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Abstract
Estimating skin color from an uncontrolled facial image is a

challenging task. Many factors such as illumination, camera and
shading variations directly affect the appearance of skin color in
the image. Furthermore, using a color calibration target in order
to correct the image pixels leads to a complex user experience.
We propose a skin color estimation method from images in the
wild, taken with unknown camera, under an unknown lighting,
and without a calibration target. While prior methods relied on
explicit intermediate steps of color correction of image pixels and
skin region segmentation, we propose an end-to-end color regres-
sion model named LabNet, in which color correction and skin re-
gion segmentation are implicitly learnt by the model. Our method
is based on a convolutional neural network trained on a dataset of
smartphone images, labeled with L∗a∗b∗ measures of skin colors.
We compare our method with standard skin color estimation ap-
proaches and found that our method over-perform these models
while removing the need of color calibration target.

Introduction
Skin color appearance has been studied with attention in sev-

eral research areas [1], as it is in the center of many applications.
In the domain of computer graphics for instance, skin color must
be preserved for rendering realistic avatars or AR effects [2]. In
medicine, skin diseases diagnostic is largely based on skin color
variations [3]. In the cosmetics domain, skin color measurement
would for instance lead to accurate foundation shades recommen-
dation or personalized shades creation. From this perspective,
L’Oréal is putting research efforts into developing an application
for skin color estimation and foundation recommendation based
on smartphone pictures.

Most of these topics have been studied in moderately con-
trolled environments. However, bringing such application to con-
sumer hands and smartphones raises new challenging problems.
Indeed, skin appearance analysis is a complex real world problem
affected by many external factors. For instance, illumination color
largely affects the skin color in the image [4], while illuminant
orientation is at the sources of shading and specular reflectance
effects that locally impact skin color appearance [5]. In addition,
the intrinsic properties of the used camera will also affect the col-
ors appearance in the final image [6]. Figure 1 shows example
of skin appearance variations for the same subjects under several
illumination conditions.

Popular solutions for estimating skin color rely on the use of
a color calibration target (figure 3) that allows for color correcting
the image pixels [4], [7]. However, such a solution is difficult
to implement in practice. Distributing calibration targets to end
consumers is costly, and unpleasant in terms of user experience.
In addition employing such reference charts in a robust way is

complex. Users must avoid occlusions of the calibration target,
and ensure that the illumination on the target is consistent with
the illumination on the face.

In this paper, we propose to address the problem of skin color
estimation in the wild. The objective is to accurately estimate the
skin color measurement of a subject given a smartphone self por-
trait image in an uncontrolled environment with unknown lighting
and camera, without the need of a color calibration target.

Our main contributions can be summarized as follow. First,
we propose LabNet, a novel end-to-end color regression method
based on a convolutional neural network architecture, with mea-
sured colors as labels. By using a deep learning model, we intend
to learn a specialized color estimation that accounts for complex
effects specific to human skin and face geometry such as shading
and specularities. Second, we propose to implicitly learn color
correction within the skin color estimation model instead of ad-
dressing this task as an explicit preprocessing step. We empiri-
cally show the ability of our LabNet model to estimate skin color
independently of illuminant color without any explicit color cor-
rection step.

Related work
In the following section we review related work on skin

color. We first detail the different skin color representation
choices in the literature, then we describe color correction meth-
ods commonly used for skin color estimation. Finally we present
traditional skin color estimation models used after color correc-
tion.

Skin color representation
Among the research works that focus on estimating the skin

color from an image, there is no consensus on how to represent
the skin color of a subject. Several research work are based on
expert defined, subjective categories of skin color. The field of
dermatology has established a seminal scale for skin type classi-
fication, the Fitzpatrick scale [8], based on visual evaluation of
skin reaction to sun exposure. Even if such a scale can be used
to differentiate between subjects skin colors, it relies on experts
subjectivity. Moreover, other works are based on skin color cate-
gories assigned to images by non expert users. For instance, [9]
proposes a representation of skin color in two classes, while [10],
[11] and [12] are based on a three classes representation. How-
ever, these authors stress the lack of objectivity of this approach,
as well as the major ambiguities that rise for subjects at the fron-
tier of each class.

