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Abstract
Embedding information into a printed image is useful in

many aspects, in which reliable channel encoding/decoding sys-
tems are crucial, since there is information loss and error prop-
agation during transmission. Circular coding is a general two-
dimensional channel coding method that allows data recovery
with only a cropped portion of the code, and without the knowl-
edge of the carrier image. While some traditional methods add re-
dundancy bits to extend the length of the original massage length,
this method embeds message into image rows in a repeated and
shifted manner with redundancy, then uses the majority votes of
the redundancy bits for recovery. In this paper, we developed a
closed-form formula to predict its decoding success rate in a noisy
channel under various transmission noise levels, using proba-
bilistic modeling. The theoretical result is validated with simu-
lations. This result enables the optimal parameter selection in the
encoder and decoder system design, and decoding rate prediction
with different levels of transmission error.

Introduction
In 1948, Shannon [1] demonstrated that by properly encod-

ing of the information, errors induced by a noisy channel can be
reduced to any desired level without sacrificing the rate of infor-
mation transmission. Since then, much work has been done to
find efficient encoding and decoding methods for error control in
a noisy channel [2].

Circular coding is a channel encoding method [3] that was
first invented in 2013 by Ulichney et al. [4], [5] to embed a binary
message into a 2D halftone image. This is enabled by separating
the message into payload and phase, and interleaving both types
of information. The decoding process is based on the repeating
data bits in a cropped window. Previously, Sun et al. [6] imple-
mented the data transmission system, and then studied the pay-
load decoding rate with different parameter settings (payload bit
length, row-to-row shift, interleaving phase period, etc.) using a
closed formed solution. So parameters can be selected for optimal
decoding performance.

For the data embedding and retrieval in the coding chan-
nel, Tai et al. [7] quantified the modulation transfer function
[8], halftone cluster size, blur, and contrast of the clustered-dot
halftone patterns by searching for strong peaks in the frequency
domain. And Zhao et al. [9] analyzed a frequency-based method
to detect the scale, orientation, and location of the carrier image.
In this paper, we will focus on the circular coding (channel en-
coder and decoder) module instead.

Generally speaking, the decoder will be able to successfully
decode the message as long as we have a sufficient number of

repeating bits. Unlike other rate-less channel encoding methods
[10] such as the LT code [11] and the Raptor code [12], [13], the
circular coding method encodes the data in two dimensions. And
the decoder does not need to know where the message starts.

In this paper, the objective is to study the performance of the
circular coding method being used in the halftone image in the
presence of noise. We use a Binary Symmetric Channel (BSC)
model for the transmission channel, and predict the decoding rate
with different levels of transmission error rate for any given cir-
cular coding parameters.

We first model the transmission error as a stochastic random
process. Then we develop a closed form solution for the payload
decoding rate step by step, following the procedures of the de-
coding process. Finally, we design the simulation of the decoding
process to validate the closed form solution.

Review of the communication channel
The pipeline of the circular encoding/decoding framework

includes the following main procedures:

1. Encode the digital message u using the circular coding
method to get the coded 2D data array v;

2. Halftone the continuous-tone carrier image I[m,n];

3. Shift dots within a selected subset of halftone cells corre-
sponding to the metadata to be embedded into the image;

4. Print the encoded image;

5. Capture the printed image;

6. Decode the data array, denoted as r̂;

7. The recovered data array is then decoded to get the message
back, denoted as û.

In this paper, we focus on the impact of random noise in the com-
munication channel, so we will consider the coding channel as a
whole to simplify the data transmission system. Please refer to
Fig. 1.

Circular coding encoding process
Circular coding is a two-dimensional coding method that al-

lows recovery of data from only a cropped portion of the code.
The message u can be separated into two parts: (1) standard form
S, which is the circularly shifted version of the binary payload P
that has the smallest decimal value of the binary string; (2) the
minimum bit shift from the standard form S to the original pay-
load P, denoted as C. Here, C is the binary representation of the
bit shift; and we assume that the payload P has length B bits.
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Figure 1: Framework of the data transmission system. A message u is circularly coded and embedded in the carrier image I, and then transmitted in the
coding channel, where noise may impact the result.

