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Abstract
Overweight vehicles are a common source of pavement and

bridge damage. Especially mobile crane vehicles are often be-

yond legal per-axle weight limits, carrying their lifting blocks and

ballast on the vehicle instead of on a separate trailer. To prevent

road deterioration, the detection of overweight cranes is desirable

for law enforcement. As the source of crane weight is visible, we

propose a camera-based detection system based on convolutional

neural networks. We iteratively label our dataset to vastly reduce

labeling and extensively investigate the impact of image resolu-

tion, network depth and dataset size to choose optimal param-

eters during iterative labeling. We show that iterative labeling

with intelligently chosen image resolutions and network depths

can vastly improve (up to 70×) the speed at which data can be

labeled, to train classification systems for practical surveillance

applications. The experiments provide an estimate of the opti-

mal amount of data required to train an effective classification

system, which is valuable for classification problems in general.

The proposed system achieves an AUC score of 0.985 for distin-

guishing cranes from other vehicles and an AUC of 0.92 and 0.77

on lifting block and ballast classification, respectively. The pro-

posed classification system enables effective road monitoring for

semi-automatic law enforcement and is attractive for rare-class

extraction in general surveillance classification problems.

Introduction
Many practical real-world surveillance problems consist of

detecting rare classes of objects, for which it is difficult to ob-

tain labeled training data. This data is required to train supervised

detection and classification systems. One way to obtain labeled

training data in these cases, is to watch hundreds of hours of

surveillance videos and then to manually label the rarely occur-

ring class, which is infeasible in practice. This paper focuses on

avoiding this laborious effort through an iterative labeling method

applied to the practical case of classifying mobile construction

cranes on public roads.

The weight of mobile crane vehicles is often beyond the le-

gal per-axle limit, because they carry their lifting blocks and bal-

last on the vehicle instead of on a separate trailer. Enforcement

is desirable, since this causes pavement and bridge damage, as

pavement degradation is significantly higher when vehicles are

above legal weight limits [1]. Monitoring of these overweight

vehicles can be achieved using Weigh-In-Motion systems [2], al-

though these are expensive to install and maintain, because they

require altering of the pavement. Since these sources of weight

are visible, a camera-based detection system can provide a more

cost-effective alternative. Performing this detection is a straight-

forward detection/classification problem, for which supervised

learning using Convolutional Neural Networks (CNNs) is well

suited. Because mobile cranes occur rarely on public roads and

labeling all video data is infeasible, an iterative learning system

is desirable to gather sufficient data and train an effective crane

classifier successfully.

Iterative labeling methods have been explored extensively in

the past, especially in the field of active learning [3–5]. The basic

method for active learning consists of a repeated two-step pro-

cess: (1) train a classifier on a labeled subset of data, and (2) use

some query function to retrieve unlabeled images to be labeled

and adding them to the labeled set. However, most existing meth-

ods focus on labeling generic datasets and do not exploit the ‘rare

new subclass’ case within the dataset. Specific active learning

for rare classes, including discovering rare classes in data, is per-

formed in [6]. From this, we adopt the same basic paradigm,

but use a different variant of uncertainty sampling [7] to rapidly

gather samples for labeling.

Our contributions are threefold. First, we describe a system

to solve a specific fine-grained classification problem with a rare

subclass: distinguishing mobile cranes from other types of trucks.

The system is set up to be easily trainable with an iteratively la-

beled dataset. Second, we show a practical method to iteratively

obtain more data of rare subclasses of object classes in surveil-

lance problems. This method is based on transfer learning and is

inspired by active learning and hard negative mining. It vastly re-

duces the manual effort required to label sufficient data to train a

classifier on the rare subclass. Third, we extensively evaluate the

impact of the amount of labeled data on the performance of the

system for different image resolutions and CNN network back-

bones, to determine when sufficient rare-class samples have been

collected.

Method
This section describes the entire processing chain of creating

a crane classification system. First, the system design is intro-

duced, consisting of a cascade of fine-tuned CNN classification

systems. Second, the proposed method for iteratively labeling the

large training set of unlabeled images is explained. Finally, all

network parameters are listed for reproducibility.