Instead of representing skin color in distinct classes, [13] and
[7] proposed skin color regression tasks based on a continuous
representation of skin color in the L∗a∗b∗ color space [14]. Thus,
they propose to estimate the L∗a∗b∗ triplet of the skin color mea-
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Figure 1: Example of local and global skin appearance variation between images due to illumination. For each original picture (a), the
line below (b) shows the colors extracted from the skin color patches of the color calibration target in the images. The third line (c) shows
a segmentation of image skin pixels with a neutral background to emphasize the variation in skin color appeareance bewteen images

surement of a subject from a camera image.
In order to create an objective typology, [15] proposed skin

color classification based on the Individual Typology Angle (ITA).
The ITA ∈ R measure can be computed as follow, L∗ and b∗ cor-
responding to the measurement of skin in the CIE L∗a∗b∗ space:

ITA = Arctan(
L∗−50

b∗
)∗ 180

π

This representation is useful for establishing a one dimensional
scale of skin colors, as well as an objective classification of skin
tones. However, it raises problems regarding ambiguity at the
border of each defined class, and does not take into account the
a∗ dimension of the L∗a∗b∗ measurement.

Color correction
The main challenge in color estimation problem is the vari-

ation in the appearance due to illumination color, as illustrated in
figure 1. For this reason, existing research work focus on color
correcting the image pixels prior to color estimation. The use of
color calibration target for the skin color estimation task was stud-
ied by [4]. They propose to use the reference color chart to esti-
mate an affine transformation between pixel values and measured
colors. They showed that such a color correction step enables to
reduce the impact of both illumination color and camera varia-
tions. In addition, [7] showed that this approach can be special-
ized to skin tones by using skin colored patches in the reference
chart, which led to increase performance in skin color estimation.

In order to remove the need of a color chart, other works
have attempted to perform color correction using other features
infered from the scene, such as illumination color. Indeed, pro-
viding the illuminant color, the von Kries model [16] can be used
to balance the image colors. For instance, [13] proposed to use the
eye sclera and pupil as reference targets to estimate illuminant and
derive skin color. This is based on the assumption that both pupil
and sclera have a fixed color through all subjects. Meanwhile, in
the domain of color constancy other works have proven that deep
neural networks can be used to successfully learn illuminant color
from a scene in an holistic manner. The color constancy prob-
lem consists in estimating the color of the white patch pixels of a
color calibration target from an uncontrolled image where the cal-
ibration target was hidden. Thus, [17] showed that convolutional
neural networks overperform previous statistical methods in this

task. Later, [18] confirmed and improved performance using a
model with attention mechanisms.

Skin color estimation

While color correction of the pixels is the main focus of ex-
isting works, estimating the skin color of the subject from the
corrected pixels is not a trivial task. Indeed, the facial skin ap-
pearance is heterogeneous with local skin color variations due to
specularities and more global effects such as shading, due to light
orientation and face geometry.

Previous works generally use a skin region segmentation step
in order to select the pixels to consider for deriving the subject
skin color. [4] uses a face detection algorithm to target the region
of interest, and excludes pixels with luminance outside of a spe-
cific bound. The objective is to remove pixels saturated by spec-
ular reflectance. [7] proposes to filter pixel according to a fixed
skin region boundary in the HSV color space. The skin color is
then estimated using the mean color of the selected pixels. To
the best of our knowledge, no neural networks models have been
applied to skin color estimation tasks in the litterature.

Problem

In this paper, we propose to address the problem of skin color
estimation in the wild. The skin color is represented by the mea-
surement of a spectrophotometer in the CIE L∗a∗b∗ space. We
choose to consider as input images in the wild that are as close as
possible to real life consumer smartphone images. By in the wild
we mean that the image is taken with an unknown camera, under
an unknown lighting, and without a color calibration target. How-
ever, in this study, calibration targets are used in the images for
method comparison purposes. For methods without calibration
targets, they are masked in the image in order to avoid bias. Com-
pared to previous work, such images rise new problems, as skin
appearance will be largely affected by illuminant color changes,
intensity changes, and orientation changes, as seen in figure 1. In
practice, a method accurately estimating skin color from smart-
phone images makes possible to develop applications without the
need of distributing calibration targets.
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Figure 2: Right, the architecture of our proposed LabNet model. Left, the preprocessing steps before feeding the images into the model.