The standard form S and the circular shift C are encoded
separately in different rows of a two-dimensional data array, with
a determined interleaving period of V . That is, for every V − 1
rows of standard payload data array, there will be one row of data
that encodes the circular shift C.

The B-bit length standard form S of the payload is repeated
from row-to-row, with each row being circularly shifted by D po-
sitions relative to the previous row. In every V rows, a phase row
is interleaved between the payload rows. It is also shifted in the
same manner as the payload rows.

Then the encoded data array is embedded in a halftone image
by shifting the dot-clusters within the halftone cells. The result-
ing image can be printed, and then captured with a mobile phone
camera. The encoded data array is extracted from the captured
halftone image by detecting the shifts in the dot-clusters.

Circular coding decoding process
The circular coding encoding and decoding methods are dis-

cussed in detail in [6]. Generally speaking, the decoder knows the
parameters including the payload length B, the row-to-row shift
D, and the interleaving phase period V . Also, a cropped portion
of the data array will be the input to the decoder. But the decoder
doesn’t know in which row the phase row appears in the cropped
data array. The decoder tries every possible case where that the
first phase row could be, removes the assumed phase rows, and
calculates the confidence that the remaining rows are pure pay-
load rows. If the assumption of which rows are phase rows is
correct (In other words, the assumption of payload rows is cor-
rect.), and if there is no error in the data array, then every bit will
be repeated in its predefined position. So this will yield perfect
consistency. Even if there are some bit errors, it will still have a
high consistency. On the other hand, if the assumption of phase
rows is incorrect, then the remaining payload rows will contain
both payload rows and phase rows. For each bit and its repeating
positions, it contains the value of the payload and phase, which
will have a lower consistency. The higher the consistency of the
repeating bits, the higher probability that these are the payload
rows. So we can separate the payload and phase rows by select-
ing the starting phase row with the highest consistency.

Then, the decoder takes the majority bit value of each repeat-

ing bit position of the payload rows, to find the shifted version of
the payload, denoted as P

′
. Similarly, by checking the majority

bit value of each repeating bit position of the phase rows, we can
find a shifted version of the phase, denoted as U

′
.

For every payload, since the standard version is unique, there
is a unique circular shift C that shifts from the standard version S
to the original payload P . We can find the standard version from
P
′
, and figure out the circular shift C

′
that will take us from P

′

to Ŝ. It will be the same shift that shifts the phase U
′

to Û. The
circular shift Ĉ from the original payload to the standard form can
be decoded from the phase Û. This can then be used to predict the
decoded payload P̂, as indicated in Fig. 2.

Methods
We use simulation combined with a theoretical framework to

study the payload decoding rate with different levels of the trans-
mission error rate.

The process of developing this methodology consists of three
steps: 1. model the communication channel and transmission er-
ror; 2. represent the decoding process; 3. develop a closed form
solution for the probability of success decoding rate;

We validate the closed form solution for the probability of
successful decoding using the simulation results in the Results
section.

Model the communication channel and transmis-
sion error

The message embedded in the image is memoryless, so we
use a Binary Symmetric Channel to model the communication
channel. It has binary input and output, with a probability of
transmission error ε , i.e. the probability of switching values be-
tween 0 and 1. So the probability of successful transmission one
bit is P(Sucess) = 1−ε , and the probability of failure of transmis-
sion of one bit is P(Fail) = ε . We assume that the probability of
successful transmission at each position is independent and iden-
tically distributed (i.i.d.).

Represent the decoding process
As noted before, the crop window of the data array v̂ is mixed

with payload rows and phase rows, with a fixed interleaving pe-
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Figure 2: Overview of the circular coding decoding process. The trans-
mission error will impact the process of these four events: Event A: sepa-
rating the payload and phase data; Event B: decoding the shifted sequence
of the payload; Event C: decoding the shifted sequence of the phase; Event
D: decoding the payload. All the other processes are deterministic.

riod V . But the starting row index of the phase is unknown.
Here is how to decode the payload: First, we align each bit

position index by circularly shifting back (shifting left) by D bit
positions to the position of the first row in the crop window. So
each column of the data array represents the same bit position
index of the payload or phase.

