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Abstract
Modern warehouses utilize fleets of robots for inventory

management. To ensure efficient and safe operation, real-time lo-
calization of each agent is essential. Most robots follow metal
tracks buried in the floor and use a grid of precisely mounted
RFID tags for localization. As robotic agents in warehouses and
manufacturing plants become ubiquitous, it would be advanta-
geous to eliminate the need for these metal wires and RFID tags.
Not only do they suffer from significant installation costs, the re-
moval of wires would allow agents to travel to any area inside
the building. Sensors including cameras and LiDAR have pro-
vided meaningful localization information for many different po-
sitioning system implementations. Fusing localization features
from multiple sensor sources is a challenging task especially
when the target localization task’s dataset is small. We propose
a deep-learning based localization system which fuses features
from an omnidirectional camera image and a 3D LiDAR point
cloud to create a robust robot positioning model. Although the
usage of vision and LiDAR eliminate the need for the precisely in-
stalled RFID tags, they do require the collection and annotation
of ground truth training data. Deep neural networks thrive on
lots of supervised data, and the collection of this data can be time
consuming. Using a dataset collected in a warehouse environ-
ment, we evaluate the performance of two individual sensor mod-
els for localization accuracy. To minimize the need for extensive
ground truth data collection, we introduce a self-supervised pre-
training regimen to populate the image feature extraction network
with meaningful weights before training on the target localization
task with limited data. In this research, we demonstrate how our
self-supervision improves accuracy and convergence of localiza-
tion models without the need for additional sample annotation.

Introduction
Autonomy is rapidly growing in many industrial sectors in-

cluding transportation, mining, and material handling. Accurate
localization is integral for effective, efficient, and safe operations
in these applications. Sensors such as omnidirectional cameras
and 3D LiDARs provide many features but require specialized
methods for extracting important information.

For applications where it is not economically feasible to col-
lect and annotate large amounts of localization data, generating
a model to automatically extract these features is challenging.
Many find success training models on smaller datasets when ap-
plying transfer learning. This approach involves initializing a
network with weights trained from a different task with a larger
dataset. A commonly used dataset in transfer learning for image-
based networks is ImageNet[1]. This dataset contains 1.2 million
images with 1000 different classification labels.

An alternate approach for transfer learning is self-
supervision. Self-supervised learning involves training a network

Figure 1. The autonomous platform used to collect localization sensor

samples for model training and evaluation. Several sensors including a Ko-

dak PixPro sp360 4K omnidirectional camera (top) and a Velodyne VLP-16

3D LiDAR (below sp360 4K) provide an abundance of features useful for

robot localization.

on a task that can be automatically generated from unlabelled
data. An advantage of this approach is the ability to pre-train a
network using data from the same modality as the target task. In
the case of this work, omnidirectional camera images with posi-
tion labels serve as the dataset for the target localization task while
unlabelled omnidirectional images are used for self-supervised
pre-training. A self-supervised pre-training scheme can improve
the performance of these supervised models, especially when the
target task’s dataset is limited in size. Unlabelled images are triv-
ial to collect without the need for human annotation.

A prototype of the robot platform the used for experimenta-
tion is shown in Figure 1. The differential-drive RoboSavvy plat-
form houses a laptop used for data collection and navigation. Sen-
sors equipped include a Kodak PixPro sp360 4K omnidirectional
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camera, a Velodyne VLP-16 3D LiDAR, and wheel encoders.

Related Work
Camera Localization

Many existing approaches utilize simultaneous localization
and mapping (SLAM) and visual odometry (VO) techniques to
process visio-spatial information and accumulate a representation
of the operating environment. Within this representation the au-
tonomous platform can localize itself through its onboard sensor
readings. One such VO implementation presented by Forster et
al. [2, 3] named semi-direct visual odometry (SVO). This im-
plementation operates on pixel intensity values and boasts lower
power consumption, making it ideal for smaller embedded plat-
forms. The original work was extended by Zhang et al. [4] to
evaluate the potential benefits and drawbacks that wider field-of-
view (FOV) cameras present in this space. It was concluded that a
wider FOV contributes to greater tracking performance in indoor
environments while outdoor performance may degrade due to the
decreased angular resolution of wide FOV images.