System architecture
The system architecture consists of a pretrained vehicle de-

tector (based on SSD [8]), recognizing vehicles in the video

stream from the camera. Each detected vehicle is processed by
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Figure 1: Schematic representation of the system. The dashed line represents a split of data flows. The front- and rear-view camera

images are processed by a single vehicle detector and crane classifier. Separate classifiers are applied for detecting lifting blocks on

front-view images and ballast on rear-view images.

three separate image classifiers (ResNet-[9]). A schematic repre-

sentation is shown in Fig. 1.

The vehicle detector has been trained with a large dataset

of surveillance videos containing broad categories of traffic (cars,

trucks, motorcycles). We opt for adding a separate classifier after

the detector, as compared to retraining the detector. Repeatedly

retraining with the large traffic dataset and only a few novel crane

images is time-consuming, especially in combination with the it-

erative labeling method explained later. To construct the initial

dataset from which the cranes will be extracted, the ‘truck’ detec-

tions from the vehicle detector are employed. The detection boxes

are extended in all directions by 10%, after which the images are

cropped to this extended box and used to train the classifier.

The additional classifier consists of a binary ResNet classi-

fier, which is trained to distinguish between ’truck’ and ’crane’.

In our specific case of overweight crane classification, we further

subdivide this class into cranes with and without a lifting block,

and cranes with and without ballast. For each independent prob-

lem a supplementary binary classifier is added, resulting in a to-

tal of three binary ResNet classifiers. Under the assumption that

there are only a few samples of the rare subclass in the total train-

ing set, all three classification networks will train quickly, espe-

cially in early labeling iterations. This removes the need for in-

cremental learning strategies to rapidly update the networks after

every period of data acquisition. Finally, if either a lifting block or

ballast is detected, the crane is marked as potentially overweight,

which is to be manually verified by a crane legislation expert.

Dataset acquisition and labeling
To gather sufficient crane images for training, video data was

recorded on two highway locations for a period of five weeks.

Two cameras were installed at each location, capturing both rear

and front views of traffic. A total of 3,360 hours of high-definition

video was gathered. The vehicle detector described in the previ-

ous section is used to extract crops of all ’truck’ class vehicles,

resulting in 1.2 million truck image crops. Since manual interpre-

tation of these images to extract cranes is infeasible, we propose

to exploit an iterative labeling procedure with the following steps:

1. Obtain small set of labeled ’crane’ vs. ’not crane’ images;

2. Apply data augmentation, train classification network;

3. Run inference on the unlabeled images;

4. Extract N images with the highest ’crane’ probability;

5. Label these N images manually;

6. Repeat from Step 2.

For very rare subclasses, performing Step 1 from the full unla-

beled dataset may already be infeasible. An alternative is to gather

images from the Internet. Although these are generally obtained

from highly different viewpoints, as compared to the used surveil-

lance camera footage, only mild discriminative power is required

to start the iterative labeling procedure. In our specific case, we

have obtained access to a small government database of 300 low-

quality front-view crane images, which serve as a similar starting

point to web-crawled images.

Data augmentation in Step 2 is applied to reduce the likeli-

hood of the network, discovering only highly similar images to

the small initial dataset. The augmentations are randomized be-

tween iterations of the labeling procedure, to improve the chances

of discovering crane images with a lower similarity to the initial

labeled images.

Step 4 is similar to uncertainty sampling. However, instead

of searching for images with a probability close to 0.5, which will

almost exclusively be regular trucks due to the dataset imbalance,

we choose images with crane probability close to unity. The con-

cept of selecting high-probability samples is based on hard nega-

tive mining, which is commonly used to improve object detection

models. Selecting high-probability crane images for labeling will

yield easy crane examples and the most crane-like truck exam-

ples. By labeling these and retraining, the number of false posi-

tive detections of the network reduces rapidly, since the network is

forced to shape the decision boundary around the hardest negative

samples. Note that this step is the most computationally intensive

step of the algorithm, as it requires running inference on the en-

tire unlabeled set of images (1.2 million). We process the entire

dataset on every iteration because performing inference on the set

only takes minutes. As a possible speed up, one may choose to

order the dataset on rare-class probability after the first iteration

and use a fraction of the unlabeled dataset with the highest rare-

class probabilities for subsequent iterations. Note that although

this avoids performing inference on many images, it risks missing

a small number of rare-class images. Step 5 involves the most

manual labeling effort, although significantly less effort than la-

beling the entire dataset. After 9 iterations of manually labeling

about 2,000 images (consuming a few hours of labeling effort),

over 90% of cranes are labeled. This has been verified with data

from a nearby government-owned weigh-in-motion system that

measures every crane observed in the camera view. Thus, the to-

tal manual labeling effort is reduced from 1.2 million to ∼18,000

images, which represents a reduction factor of 67. These labeled
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Figure 2: Examples of intra-class variation of the ‘crane’ class.

images contain 2,116 images of mobile cranes and 15,763 images

of trucks. Some examples of crane images are shown in Fig. 2 to

show the intra-class variation, which is larger than expected.