Method
In this section, we describe in details LabNet, the color re-

gression model that we propose for skin color estimation from
images in the wild. In order to avoid strong assumptions on the
color of objects in the image such as in [13], we aim to statisti-
cally learn color correction from scene in an holistic manner. In
addition, the segmentation of the skin color region in the image
is a complex problem that requires a model with a large capacity
of representation. Thus, instead of addressing first the surrogate
problems of color correction and skin region segmentation as in
previous literature, we propose to train an end-to-end color regres-
sion model. In such a model, color correction and skin region seg-
mentation are no longer explicitly formulated, but only implicitly
learnt within the model. By doing so, we intend to learn a special-
ized color estimation that accounts for complex effects specific to
human skin such as reflection, shading and specularities.

We define ci the skin color of the subject i as follow :

ci = (L∗i ,a
∗
i ,b
∗
i ) ; L∗i ∈ [0;100], a∗i and b∗i ∈ [−128;+127]

Our objective is to learning a function f̂ parametrized by Θ that
computes ĉi the estimate of ci from a single subject image Ii :

f̂Θ(Ii) = ĉi = (L̂∗i , â
∗
i , b̂
∗
i )

In order to learn this function we propose to train a color re-
gression neural network. We call LabNet the architecture of our
model, which is described in figure 2. As a preprocessing we
use a face alignement step. For each image, facial keypoints are
computed using an ensemble of regression trees [19], and their
coordinates are used to crop an image with aligned eyes. We
define the crop scale such that the distance between eyes repre-
sents 60 percent of the final cropped image in order to preserve
background and lighting information. This preprocessing eases
optimization as the model does not need to learn tasks such as lo-
calizing the face in the image. The neural network architecture in
itself is inspired by the ResNet architecture [20], with skip con-
nections used within each block in order to facilitate optimizaton
during the learning procedure. The output of the layer is formed
by a dense layer of size three, with ReLU activations. This layer
directly outputs the estimated skin color L∗a∗b∗ of the subject in
the image.

The model error is evaluated by computing the distance be-
tween ground truth color and estimated color using the color dis-

tance metric CIE ∆E* 1976 [14], with the following formula :

∆E∗(ĉi,ci) =

√
(L̂∗i −L∗i )

2 +(â∗i −a∗i )
2 +(b̂∗i −b∗i )

2

This measure was build to match human perception of color dis-
tance. As we would like to conserve this property we choose not
to rescale the L∗a∗b∗ values for training. We choose to use ∆E*
1976 as the ∆E* 1994 improvements where derived from other in-
dustries and are not relevant for human skin color. Furthermore,
we need to use a differenciable color distance, which exclude the
use of ∆E* 2000.

In order to learn the neural network parameters, we minimize
the following loss :

min
Θ

n

∑
i=1

L ( f̂Θ(Ii),ci) = min
Θ

n

∑
i=1

∆E∗( f̂Θ(Ii),ci)
2

Figure 3: Left, an Xrite CapsureMe used as a color calibration
target in our study. Middle, a Xrite Capsure, the spectrophotome-
ter used for measuring panelists skin color. Right, the position of
the three measurements on the face

Data
In order to train the described model, we recruited a set of

panelists chosen to be representative of the various skin colors
in the United States. For each subject, skin color was measured
using an X-rite Capsure spectrophotometer [21] on three regions
of the face, as show in figure 3. The obtained L∗a∗b∗ measures are
averaged to construct the ground truth skin color for each subject.
Measurements positions are designed in order to obtain the global
face color and avoid local skin redness that might occur on the
cheeks.
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Model Color correction us-
ing calibration target

Skin region segmentation Color estimation ∆E mean ± std

Naive baseline No keypoint segmentation median pixel color 14.05 ± 7.25
Choi et al. Yes hsv values range mean pixel color 9.45 ± 8.13

Choi et al. revisited Yes keypoint segmentation mean pixel color 8.85 ± 6.57
LabNet color corrected Yes None ResNet 3.91 ± 2.53

LabNet in the wild No None ResNet 4.23 ± 2.72

Table 1: Comparisons of skin color estimation performance for different models

Subjects are asked to take images without any makeup,
holding an X-rite CapsureMe color calibration target outside of
the face region. In order to introduce camera variation in our
database, subjects are asked to take pictures with their personal
smartphones. Similarly, to ensure lighting variations, they are in-
structed to take images in various environments : tungsten light,
fluorescent light, outdoor light, natural indoor light. In addition,
the position of the color calibration target are manually anno-
tated in each image, and pictures where the color checker patches
are occluded are discarded. Using this procedure, we collected a
dataset of 2795 images taken on 655 different panelists.