LiDAR Localization
SLAM approaches are also common in the LiDAR localiza-

tion space. These methods can provide accurate position esti-
mates and environment representations from laserscan and point-
cloud readings. A LiDAR-based SLAM implementation with low
overhead loop-closure was presented by Hess et al. [5] which
serves as the backend for Google’s popular Cartographer SLAM
package. This packages can be used with both 2D laserscans and
3D pointclouds to produce accurate pose estimates and environ-
ment representations. The environment representations in SLAM
implementations are iteratively updated over time as more infor-
mation is obtained by the autonomous platform’s sensors. SLAM
approaches are ideal in situations where the structure of the envi-
ronment is unknown to the platform and/or when many environ-
ment features are subject to change.

Multimodal Systems
Prior works have been presented concerning the fusion of

both LiDAR and camera image information to provide a more
robust position estimation. Wolcott et al. [6] synthesized sev-
eral different camera views using dense LiDAR generated maps.
An image retrieval scheme was created to compare images from
live camera data to those generated from the LiDAR generated
maps. A strong match between the live camera frames and a
synthesized frame serves as the localization mechanic. A sim-
ilar approach was presented by Caselitz et al. [7] which also
utilizes LiDAR generated maps and a live camera feed. Instead
of synthesizing images from the LiDAR map, this implementa-
tion produces sparse pointclouds from features detected in the live
camera. These pointclouds are then geometrically matched to the
original LiDAR map to provide location information.

Self-Supervised Learning
A crucial component for any learned model is weight initial-

ization. When possible, it is desirable to initialize model weights
from a network trained on a larger dataset such as ImageNet [1]
for image-based architectures. This may not always be an ideal
solution if pretrained model weights are not available, as training
on a large dataset will consume a significant amount of time. Al-

ternatives to ImageNet initialization for convolutional neural net-
works (CNNs) have been created through self-supervision. These
self-supervised training schemes aim to learn important contex-
tual features to serve as a better starting point for the intended
target task.

Image patch localization is a common task used to learn
these features as presented by Doersch et al. [8]. In this im-
plementation, a small grid of patches are extracted and random-
ized from an image. A neural network is trained to determine
the original locations of each patch, relative to one another. The
resulting model is then used as a starting point for image classi-
fication, detection, and segmentation target tasks. This concept
works quite well, as the fundamental image understanding tasks
and filters to determine relative patch location are similar to the
understanding tasks for image classification. Another context-
based self-supervised scheme was presented by Pathak et al. [9]
which removes regions from and image and trains a network to
reconstruct the removed regions from the remaining image infor-
mation. Both of these implementations achieved greater results
on their final target tasks when initializing with self-supervised
weights than when initializing with random weights.

Multimodal Sensors
Two types of sensors were utilized for the proposed localiza-

tion system: an omnidirectional camera and a 3D LiDAR sensor.
The wide field of view (FOV) and abundance of visual and spatial
features from these two modalities make them ideal sensors for
indoor localization. Both of these sensors accumulate readings as
the agent navigates through the warehouse testing environment.

Omnidirectional Camera
Omnidirectional cameras take advantage of an extremely

wide FOV to produce feature-rich images of the surrounding en-
vironment. The Kodak PixPro sp360 4K omnidirectional camera
was utilized on our platform for capturing the warehouse testing
environment. With a 235o FOV and a full-frame capture resolu-
tion of 1440 by 1440 RGB pixels, the sp360 4K produces a de-
tailed 360o view of the robot’s surroundings. With each frame in-
cluding a view of the ceiling, floors, and walls, this sensor is ideal
for extracting location-specific information as the robot navigates
through the environment. An example image captured from the
sp360 4K inside the warehouse testing environment is shown in
Figure 2.