Network parameters
All ResNet classification networks (pre-trained on Ima-

geNet [10]) are trained for 12 epochs using the PyTorch and Fas-

tAi frameworks, with batch size 32. We follow the convention of

FastAi for transfer learning. This consists of cutting-off the Ima-

geNet pretrained network at the last convolutional layer, freezing

all convolutional layers and appending the following custom head

to be trained on the new dataset. The head consists of a concate-

nation of the outputs of an adaptive average pooling layer and an

adaptive max pooling layer, which is flattened and processed by

several fully connected layers with dropout, batch normalization

and ReLU activations. These modifications are according to the

convention of FastAi. Finally, the chosen optimizer is stochastic

gradient descent with cyclical learning rates for increased conver-

gence speed [11].

Experimental results
Iterative labeling vastly reduces labeling effort. To investi-

gate the impact of several hyperparameters on the effectiveness of

the iterative labeling procedure, four experiments are performed.

Selecting optimal parameters based on the current dataset size can

reduce training time and thereby reduce the time for additional it-

erations, or reduce the number of iterations required by training a

better classifier with less data. The investigated problem has been

addressed from the viewpoints of:

1. Relation between image size and dataset size;

2. Network depth compared to dataset size;

3. The impact of data augmentation;

4. Optimal image resolution per classification sub-problem

(crane vs. truck, lifting block, ballast classification).

The experiments consist of training classification networks

for 360 combinations of the corresponding parameters (see Ta-

ble 1). The images from one highway camera setup are used for

training and the images from the second for testing. We perform

all experiments with three different random seeds to measure vari-

ation during the training process. As the classification networks

are binary, Area Under the receiver operating characteristic Curve

(AUC) is employed to measure network performance. Similar ex-

periments have been performed by Kolesnikov et al. [12], who

provided insight into the impact of the amount of training data for

very large general classification datasets (1.3M to 300M images)

and deeper networks. However, they investigate neither much

smaller amounts of data (relevant to our iterative labeling prob-

lem), nor the impact of image resolution compared to dataset size.

In the following subsections we present the separate experiments.
Table 1: Network parameter sweep values.

Parameter Values

Class problem Crane vs. truck, lifting block, ballast

Classifier model ResNet-18, ResNet-34, ResNet-50

Image width & height 32, 64, 128, 256, 512

Subsampling factor 1, 4, 16, 64

Data augmentation Yes, no

Relation between image size and dataset size
When training on a small number of training samples, train-

ing on too high resolution may cause networks to overfit on

noisy high-frequency features, instead of focusing on stable low-

frequency features in the images. To verify this and determine at

which point overfitting becomes relevant, we train the "crane vs.

truck" classifier with various amounts of data by subsampling the

dataset, while varying the input image resolution. Sub-sampling

is done with factors 4, 16 and 64, and resolution is varied from

32×32 to 512×512 pixels. Resolution changes are applied both

during training and testing. For reference: source image resolu-

tions vary between 400-600 pixels in both width and height. The

results are shown in Fig. 3. Very low resolutions always result in

worse performance when comparing to using higher resolutions

regardless of dataset size (the three lowest resolution lines are ex-

clusively below the top-two resolutions). However, there appears

to be a saturation point around 256×256 pixels, where the per-

formance is very close to 512×512 pixels for large datasets and

can even outperform the higher resolution on the smallest dataset

size (overlapping standard deviation areas at the right-side of the

figure).

Considering that training with lower-resolution images is

significantly faster than when using high-resolution images, train-

ing at 256×256 pixels is optimal for initially gathering samples

from the new rare class. When a significant number of samples

(>10,000) have been gathered, one may consider changing to a

higher resolution, as it can yield a small performance improve-

ment.