Then we rearrange the data array so that each payload bit
position is aligned in a column. So the number of columns is B,
the payload bit length, and the number of rows is the bit position
repeat count, denoted as R.

Among the R repeating bit positions in the data array, let
the number of phase repeats be M. Then, the number of payload
repeats is R−M.

In order to separate the phase from the payload, we try every
possible starting row index of the phase (V possible starting row
indices), and select the one with highest confidence. Once we try
to remove M “phase” rows in the data array, either correctly or
incorrectly, there will be R−M rows of data left. There are only
two possible cases:

• Case 1: get all the phase rows out, leave R−M repeats of
payload rows. There is only one chance over the V possible
positions that this case will occur.

• Case 2: get none of the phase rows out, leave R−M rows
that are a mixture of payload and phase rows. There will be
V − 1 chances for this to occur. So the number of payload
rows left is R−2M. Define N = R−2M.

Thus, the relationship between R,M, and N is illustrated in
Fig. 3. And an example of the two cases is shown in Fig. 4

Figure 3: Illustration of bit position repeat count. The total bit position
repeat count in a crop window of data is R, the phase bit position repeat
count in a crop window of data is M, and the payload bit position repeat
count in a crop window of data is R−M. We define N = R− 2M. Thus,
R−M = N +M.

Figure 4: Illustration of the (a) pure payload subset in Case 1 and (b)
mixture of payload and phase subset in Case 2, using a Venn diagram. In
this example N = 7, M = 3, and R = 13.

In either case, the remaining data array contains the common
N rows of payload repeats, and the M rows of payload or phase
repeats.

Model the status of change as a random variable
Once the data is transferred in the communication channel,

the bit values might be switched due to a transmission error. We
model the switch of a bit value as a random variable, and it does
not depend on the bit position, so it is i.i.d. for each bit.

Then, for each case (Case 1 gets all the phase rows out, or
Case 2 gets none of the phase rows out), let the sets Y1 and Y2 de-
note the random variables at each data array position, respectively.
Here is the mathematical representation of the random variables:

• For each column of data (each bit position index j) and row
of data (each bit repeat index i), let the status of switching
its original value be the random variables X ( j)

i and Z( j)
i for

payload and phase, respectively. So j = 0, · · · ,B−1, and i=
1,2, · · · ,M for Z; and j = 0, · · · ,B−1 and i = 1,2, · · · ,R−
M = N +M for X .
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• X ( j)
i = 0: status NOT changed at bit position j and row po-

sition i. P{X ( j)
i = 0}= 1− ε .

• X ( j)
i = 1: payload status changed at bit position j and row

position i. P{X ( j)
i = 1}= ε .

• Similarly for Z( j)
i , Z( j)

i = 1: phase status changed at bit po-
sition j and row position i.
Thus, the two sets (pure payload set and mixture of payload

and phase set) can be written as shown in in Eqs. 1 and 2, respec-
tively.

S1 =



X (0)
1 X (1)

1 ... X ( j)
1 ... X (B−1)

1
X (0)

2 X (1)
2 ... X ( j)

2 ... X (B−1)
2

X (0)
3 X (1)

3 ... X ( j)
3 ... X (B−1)

3
...

...
. . .

...
. . .

...
X (0)

N X (1)
N ... X ( j)

N ... X (B−1)
N

X (0)
N+1 X (1)

N+1 ... X ( j)
N+1 ... X (B)

N+1
...

...
. . .

...
. . .

...
X (0)

N+M X (1)
N+M ... X ( j)

N+M ... X (B−1)
N+M



(1)

S2 =



X (0)
1 X (1)

1 ... X ( j)
1 ... X (B−1)

1
X (0)

2 X (1)
2 ... X ( j)

2 ... X (B−1)
2

X (0)
3 X (1)

3 ... X ( j)
3 ... X (B−1)

3
...