Figure 4: Distribution of Individual Typology angle of subjects in
ours dataset. Each bin of the histogram is colored according to
the average observed skin color in the bin

Experiments and Results
In this section, we detail the different models that we con-

sider in our experiments. Each model is evaluated using a 5 folds
cross validation, repeated 5 times with different splits. Since our
database has an unbalanced skin tone distribution, as illustrated
in figure 4, folds are stratified along the ITA deciles in order to
limit bias in the models evaluation. In addition, we use a subject-
grouped cross validation, in which each panelist pictures image
can only belong to the same fold.

Naive baseline
In order to illustrate the complexity of the task, we evaluate

the performance of a naive baseline. In this model, we do not
use any color correction step, and directly segment the skin re-
gion in the corrected image. In order to accurately segment skin
pixels, we use a keypoints based segmentation method. First, fa-
cial landmarks are localized using the method described in sec-
tion 4, implemented in the dlib package [22]. A spline is then
fitted between the chin and eyebrows landmarks to define the skin
region. This method is based on the landmarks position only, and
does not take into account skin occlusion, such as the presence of
hair on the face. For this reason, we chose to exclude the fore-

head region. Lips and inner eyes are also segmented in order to
mask these elements. The figure 1 and 6 show examples results of
this skin region segmentation algorithm. Finally, we compute the
mean RGB color of the segmented pixel, and convert this value to
the CIEL∗a∗b∗ color space under the assumption of D65 as white
illuminant.

Standard color correction
For comparison purposes, we evaluate the performance of

standard color calibration based methods on our dataset. We thus
consider the method from [7], based on the use of the skin col-
ored patches of a calibration target. We compute the optimal
color transform using least square estimation of a 3*4 affine trans-
formation matrix, between skin colored patches pixels and corre-
sponding measures. In the calibrated image, the skin region in the
corrected image is defined using the common boundary for pixel
values in the HSV CIE color space : 0≤H ≤ 50 , 0.2≤ S≤ 0.68
and 0.35 ≤ V ≤ 1. Finally, the estimated skin color is given by
the mean over the pixels of the skin region. We will refer to this
model as Choi et al..

However, compared with existing studies our dataset covers
a large variety of skin tones. Thus, the fixed color boundary used
in this method might not be relevant in our case. For this reason,
we propose to replace the original skin region segmentation of
Choi et al. by the keypoints segmentation method we described
earlier. Indeed, the keypoint localization model was trained on
the iBUG 300-W face landmark dataset [23] with a large variety
of skin tones, and is expected to be more robust to skin tone vari-
ation. We will refer to this model as Choi et al. revisited.

Furthermore, we chose not to consider color constancy based
models in our experiments. Indeed, color constancy aims at esti-
mating the white patch color of the calibration target from the im-
age. By construction, these methods would be less accurate than
directly using the ground truth calibration target values, as we do
in proposed experiments.

LabNet
Our proposed LabNet model architecture is implemented us-

ing the Keras [24] API of the Tensorflow [25] library. To train
our model, we use the AdaMax optimizer, with a learning rate of
5.10−4 and a β1 of 0.9. The batch size is set to 16 and we use data
augmentation by randomly applying horizontal flip to the training
images.

In order to evaluate our model we perform two different ex-
periments. First, images are color corrected using the calibration
target prior to be sent to the neural network. We will refer to this
experiment as LabNet color corrected. In the second experiment,
we propose to evaluate the LabNet in the wild model, where im-
ages are directly fed to the neural network without any color cor-
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Figure 5: Distribution of the error by Individual Typology Angle for each model.

rection step.