Optimal resolution per classification problem
While using higher image resolutions is generally superior

for the crane vs. truck classification problem, this does not nec-

essarily generalize to problems of ballast detection and lifting

block detection, as features for these problems can be informa-

tive on different scales. Fig. 4 shows the result of perform-

ing a sweep over image resolution when training over the entire
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Figure 3: Impact of dataset size and image size on crane vs. truck

AUC scores for different ResNet architectures. Shaded areas in-

dicate standard deviations. Sub-sample factor 1 equals ∼9000

training images and sub-sample factor 64 equals 140 training im-

ages.

dataset. The saturation point of performance remains consistently

at 256×256 pixels. Specifically for the ballast detection problem,

training on 512×512 pixels may even deteriorate performance, al-

though the large standard deviation in the results means this con-

clusion is uncertain.
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Figure 4: Impact of resolution on performance for the three dif-

ferent classification problems. Shaded areas indicate one standard

deviation.

Relation between dataset size and network depth

The relation between dataset size and network depth for the

crane vs. truck problem at fixed size 512×512 pixels is shown in

Fig. 5. As expected, deeper networks outperform more shallow

networks when sufficient data is available. Additionally, when

very little data is available (1/64th of the total train dataset, which

corresponds to only 12 crane images), shallow networks outper-

form larger ones. However, the deeper networks rapidly outper-

form the smaller networks when more data is gathered.

Considering that training a pretrained network to conver-

gence with very little data is extremely fast, even for the deeper

networks, it makes sense to use the deeper networks as soon as

their performance is expected to surpass the shallower networks.

From Fig. 5 it can be seen that ResNet-50 is optimal from around

sub-sample factor 4 (22) or lower, which corresponds to ∼2,000

labeled images or more.
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Figure 5: Impact of network depth on crane vs. truck classifica-

tion performance for different dataset sizes.

Impact of data augmentation
Data augmentation is commonly employed to improve per-

formance of classification networks, although it may be much less

valuable in constrained situations, such as video surveillance sce-

narios where the viewpoint hardly varies and similar cameras with

identical (and limited) resolution are employed. To verify whether

data augmentation can still lead to performance improvements,

we apply the following augmentation techniques: (a) Random

horizontal flipping; (b) Small random rotations (up to 10 degrees);

(c) Random brightness and contrast changes; (d) Random minor

perspective warping. All augmentations are sufficiently mild that

a human can still easily recognize the images, and they are chosen

to be representative changes for surveillance scenes. Rotations

and perspective warping represent the small differences in camera

viewpoints between train and test set. Likewise, lighting changes

are covered by variations in brightness and contrast, and hori-

zontal flipping represents placing a camera on the other side of

the road (vehicles are typically symmetrical). Because data aug-

mentation is known to be more valuable for smaller datasets, we

measure the influence of data augmentation for different dataset

sizes. In addition, different resolutions are explored, since reduc-

ing image resolution also corresponds to a reduction in the amount

of data. The latter aspects are illustrated by Fig. 6. It appears

that in our constrained setup, much of the advantage of data aug-

mentation disappears, regardless of both the dataset or the image

size. This means that in a constrained surveillance setting, as long

as imaging setups are sufficiently similar, dataset augmentations

have limited to no impact on performance.

Final classification results
After training, the crane vs. truck classification network

achieves an AUC score of 0.985 score on the test set, by em-

ploying ResNet-50 and all gathered data at image resolution

512×512 pixels. The high score is as expected, because cranes

and trucks are relatively easily distinguishable, even by non-

expert humans. It is interesting to see in which cases the clas-

sification network fails. There are five primary causes for mis-

takes, examples of which are shown in Fig. 7: First, in some crops

created by the vehicle detector, both a crane and a truck are vis-

ible, which generally causes the network to label the image as

"truck", because the imbalance in the dataset gives "truck" an im-

plicitly higher prior probability. In contrast, humans tend to label

these images as cranes instead, as that is the rare class of interest
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Figure 6: Impact of data augmentation for different image sizes

using ResNet-50. Standard deviation is not plotted to avoid visual

clutter, but generally the dotted and straight lines are within one

standard deviation of each other.

for this problem. This is likely solvable by class balancing, ei-

ther by re-sampling the dataset or by weighting the loss per class.