...
. . .

...
. . .

...
X (0)

N X (1)
N ... X ( j)

N ... X (B−1)
N

Z(0)
1 Z(1)

1 ... Z( j)
1 ... Z(B−1)

1
...

...
. . .

...
. . .

...
Z(0)

M Z(1)
M ... Z( j)

M ... Z(B−1)
M



(2)

Note that for a crop window of data r̂, we are able to calcu-
late the bit repeat count for each bit position index. The bit repeat
count for each bit position index might be slightly different, de-
pending on the size and position of the crop window. Here, we
assume that each bit position index has the same repeat number
R.

Model the data array after corruption by transmission er-
rors as a sequence of random variables

For the original payload P and the phase U both with length
B bits, we can write their original values as the data arrays:

P = [P(0),P(1), . . . ,P(B−1)] (3)

U = [U (0),U (1), . . . ,U (B−1)] (4)

Note that we already defined the status of switching value as
the random variables in Eqs. 1 and 2, so we can define the value
of the data sets in Cases 1 and 2 at each position, as the original

value XOR the random variable of a status change at that position,
as shown in Eqs. 5 and 6.

S̃1 =



X̃ (0)
1 X̃ (1)

1 ... X̃ ( j)
1 ... X̃ (B−1)

1
X̃ (0)

2 X̃ (1)
2 ... X̃ ( j)

2 ... X̃ (B−1)
2

X̃ (0)
3 X̃ (1)

3 ... X̃ ( j)
3 ... X̃ (B−1)

3
...

...
. . .

...
. . .

...
X̃ (0)

N X̃ (1)
N ... X̃ ( j)

N ... X̃ (B−1)
N

X̃ (0)
N+1 X̃ (1)

N+1 ... X̃ ( j)
N+1 ... X̃ (B)

N+1
...

...
. . .

...
. . .

...
X̃ (0)

N+M X̃ (1)
N+M ... X̃ ( j)

N+M ... X̃ (B−1)
N+M



(5)

where X̃ ( j)
i = X ( j)

i
⊗

P( j), for i = 1,2, . . . ,N +M and j =
0,1, ...,B−1.

Similarly,

S̃2 =



X̃ (0)
1 X̃ (1)

1 ... X̃ ( j)
1 ... X̃ (B−1)

1
X̃ (0)

2 X̃ (1)
2 ... X̃ ( j)

2 ... X̃ (B−1)
2

X̃ (0)
3 X̃ (1)

3 ... X̃ ( j)
3 ... X̃ (B−1)

3
...

...
. . .

...
. . .

...
X̃ (0)

N X̃ (1)
N ... X̃ ( j)

N ... X̃ (B−1)
N

Z̃(0)
1 Z̃(1)

1 ... Z̃( j)
1 ... Z̃(B−1)

1
...

...
. . .

...
. . .

...
Z̃(0)

M Z̃(1)
M ... Z̃( j)

M ... Z̃(B−1)
M



(6)

where X̃ ( j)
i = X ( j)

i ⊗ P( j), for i = 1,2, . . . ,N and j =
0,1, ...,B−1.

And Z̃( j)
i = Z( j)

i ⊗ U ( j), for i = 1,2, . . . ,M and j =
0,1, ...,B−1.

Here ⊗ denotes the XOR operation.

Separate the payload and phase and then decode their
values

When we compare any two sets (the pure payload set in Case
1 and the mixture of payload and phase set in Case 2), we calcu-
late their confidence values, and then select the one with higher
value as the pure payload set.