Velodyne 3D LiDAR
The Velodyne VLP-16 3D LiDAR contains 16 light distance

and ranging channels that collect a 360 degree sweep of the sur-
rounding environment. A complete sweep is performed at a vary-
ing frequency between 10 to 20 hz. Each sweep generates around
28,000 individual distance readings which are accumulated into a
point cloud. Each distance reading has an associated X , Y , and Z
coordinate relative to the sensor and a reflection intensity value.
A visualization of a point cloud generated by the VLP-16 in the
warehouse testing environment is shown in Figure 3. The VLP-16
rests one meter above the ground at the top of the platform shown
in Figure 1 to provide a clear view of the operating environment.
In addition to localization, this sensor is also used for obstacle
detection.
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Figure 2. Omnidirectional camera image taken using the Kodak PixPro

sp360 inside the warehouse testing environment.

Figure 3. Point cloud visualization of Velodyne VLP-16 3D LiDAR readings

inside the warehouse testing environment. The agent is in the same location

shown in the omnidirectional image from Figure 2.

Self-Supervision for Omnidirectional Images
A patch-based self-supervised approach inspired by Doersch

et al. [8] was designed specifically for omnidirectional cameras in
this work. Several radial patches are extracted from an unlabelled
omnidirectional camera image along with a center circular patch.
Several randomized parameters were created for the radial patches
including random starting and ending angle jitter, inner and outer
radius jitter, and a random arc length. The center circular patch
has a random radius as well as a random center coordinate. An
illustration of these patches taken over an omnidirectional image
is shown in Figure 4. The number of radial regions extracted can
be varied as a training hyperparameter.

The images used for automatically generating patch samples
are unlabelled. Since they don’t require labels, a large number of
samples can be collected by randomly driving the robot around

Figure 4. Omnidirectional camera image taken using the Kodak PixPro

sp360 inside the warehouse testing environment.

the warehouse environment. Once the center and radial patches
are extracted from the unlabelled image, the radial patches are
randomly shuffled from their original positions. The resulting im-
age contains the shuffled radial patches and the center patches
with white padding around all the regions. A label is generated
for each sample consisting of individual one-hot vectors for each
patch position which comprise an overall multi-hot vector label
for the sample. This vector provides the supervision needed to
train the patch position classifier network. Illustrations of the
self-supervision data generation pipeline and the transfer learning
scheme are shown in Figure 5 with a patch count of four.

Localization Network Architectures
Due to the differences in data structure between the omnidi-

rectional camera samples and the 3D LiDAR point cloud samples,
two independent architectures were instantiated for the individual
sensors.

Omnidirectional Camera Localization Model
For omnidirectional camera localization, the ResNet CNN

architecture originally presented by He et al. [10] was used. This
architecture has been shown to outperform other networks such
as VGG16 [11] and AlexNet [12] for image classification. This is
largely due to the substantial depth achieved in the ResNet archi-
tecture made possible by residual connections. These residual, or
skip connections require each layer to only learn the residual from
one layer to the next. The skip connections additionally allowed a
direct path for backpropagation data, alleviating performance re-
ductions due to vanishing gradients even with very deep models.
A similar architecture presented by Gao et al. [13] expands upon
the original residual feature concept by concatenating features in-
stead of summing them. In addition to this, more skip connections
were created between layers in the DenseNet architecture. We uti-
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Figure 5. Self-supervision dataset generation illustration. An unlabeled omnidirectional image is split into a center patch and several random radial patches.