Second, a few images are simply manually mislabeled while the

network was correct. Third, some images suffer from extremely

poor lighting conditions, which also makes it hard for a human

to distinguish the classes. Fourth, the crops are sometimes im-

perfect. If a large part of the vehicle falls outside the cropping

area, important features to distinguish the classes fall outside the

image. This results from inaccurate box estimation by the vehicle

detector (which was not explicitly trained using the cranes). Fifth,

some classes of trucks are extremely similar to mobile cranes, but

are technically speaking not mobile cranes. The most common

case of such mistakes are cherry pickers (shown in Fig.7e). The

aforementioned five cases cover approximately half of the incor-

rect classifications. The other incorrect classifications are mainly

"obvious mistakes", which are likely solvable through additional

data, since Fig. 5 does not appear to be completely saturated yet

when using the full dataset.

The two classification networks for the ballast and lifting

block sub-problems achieve lower AUC scores: 0.77 and 0.92,

respectively (using the entire train set, ResNet-50, 512×512 pix-

els). The first reason for the lower score is the smaller training set

size, as these networks train on subsets of the total set of crane

images. For ballast the performance is low, because ballast is of-

ten painted in the same color as the crane, and may be carried at

several different places on the crane. This makes distinguishing

ballast a challenging problem for both neural networks and (non-

expert) humans. Despite being trained with expert-annotated la-

bels, the ballast detection network achieves similar performance

to non-expert humans. For lifting block classification, the primary

problem is dataset bias. A certain type of mobile cranes generally

carries lifting blocks in the train set, while another type of cranes

does not, causing the network to become biased to the crane type.

Therefore, the lifting block classification result depends in several

cases on the crane type rather than the actual presence/absence of

lifting blocks. When using a detection network instead, the score

may improve, because the bounding box label would partially pre-

vent the network from overtraining on other crane properties un-

related to the lifting block.

Discussion

The system can effectively support law enforcement by auto-

matically recognizing cranes and the presence of ballast and lift-

ing blocks. Additionally, several interesting conclusions can be

drawn from the performance curves (Figs. 4-6). However, this

study has several notable limitations. First, the accuracy for lift-

ing block and ballast detection is not yet high enough for fully au-

tomated enforcement, so that system still requires a small amount

of manual verification. This can potentially be combined with

likely desirable checking actions that prevent unjust fines, which

would be desirable anyhow for systems with very high accuracy

for legal justification. Second, our camera-based system is a vi-

able replacement to weigh-in-motion systems in settings where

the placement cost is important, such as temporary measurement

locations, although perhaps not in permanent setups where suf-

ficient budget is available to alter the pavement. Finally, the

datasets on which the experiments have been performed are some-

what limited in scope, hence the conclusions may not generalize

to situations beyond fixed-camera traffic-based surveillance prob-

lems. However, the experimental results are consistent over the

three subproblems that we have investigated, which provides an

indication that the results are at least likely to generalize to other

problems. Experiments to confirm this on larger generic datasets

are left for future work.

Conclusion

In this work we have shown that automated detection and

classification of cranes from image data can aid law-enforcement

in discovering overweight cranes using automated recognition

from images of road-side cameras. The system detects cranes

on public roads with high accuracy (0.985 AUC) and recognizes

cranes with lifting blocks (0.92 AUC) and ballast (0.77 AUC) au-

tomatically. To solve this problem, we have proposed an iterative

labeling approach, which vastly reduces (factor 67) the manual

labor, involved with labeling the images. Several experiments

have been performed to determine the optimal image resolution

and convolutional neural network depth for various stages of the

iterative labeling process. These experiments show that for low

amounts of training data, shallow networks and medium image

resolutions are optimal, while for larger amounts of training data,

deeper networks and higher image resolutions achieve the best

performance. This suggests that for optimal results, these param-

eters should be dynamically updated while the iterative labeling

is in progress. Designing a method for automatically updating

these parameters is an interesting direction for future work. A

second direction is comparing the current cascaded detector +

classifiers approach with a single-model hierarchical detector that

has explicit sub-classes for the three classification problems, as

the latter could more easily generalize to a broad range of surveil-

lance problems. Overall, we conclude that a camera-based inspec-

tion system with deep learning is sufficiently accurate for semi-

automatic law enforcement of overweight mobile cranes.
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(a) Both classes present. (b) Incorrect label. (c) Extreme lighting. (d) Poor detection box. (e) Confusing class.

Figure 7: Examples of misclassified images in the test set.
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