For the pure payload data set in Eq. 1 and for the mixture of
payload and phase data set in Eq. 2, the methods to estimate the
bit value are the same. That is, we calculate the confidence value
of each data set, and select the one with higher confidence as the
pure payload set. It includes the following four steps:

1. Calculate the sample mean of each subset. Let Ȳ ( j)
1 denote

the sample mean for the pure payload subset and Ȳ ( j)
2 for the

mixture payload and phase subset:

Ȳ1
( j) =

1
N +M

{
N

∑
i=1

X̃ ( j)
i +

N+M

∑
i=N+1

X̃ ( j)
i

}
(7)
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Ȳ2
( j) =

1
N +M

{
N

∑
i=1

X̃ ( j)
i +

M

∑
i=1

Z̃( j)
i

}
(8)

2. Calculate the estimated bit value for each data set:

Ŷk
( j) =


1, if Ȳk

( j) > 0.5

0, if Ȳk
( j) < 0.5

random choice of 0 or 1, if Ȳk
( j) = 0.5

(9)

∆
( j)
k =| Ŷk

( j)− Ȳk
( j) | (10)

for k = 1,2.

For the values of bit position repeats, we define the minority
bits as the bits with value that appear less frequently than
bits with the other value. The other bits with the value that
appeared more than half the time are called majority bits.
Thus, ∆( j) is actually calculating the proportion of the mi-
nority bits for bit position index j.

3. Calculate the confidence value for each data set:

Ck = 1− 2
B

B−1

∑
j=0

∆
( j)
k (11)

for k = 1,2.

Note that the confidence is in the range of 0 and 0.5, where
the higher the confidence is, the more likely this selection is
a pure payload data set. For the pure payload data set in Case
1, k = 1; for the mixture of payload and phase data set in
Case 2, k = 2. And the confidence is negatively proportional
to the sum of ∆( j), j = 0,1, . . . ,B−1.

Select the payload data set with the higher confidence value,
and assign each bit its value that has been calculated in Step
2.

[Ŷ 0,Ŷ 1, ...,Ŷ B−1] =


[Ŷ 0

1 ,Ŷ
1
1 , ...,Ŷ

B−1
1 ], if C1 > C2

[Ŷ 0
2 ,Ŷ

1
2 , ...,Ŷ

B−1
2 ], if C1 < C2

[Ŷ 0
1 ,Ŷ

1
1 , ...,Ŷ

B−1
1 ], if C1 = C2

(12)

There will be totally V possible starting row positions for the
phase rows. For a successful decoding, it is required that the pure
payload data set has higher confidence than any mixture payload
data set in each comparison.

Develop a closed form solution for the probability
of successful decoding

Recall that the decoding process has three steps that involve
the error estimation: 1. separate the phase from the payload; 2.
decode the standard form of the payload; 3. decode the phase.
We need to estimate the success rate of each of these three steps,
and combine the success rates of these three steps to get the final
decoding rate.

Step 1: Compute the probability of separating the phase
from the payload

The phase rows and payload rows are selected based on the
confidence estimation, see Eqs. 11 and 12. Note that in order to
correctly decode the payload, we can conclude that at least half
of the bits need to retain their original value during the transmis-
sion. So we can assume that the probability of transmission error
ε < 0.5. Higher confidence is equivalent to lower uncertainty, and
equivalent to fewer minority bits. Thus, the probability of sepa-
rating the phase from the payload can be computed by summing
the probabilities that the pure payload data set has fewer minority
bits than the mixed phase and payload data set, for each possible
number of bits that switched value in the pure payload data set.

We first consider the easier case that the payload only has
one bit. Then, we extend the payload bit length to multiple bits.

Payload bit length of one: B = 1
Let the payload length be one bit only, i.e. B = 1. So the

phase is also one bit. Note this cannot be done in the real case.
The original payload value is P(1), and the phase value is

U (1). So there are two possible situations: the original payload
value is either the same or different, compared with the phase
value (i.e. P(1) =U (1), or P(1) 6=U (1)).

After we rearrange the crop window of data array, let’s as-
sume that there is M +N bits of repeats. Thus, the bit repeats in
case 1 (get all phases out) and in case 2 (get none of the phases
out) will be simplified as S1|B=1 and S2|B=1, defined in Equa-
tion 13.

S1|B=1 =



X1
X2
X3
...

