. In this 

example we leveraged the typical locations of traffic in the 

intersection images, which we refer to as “NearLane”, “TurnLane”, 

and “FarLane”. Our analysis focused on each of the three regions 

independently.  For each region, a threshold on the oriented 

bounding box length was set, and the average fuel economy of all 

vehicles above the threshold was computed. Our results show that 

thresholds of 400 pixels for the NearLane, 350 pixels for the 

TurnLane, and 300 pixels for the FarLane separate high fuel 

consumers (average approximately 6 MPG) from the remaining 

low-to-moderate consumers; thus, we can functionally discriminate 

between high fuel consumers and lower consumers (i.e., “average” 

vehicles) simply on the basis of the oriented bounding box length, 

as shown in Figure 2.  
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Figure 2. Average fuel consumption estimate in MPG for vehicles in the 
“near lane” based on the oriented bounding box length in OOVD. From left 
to right the average fuel consumption of vehicles with an oriented bounding 

box length greater than 0 has an average MPG estimate of approximately 
26 MPG. As the size threshold increases, smaller vehicles are omitted, 
which tend to have better fuel economy in general. Vehicles above 
~400 pixels have a mean MPG of approximately 6 MPG. 

Vehicle Discrimination from Bounding Box 
Our second analysis also used the bounding box but attempted 

to discriminate “regular” vehicles from the special vehicle classes 

of high fuel consumers in cases where the bounding box size 

overlaps between these broad classes. The goal here is to determine 

if more information regarding vehicle traffic can be obtained from 

the overhead camera imagery beyond relative vehicle size. To this 

end, we took the largest 100 “regular” vehicles from each and 

attempted to discriminate between the large WGBS classes 

(18Wheeler, Bus, MultiAxle, DeliveryVan, and Chevrolet Express 

Bus). As the data set has a limited number of Bus examples, we 

elected to combine this class with the 18Wheeler class. Three 

experiments were conducted on the NearLane, FarLane, and 

TurnLane. The overall data set was reduced to 60 random samples 

of each class (18WheelerBus, MultiAxle, DeliveryVan, Chevrolet 

Express Bus) and 60 random samples from the 100 largest examples 

of the “regular” vehicle class. A pre-trained convolutional neural 

network based on the MobilenetV213 topology was utilized to create 

a 1000-dimension feature vector using the output of the last fully 

connected layer. The data set of 300 vectors was split into five folds, 

with 210 vectors for training and 90 for testing. The classifier used 

an error-correcting output code model14 for multiple classes and 

support vector machines. After each set of folds was completed, a 

new set was generated via random selection of examples, and the 

process repeated 10 times. The overall performance for each lane 

was approximately 86% regardless of the lane of traffic, indicating 

that there is a high level of discrimination possible between the 

largest vehicle types as well as with “regular” vehicles with large 

bounding boxes. Table 1 lists example results for vehicles in the 

Near Lane.

 

 
Table 1. Confusion matrix for results in the near lane (accuracy 86%). 

 18Wheeler+Bus 
Chevrolet 

ExpressBus 
Delivery 

Van 
Multi-
Axel 

Other Vehicles 

18Wheeler+Bus 45.8 0.50 7.2 5.5 1.0 

Chevrolet ExpressBus 0.30 58.3 1.4 0.0 0.0 

DeliveryVan 7.90 0.50 45.60 4.6 1.4 

MultiAxel 4.50 1.00 3.90 49.7 0.90 

Other Vehicles 0.30 0.80 0.90 0.90 57.1 

 

 
Table 2. Accuracy and fuel consumption estimate for OOVD classes 

CNN 
Classifier Accuracy 
(at least 20 entries, 

78 classes) 

Fuel 
Consumption 

Error MPG 
RMS 

Classifier Accuracy 
(at least 40 entries, 

29 classes) 

Fuel 
Consumption 

Error MPG 
RMS 

ResNet50 28% 7.05 40% 4.83 

ResNet101 27% 6.85 39% 4.75 

GoogleNet 24% 7.27 37% 5.17 

SqueezeNet 40% 5.81 52% 3.92 

MobileNetV2 36% 5.94 44% 4.72 

AlexNet 19% 8.04 32% 6.12 

VGG-16 25% 6.68 34% 5.65 

VGG-19 23% 7.44 34% 5.78 
 

Fine Grained Discrimination 
Our final experiments with OOVD explore the potential for 

fine-grained vehicle classification using solely overhead imagery. 