These patches are shuffled from their original locations. The original locations serve as an automatically generated class label utilized during the self-supervised

pre-training routine. The self-supervision pretraining pipeline serves as an initial pretraining step on unlabelled omnidirectional camera data with a patch position

classifier output. Once this model has concluded training, the CNN weights are transferred to the target robot localization task network as a weight initialization

starting point for training.

lize the lightweight ResNet18 architecture for the omnidirectional
camera location classification network. In addition to classifica-
tion for robot position, a regression model was also created for
omnidirectional camera images. The classification network had
one output node for each localization position, while the regres-
sion network had only two outputs corresponding to the two X
and Y coordinates for each sample label.

3D LiDAR Localization Model
Processing of 3D point cloud data can be challenging due

to the inherent irregular structure, sparse nature of points, and
highly variable density and distribution over the 3D space. Qi et
al. [14] proposed a deep neural network called PointNet which
learns point-wise features directly from raw point clouds with-
out the need for any kind of lossy data quantization. The net-
work comprises of a set of shared multi-layer perceptrons (MLPs)
which maps each of the n points in the point cloud to a higher
dimensional space. These higher dimensional features are then
aggregated together using a symmetrical max pooling function.
The symmetric max pooling operation preserves the permutation
invariance of the points in the point cloud. PointNet++ [15] is an
improvement over the original PointNet. PointNet++ recursively
applies PointNet on the input point cloud in hierarchical fashion.
Each recursive call is followed by a clustering stage where the ob-
tained features aggregate together using a max pooling operation.

PointNet++ additionally provides a point-wise learned vec-
tor representation at various contextual scales along with a global

point features. Pointwise features allow more generalizability to
the complex scene understanding. Both PointNet and PointNet++
are end-to-end trainable networks and can be used as fixed or
variable encoders for point cloud data. The networks provide a
learned spatial encoding of each point called as point-wise feature
vector as well as an aggregated global point cloud feature vector.
These features can be used for classification, regression or any
other task. For 3D LiDAR-based robot localization, a PointNet++
network with classification output was initialized with enough
classes to cover all of the warehouse testing environment posi-
tions.

Data Collection and Experimental Setup
The autonomous platform utilized for data collection and

experimentation is shown in Figure 1. A differential-drive Ro-
boSavvy Self-balancing platform is coupled with two casters for
passive stability. A laptop equipped with an Intel i7 8750H, 32GB
of DDR4 memory, and an NVIDIA GTX 1060 controls the plat-
form and receives sensor information. Ubuntu 16.04 with the
Robot Operating System (Kinetic) provides interfaces for the sen-
sors and robot base. The Velodyne VLP-16 3D LiDAR and the
Kodak PixPro sp360 4K camera are mounted at the top of the
platform for the greatest visibility.

The environment for testing consists of a single warehouse
aisle in a six foot by 73 foot region. Discrete data collection points
are spaced out every foot which results in 438 independent loca-
tions in the testing region as shown in Figure 6. Ground truth
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localization samples from each sensor are gathered in a semi-
autonomous procedure. An agent is manually placed at one of
the six X coordinates at the start of the aisle. After being aligned
with landmarks placed on the warehouse walls using lasers, the
robot will slowly accelerate and travel 12 feet forward. While
moving, the robot uses wheel encoders to determine the distance
traveled from the starting point. Every foot traveled the robot will
record all of the sensor readings and stamp them with the cur-
rent location. After traveling 12 feet, the robot is realigned with
the wall landmarks if necessary. The process is repeated until all
of the 438 individual coordinates have been visited. Full sweeps
of the testing region are performed over many days to ensure the
warehouse shelf contents are varied from sample to sample.

Figure 6. Coordinate layout of localization evaluation environment. Six

horizontally spanning intersection points are positioned 0.3048 meters apart.

The vertically spanning intersection points are spaced 1.828 meters apart.

An additional buffer region is placed between the recorded coordinates and

the aisle shelves.

Table I: Omnidirectional camera localization model perfor-
mance. Several models with differing weight initialization
methods are evaluated using a held-out validation dataset for
warehouse localization.