Results
The results of our experiments are reported in table 1. As

metric, we consider the average ∆E over all samples as well as
the standard deviation of error across samples. The low accuracy
(∆E = 14.83) of the naive baselines illustrates the complexity of
the task in our dataset. As a comparison, we observed on average
a difference of ∆E = 1.47 between each subject color measure
and the corresponding mean aggregated skin color. As expected,
in the absence of color correction the naive model has lower ac-
curacy on image under a non-white illuminant, as illustrated in
figure 7.

Models based on conventional color calibration, such as
Choi et. al and its revisited version show an improved perfor-
mance but still perform poorly, with an accuracy of respectively
∆E = 9.45 and ∆E = 8.85. This could be due to the fact that in
practice, due to color calibration target misusage, illuminant light-
ing the face and the color calibration target may be different, as
illustrated in figure 6 example (3) and (4), which leads to large
errors in color correction.

In addition, on our dataset, we observe that the revisited Choi
et al. model overperforms the original version of the model in
both average and standard deviation of error. Looking at figure 5
confirms that as expected the revisited model based on keypoints
segmentations performs better on low ITA, which corresponds to
dark skin tones.

Training our LabNet color corrected leads to improved per-
formance by a large margin, both in terms of average and stan-
dard deviation error, reaching ∆E = 3.91. Such a result seems
to show that our model successfully learnt to segment the skin
region and model others local appearance variation on the skin
such as shading and specularities. In addition, LabNet in the wild
reach surprisingly good performances ∆E = 4.23, with only a
8.2% increase in error while completely removing the need for
a color calibration target. In figure 7, we study the performance
of this model under varying illuminant color. The color temper-

Figure 6: Example of color correction using a calibration target.
The original images (a) are shown with the extracted color of the
skin colored patches (b) and the segmented skin pixels (c). After
color correction (d) the target patches have the same color by con-
struction (e), and the skin pixel show less variation in appereance.
Example (3) and (4) shows example failures due to difference in
illumination of the face and the color calibration target.

ature of the light is approximated using the illuminant color es-
timated from the white patch of the calibration target under the
assumption of a black body radiation. Our model shows constant
performance across different temperatures which tends to show
that the color correction can be successfully learned from images,
even without color calibration target.
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Figure 7: Performance of the naive baseline (left) and LabNet in the wild (right), across light color temperature deciles. While the naive
model has lower accuracy under non white illuminant, our model is able to learn color correction, and shows robust performance across
light color temperatures. Boxplots are colored according to the average light color in each decile.

Finally, we evaluate the performance of the LabNet model
across the range of skin tones. Figure 5 indicates that for both
LabNet color corrected and in the wild, errors of the model are
higher for skin tones with low ITA. This is a limitation of our
model : as it is learning based, its performance is closely related
with the distribution of ITA in the training data. Looking at figure
4 confirms that ITA deciles with higher errors are ITA for which
we have the fewer data. A potential solution could be to conduct
new data studies targeting underrepresented skin tones. In spite of
this limitation, our LabNet models still overperfoms other models
for all skin tones.

However, one limitation of our approach is that such mod-
els are highly specialized compared to conventional color correc-
tion procedures. Indeed, color correction using a calibration tar-
get provide color information for the entire scene. Thus, while
color correction can be use to address multiple color based tasks,
such as analysing hair or garnments color, our skin color estima-
tion model could not be leverage to solve another closely related
problem.

Conclusion
Appearance of human skin in images in the wild is complex

and affected by many sources of variations such as lighting color
and direction. While prior methods were dividing this problem
into several surrogate tasks such as color correction and skin re-
gion segmentation, we propose to learn a specialized skin color
estimation within a neural network model in an end-to-end man-
ner.

We show that our model over-performs conventional tech-
niques for skin color estimation by a large margin. This suggests
that our model is able to learn a representation that accounts for
complex effects specific to human skin such as shading and spec-
ularities. Moreover, we show that our model can be trained on
images without any color correction with a minor increase in er-
ror. Compare to previous methods this removes the need for a
color calibration target. We empirically show that the accuracy

of our model is independent of the light color temperature, which
tends to demonstrate that our model is able to accurately apply
color correction internally. In addition, we showed that our model
is accurate over the range of skin tones, even though the model
performance is closely related to the skin tone distribution in our
database.

These results suggest that, using deep learning models, color
estimation problems can be addressed in the absence of explicit
color correction and calibration target.
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