We performed two experiments, using the classes in the data set with 

at least 20 labeled vehicles and 40 labeled vehicles. We used the 

vehicle classes and randomly removed vehicle samples to create a 

balanced data set with at least 20 and 40 examples per set.  (This 

process was repeated five times overall.) For each of these data sets, 

we performed four-fold validation testing. In the training phase, 

eight different pre-trained networks15,16,17,18,19 were used from the 

MATLAB Deep Learning Toolbox20, by extracting a feature vector 

from the output of the last fully connected layer. We again trained a 

classifier ensemble using an error-correcting output code model14 

for multiple classes with support vector machines. The average 

performance of the folds was utilized, and we estimated the fuel 

consumption error based on the vehicle MPG by assuming that if we 
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successfully identified the make and model of the vehicle, our error 

was 0 MPG; otherwise, we used the MPG estimate from the 

erroneous classification to compute the MPG error. The results are 

shown in Table 2. For comparison, if the mean MPG estimate is 

used, the error would be 7.94 MPG and 8.24 MPG for the 20 

example and 40 example cases. With this limited set of data, we 

achieve accuracy levels that are comparable to the results from 

larger studies as described in the next section. Also, the 

Squeezenet15 and MobileNetV2 topologies have the best 

performance, which is likely because they have fewer parameters to 

train and therefore achieve better results with less data than the 

larger networks. (These also have the advantage of being more 

practical to deploy in an embedded system such as a traffic control 

device.) 

Limitations of Visual Methods for Fuel 
Consumption 

Because of our concerns regarding the ability to collect 

sufficient data from our field collection, we elected to explore the 

ability of fine-grained classifiers to estimate fuel consumption by 

using an existing data set21. The data set contains over 2500 fine-

grained classes of vehicle make/model and year and also includes 

fuel economy estimates. We retrained a convolutional neural 

network based on the AlexNet topology16 to act as a vehicle 

make/model classifier. This was inspired by the example of Gebru 

et al21 and served as a good baseline for the exercise. We trained 

using 70% training data, 15% validation data, and 15% testing data 

and evaluated our performance on the test data set aside. We also 

degraded the image resolution to simulate actual degradation of the 

image quality from the overhead (GRIDSMART) imager at ORNL, 

at ranges of 0 meters, 20 meters, 40 meters, and 60 meters. Finally, 

we used the classifier to estimate fuel efficiency visually. The results 

are summarized in Table 3. Note that the error using the mean 

estimate is 6.1 MPG, thus the estimate tends to be less useful at 40 

meters or more. 

 
Table 3. Estimates of fuel consumption using baseline CNN 
model with Gebru data set 

Range to vehicle (m) Classifier Accuracy RMS MPG Error 

0 33% 3.5 

20 16% 5.1 

40 3% 6.7 

60 1% 10.0 

Application to Traffic Control 
Our second focus was “teaching a grid of cameras to improve 

traffic mobility and fuel economy”. Our simulation goal was to 

determine the feasibility of traffic control informed by overhead 

fisheye lens camera technology based on our data analysis in the 

preceding sections. We used reinforcement learning22 (RL) to teach 

the controllers how to control the light timing. RL seeks to 

determine the best action to take given a sensed environment. RL 

networks typically accept a representation of the environment 

known as a “state.” The “state-space” of a network is the set of all 

possible states. A common problem in RL is the establishment of a 

state-space that captures all relevant information without being 

overly complex. Another problem in RL is the establishment of the 

“reward” structure, which is how the RL algorithm learns the best 

actions to take for a given environmental state. For problems with 

limited time spans, the reward can simply be a metric of success. 

However, if there are longer time spans under consideration, such a 

reward may be too weak to enable successful learning, since the 

network would need to accurately predict the environmental state 

many time steps in the future.  

There are multiple papers in the open literature concerned with 

applying RL to traffic control as well as energy usage23,24. In our 

approach we used a deep network25 to generate traffic control 

changes, but we started with the assumption that the overhead 

camera includes “edge computing” to deliver a fuel consumption 

estimate. This approach starts with visual-compute models that 

perform vehicle segmentation and rudimentary classification. For 

our simulation platform, we selected the Simulation of Urban 

MObility (SUMO)26 due to its history in transportation studies, and 

open-source availability. SUMO features a traffic control interface 

(TraCI) that allows control over how the simulation functions with 

respect to traffic conditions. We also integrated Keras/Tensorflow 

machine learning packages27 for the RL algorithms. 

We added a “visual sensor model” to the SUMO simulation 

environment based on our initial findings with the GRIDSMART 

camera and our estimates on fine-grained classification accuracy. In 

particular, we limited the sensing space to 60 meters around the 

intersection and used MPG RMS errors from the fine-grained 

estimates for an “error” case of fuel economy. We also used a 

“perfect” or no-error comparison where the vehicle was assumed to 

be perfectly identified. The grid traffic light distances were set at 

500 meters apart. The traffic distribution was 50% buses/trucks and 

50% passenger vehicles. Buses and trucks traveled north or south, 

whereas passenger vehicles traveled in any direction. This skewed 

distribution was utilized to help verify that the simulation and RL 

model were learning information from the environment to achieve 

our goals. Two traffic densities were used: “dense” simulations 

generate vehicles every 1–4 seconds until a total of 500 vehicles are 

utilized, and “sparse” simulations generated a vehicle once every 10 

seconds. All results are averaged over 10 simulations. 