XN

XN+1
...

XN+M


and S2|B=1 =



X1
X2
X3
...

XN

Z1
...

ZM


(13)

Let A represent the data set in Case 1, i.e. the pure payload
data set, and let B represent the data set in Case 2, i.e. the mixture
of payload and phase.

For the comparison of the bit repeats in Cases 1 and 2, there
always N bits of payload X1,X2, . . . ,XN shared in common. In
other words, if any bits have switched value in the common pay-
load bits area, they will be the same for the data sets A and B. But
the status of switching value in the remaining parts are different
and independent of each other.

Our goal is to find the probability that the total number of
minority bits in data set A is less than the number of minority bits
in data set B.

We define α as the number of minority bits in data set A, and
β as the number of minority bits in data set B. And we assume
that fewer than half of the bits have switched value. Then, the
number of minority bits is the same as the number of bits that
switched value in each data set. For each number of minority bits
in data set B, there should be fewer minority bits in data set A, or
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α < β . Also, the number of minority bits α in data set A should
be fewer than half of the total number of bit repeats. Thus, we
define:

K = bM+N
2
−1c (14)

So the number of minority bits α and β can be any number be-
tween zero and K . The α bits of positions that switched value
could be in either the N bits of common payload or the M bits of
uncommon payload in data set A.

By the nature of the circular encoding process, the number
of payload bit repeats N is much larger than the number of phase
bit repeats M in each data set, i.e. N � M. So if the number of
bits whose values are switched in the data set A is no more than
the number M, i.e α ∈ [0,M], then these bits can be anywhere
in the payload or phase. Otherwise, if the number of bits with
switched values is greater than M, there will be at maximum M
bits with switched values in the uncommon payload in data set A
or the phase in data set B, and the remaining bits that switched
value will be in the common payload.

As noted before, with the assumption that fewer than half
of the bits switched value, the number that switched value in the
pure payload data set is the minority bit number α . Among these
α bits that switched value, let m denote the number of bits that
switched value in the uncommon payload. Thus,

• Part 1: When α ∈ [0,M], then the number of bits m that
switched value in the data set A in the uncommon payload
could be any number between 0 and α , or m ∈ [0,α]. And
the number of bits that switched value in the data set A in
the common payload is α−m.

• Part 2: When α ∈ (M,K ], then m could be any number
between 0 and α , or m ∈ [0,M]. And the number of bits that
switched value in the data set A in the common payload is
also α−m.

Let k be the number of bits that switched value in the M bits
of the phase in the data set B. In order to successfully separate the
pure payload data set, it is required that the minority bit number
α in the data set A be less than the minority bit number β in data
set B.

First, if the original payload value is the same as the phase
value (P(1) = U (1)), then the number α of bits that switched can
take any value between 0 and half of the total number of bit re-
peats K . So we sum the probability that data set A has fewer
minority bits than data set B for each α value. It includes two
parts. Part 1: α ∈ [0,M]; Part 2: α ∈ (M,K ].

For the data set A, the minority bits are the ones that switched
value. There are α such bits. For the data set B, the number of bits
that switched value must be greater than α , but smaller than the
total number of the bits in each data set minus α , or M +N−α .
In other words, in order to have the number of bits that switched
value in the data set A be smaller than the number of bits that
switched value in the data set B, there should be fewer bits that
switched value in the uncommon payload in data set A than the
number that switched value in the payload in data set B, given the
condition that the payload and phase have the same original value.
Thus, these five conditions need to be met:



α ∈ [0,M]

α < β < M+N−α

β = (α−m)+ k
m < k
m ∈ [0,α]

From these five conditions, we can obtain the range of k:

m < k < M+N−2α +m (15)

For Part 2, α ∈ (M,K ]. Since there are only M bits in the
uncommon payload part, there will be a maximum of M bits that
could switch value in the uncommon payload, the remaining α−
m bits must switch value in the common payload. The conditions
for data set B are the same as those as those in Part 1. Please refer
to Table 1 for details.