Weight Initialization Epochs L1 (meters) Classification Accuracy

ImageNet 100 0.066 0.9602

Self-Supervised (2 Patches) 100 0.126 0.1506
Self-Supervised (4 Patches) 100 0.070 0.9176
Self-Supervised (6 Patches) 100 0.076 0.8989

Random Gaussian 100 0.089 0.8656

Experimental Analysis
Omnidirectional Camera Model Results

All omnidirectional camera localization models were trained
with 3,504 labelled training images with eight samples for each
of the 438 different position classes. A held-out validation dataset
containing 1,314 samples (three per class) served as the evaluation
metric. The results for several omnidirectional models with dif-
ferent weight initialization methods are displayed in Table 1. The
ImageNet pre-trained model performs the best out of all the eval-
uated models. The self-supervised pre-trained models with patch
sizes of four and six outperformed the randomly initialized model.
Overall, the self-supervised pre-trained model with four patches
provided the best overall classification accuracy and regression
accuracy when excluding the ImageNet pre-trained model. The
ImageNet pre-trained model achieved a classification accuracy of
96.02% and an L1 loss of 0.066 meters for the regression model.
The best performing self-supervised pre-trained model used four
patches during the pretraining routine and achieved a classifica-
tion accuracy of 91.76% and an L1 loss of 0.07 meters.

While the final result from the self-supervised pre-trained
models was just over 4% worse for classification, the accuracy
was still over 5% greater than the randomly initialized network.
These results align with the findings from Doersch et al. [8] and
Pathak et al. [9] for the self-supervision schemes presented in
both works. The omnidirectional model presented by Relyea et
al. [16] achieved a classification accuracy of 92.63% with Im-
ageNet weight initialization and a deeper ResNet50 architecture
on a similar dataset. The proposed ImageNet initialized model
outperforms this previous work by over 3% and the best self-
supervised pre-trained model is just 0.87% lower.

Validation loss convergence speed and stability were ob-
served to be greater in the self-supervised pre-trained omnidirec-
tional localization models when compared to the ImageNet and
random initialized models. Validation loss curves obtained dur-
ing training for the ImageNet, four patch self-supervised , and
random initialized networks are shown in Figure 7. Figure 7
suggests that the features learned from the omnidirectional self-
supervision task are more meaningful for the localization task in
the earlier stages of training.

3D LiDAR Model Results
The PointNet++ based position classification model was

trained with 2,190 training samples with five samples for each
of the 438 different position classes. A held-out validation dataset
containing 1,314 samples (three per class) served as the evalu-
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Figure 7. Omnidirectional camera localization model validation dataset loss during training for the ImageNet (left), four patch self-supervised (center), and

random initialized (right) networks. A learning rate decrease occurred every 20 epochs. Convergence speed and overall loss stability is greater for the self-

supervised pre-trained network compared to the ImageNet and random initialized networks.

ation metric. With a batch size of 16, the PointNet++ classifi-
cation model was only able to achieve a classification accuracy
of 46.36% on the held-out validation dataset after training for
100 epochs. The omnidirectional data lacks accurate object to
lens distance measurements, while the LiDAR data lacks dense
feature-rich details. The individual reflections or points in the
point cloud are highly precise, but the sparsity of these points as
compared to the feature-rich omnidirectional camera, inhibits Li-
DAR from being used as a localization sensor. While we expected
lower localization accuracy of the point clouds as compared to the
omnidirectional frames, we did not anticipate such large differ-
ences.

Conclusion
Warehouse robot localization models for an omnidirectional

camera and a 3D LiDAR were trained and evaluated in this work.
A novel self-supervision pre-training scheme for omnidirectional
camera images was presented. This self-supervision technique
improved training convergence and stability over random weight
and transfer learning intialization methods. However, for optimal
final validation performance, transfer learning performed best.
We compared and contrasted using LiDAR vs. an omnidirectional
sensor for indoor robot localization and found the omnidirectional
sensor to perform best.
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