Four different traffic control policies were tested: (1) a fixed 

timer (30 seconds green and 6 seconds yellow); (2) a heuristic policy 

where the fuel consumption was computed in each lane with the 

visual model, and then the phase was changed if the highest 

consuming lane had a red light; (3) a RL policy that uses fuel usage 

estimates from vehicles within 60 m of the traffic light; and (4) a RL 

policy that uses fuel usage estimates from vehicles with 60 m of the 

traffic light and also vehicles within 60 m of adjacent traffic lights. 

For the RL policies, the state consists of the following: the traffic 

light’s current phase; the number of seconds the light has been in the 

current phase; fuel usage estimates from the target light each second 

for the last 3 seconds; and for the second RL policy only, additional 

fuel usage estimates from the adjacent lights each second for the last 

35 seconds. 

During training, RL networks seek to maximize some reward 

function. Although rewards are often formulated as a positive value, 

such as a large positive value if a network that is being trained to 

play a game wins the game, we use penalties with negative values. 

The reward for our networks incorporates two elements: (a) a 

penalty that is proportional to the amount of fuel used by vehicles 

that are stopped at the traffic light, and (b) a penalty that is applied 

if the network tries to change a yellow light. 

Some key results of our preliminary simulations are shown in 

Figure 3 through Figure 5. The total fuel usage in gallons was 

provided by the SUMO output. Figure 3 shows that the visual 

policies have better performance for fuel consumption. There is little 

difference between the “error” and “no error” visual models, 

suggesting that the classifier accuracy does not need to be highly 

optimized to provide benefits which is consistent with our findings 

using the oriented bounding box lengths. All visual policies 
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outperform the control strategy for vehicle stoppage time; this is 

intuitively obvious because the control policy is simply timer based 

and effectively has no sensing at all. The scatter plots in Figures 4 

and 5 show more information about the learning process and 

resultant decisions. There are two distinct distributions; the left are 

passenger vehicles and the right are larger “gas-guzzling” busses 

and trucks. The control policy stops vehicles with no preference; the 

right distribution is especially slanted because the fuel consumption 

rate goes down as the vehicle is stopped longer (reflecting the lower 

fuel consumption of stopped vehicles). However, the visual policies 

in Figure 5 show a reduction of the wait times for larger vehicles, 

which suggests the intersection is learning to allow them to pass 

without stopping, which saves energy.  The fuel savings between 

Figure 3 and Figure 5 is roughly 25 gallons/hour, but we note that 

this result is for these specific policies and simulation scenarios 

which illustrate the proof of concept.  More extensive simulations 

are required to provide accurate estimates of the savings from this 

method.  We note that one potential side-effect and limitation of this 

approach is a lengthened wait time for vehicles with lighter fuel 

consumption, although the RL reward / penalty structure could be 

modified to alleviate this issue. 

 

Figure 3 Fuel usage for different policies under the dense traffic 
experiments. The visual policies outperform the simple timing policy, with 
the RL methods performing slightly better. 

 

Figure 4 Control policy with dense traffic. The distribution on the left is the 
passenger vehicles whereas the distribution on the right is busses and 

trucks. The slant effect, particularly on the right, is caused by the decrease 
in the vehicle fuel consumption rate as vehicles are stopped for longer 
periods of time. 

 

Figure 5 DeepQAdjacentWithError policy, under dense traffic. This model 
shows flattening of the right distribution indicating heavy fuel consumers 
stop for minimal times. 

Conclusions 
Improved transportation efficiency is vital to America’s 

economic progress. This work was able to show the efficacy of 

building ground-truth data sets for vehicle classification from 

overhead traffic cameras that are currently used as sensors for traffic 

control. We introduced the OOVD data set for vehicle detection and 

classification. The utility of OOVD was shown by vehicle detection 

bounding box analysis, and two types of finer discrimination using 

CNNs. We demonstrated, through SUMO simulations that a deep-

Q network with visual sensing could improve transportation 

efficiency. Sensing from adjacent intersections produced a better 

control policy, paving the way for future work on larger grids. Much 

of the information required to enact these techniques is virtually 

“free” as it is already part of GRIDSMART’s analytics products or 

could be easily realized. Potential extensions of this work include 

field tests of the approach, more extensive simulations with larger 

grids and different traffic distributions to further the proof-of-

concept presented here, and improved neural networks for both 

vehicle classification and traffic control. Future transportation 

systems may find the gains obtained by cameras with low detection 

resolution more difficult to realize, particularly as V2I self-

identification becomes more common. Nevertheless, the role of 

sensing will be significant in intelligent transportation systems for 

some time to come.  
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