Next, we consider the case where the original payload value
is different from the phase value. This is very similar to the case
where the original payload value is the same as the phase value,
except that for the mixture payload and phase data set B, the phase
data will be originally treated as the minority bits. This is because
the number of payload bits is usually much larger than the number
of phase bits, or N�M. So for any bit position j, we expect that
there will be fewer phase rows than payload rows. Also, we as-
sume that fewer than half of the bits switched their values. So the
minority bits contain the bits that switched value in the common
payload part in data set B and the bits that retained their original
value in the phase part of data set B. Thus, we again have five
conditions that need to be met:



α ∈ (M,K ]

α < β < M+N−α

β = (α−m)+(M− k)
m < M− k
m ∈ [0,M]

From these five conditions, we can obtain the range of k:

2α−m−N < k < M−m (16)

The details are summarized in Table 2.
Now we can write out the probability that the pure payload

set will be correctly distinguished from the mixture subset. First,
let’s define the probability mass function for the binomial distri-
bution. We define the status of switching value at each bit position
as a random variable with a binomial distribution. The probability
of getting exactly a successes in A independent Bernoulli trials is
given by the probability mass function:

P(A,a,ξ ) =
(

A
a

)
ξ

a(1−ξ )A−a (17)

This calculates the probability that for every A bit positions,
a bits switch value, when the probability of switching value at
each position is ξ .
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Table 1: The conditions under which the pure payload selection A has
fewer minority bits than the mixture of payload and phase selection B,
when the phase original value is the same as the payload value. K =

bM+N
2 −1c.

Original payload value is same as the phase value
A has α minority bits B has β minority bits

, β > α

Part
1: α ∈
[0,M]

m bits switch value
in the uncommon
payload, and α − m
bits switch value in
the common payload,
where m ∈ [0,α]

the same α −m bits
switch value in the
common payload,
and k bits switch
value in the phase,
where β = α −m+ k,
α < β < (M+N−α)

Part
2: α ∈
(M,K ]

m bits switch value
in the uncommon
payload, and α − m
bits switch value in
the common payload,
where m ∈ [0,M]

the same α −m bits
switch value in the
common payload,
and k bits switch
value in the phase,
where β = α −m+ k,
α < β < (M+N−α)

Under the assumption that the original payload value is
the same as the phase value, i.e P(1) = U (1), the probability
that the number of minority bits α in the data set A being
less than the number of minority bits β in the data set B is
P{α < β |P(1) = U (1)}. It is the cumulative distribution that
for every possible number of bits i that switched value, where
i ∈ ([0,M−1]∪ [M,K ]), the number of bits α that switched
value in the data set A is less than the number of bits β that
switched value in the data set B.

From Table 1, we add the probabilities for first and second
parts. For the first part, i ∈ [0,M − 1], the probability that
m bits switched value in the M bits of uncommon payload
is P(M,m,ε). For the remaining bits that switched value in
the common payload area, the probability is P(N, i − m,ε);
and the probability that k bits switched value in the phase
data set is P(M,k,ε). So the Part 1 conditional probability
P{(α < β ) ∩ (0 ≤ α ≤ M)|B = 1,P(0) = U (0)} that there are
fewer minority bits in the pure payload data set A than in the
mixture of payload and phase data set B, when the original
payload value is the same as phase value, is shown in Eq. 18. It
is similar for Part 2, which is shown in Eq. 19. See Table 1 for
the definition of Parts 1 and 2.

P{(α < β )∩ (0≤ α ≤M)|B = 1,P(0) =U (0)}=
M−1

∑
i=0

{
i

∑
m=0

P(M,m,ε) ·P(N, i−m,ε) ·
M+N−2i+m−1

∑
k=m+1

P(M,k,ε)

}
(18)

P{(α < β )∩ (M < α ≤K )|B = 1,P(0) =U (0)}=
bM+N

2 −1c

∑
i=M

{
M

∑
m=0

P(M,m,ε) ·P(N, i−m,ε) ·
M+N−2i+m−1

∑
k=m+1

P(M,k,ε)

}
(19)

Table 2: The conditions under which the pure payload selection A has
fewer minority bits than the mixture of payload and phase selection B,
when the phase original value is different from the payload value. K =

bM+N
2 −1c.

Original payload value is different from the phase value
A has α minority bits B has β minority bits

, β > α

Part
1: α ∈
[0,M]

m bits switch value
in the uncommon
payload, and α − m
bits switch value in
the common payload,
where m ∈ [0,α]

the same α − m
bits switch value in
the common pay-
load, and M − k
bits switch value in
the phase, where
β = (α−m)+(M−k),
α < β < (M+N−α)

Part
2: α ∈
(M,K ]

m bits switch value
in the uncommon
payload, and α − m
bits switch value in
the common payload,
where m ∈ [0,M]

the same α − m
bits switch value in
the common pay-
load, and M − k
bits switch value in
the phase, where
β = (α−m)+(M−k),
α < β < (M+N−α)

Then, we sum the probabilities of these two parts to get the
probability that the data set A has fewer minority bits than B when
the original phase value is the same as payload value, defined as
P{α < β |B = 1,P(0) =U (0)} in Eq. 20.

P{α < β |B = 1,P(0) =U (0)}

= P{(α < β )∩ (0≤ α ≤M)|B = 1,P(0) =U (0)}

+P{(α < β )∩ (M < α ≤K )|B = 1,P(0) =U (0)}

(20)

Under the assumption that the original payload value is different
from the phase value, i.e P(0) 6=U (0), the calculation of the prob-
ability that the data set A has fewer minority bits than the data set
B is very similar to the assumption of P(0) =U (0), except that we
need to count the number of bits that retain their original value in
the phase data in the data set B as the minority bits. The prob-
ability that the data set A has fewer minority bits than set B is
calculated in Eqs. 21 and 22 for Parts 1 and 2, respectively.

P{(α < β )∩ (0≤ α ≤M)|B = 1,P(0) 6=U (0)}=
M−1

∑
i=0

{
i

∑
m=0

P(M,m,ε) ·P(N, i−m,ε) ·
M−m−1

∑
k=2i−m−N+1

P(M,k,ε)

}
(21)

P{(α < β )∩ (M < α ≤K )|B = 1,P(0) 6=U (0)}=
bM+N

2 −1c

∑
i=M

{
M

∑
m=0

P(M,m,ε) ·P(N, i−m,ε) ·
M−m−1

∑
k=2i−m−N+1

P(M,k,ε)

}
(22)

We sum the probabilities of these two parts to get the proba-
bility that the data set A has fewer minority bits than set B, defined
as P{α < β |B = 1,P(0) 6=U (0)} in Eq. 23.

IS&T International Symposium on Electronic Imaging 2020
Media Watermarking, Security, and Forensics 292-7



P{α < β |B = 1,P(0) 6=U (0)}

= P{(α < β )∩ (0≤ α ≤M)|B = 1,P(0) 6=U (0)}

+P{(α < β )∩ (M < α ≤K )|B = 1,P(0) 6=U (0)}

(23)

Then, the total probability that the data set A has fewer mi-
nority bits than the data set B is calculated in Eq. 24 based on the
total probability law.

P{α < β |B = 1}=

P{α < β |B = 1,P(0) =U (0)} ·P{P(0) =U (0)}

+P{α < β |B = 1,P(0) 6=U (0)} ·P{P(0) 6=U (0)}
(24)

Extend the number of payload bits from B = 1 to B > 1
When the payload length B is greater than one bit, the confi-

dence can be calculated in Eq. 11. The confidence is the sum of
∆ j, j ∈ (0,B−1). So the probability that the confidence is greater
in the data set A than in the data set B is the same as the probabil-
ity that the sum of ∆ j in the data set A is smaller than in the data
set B.

P{C1 > C2}= P

{
B−1

∑
j=0

∆
j
1 <

B−1

∑
j=0

∆
j
2

}
(25)

Note that we already discussed that for bit payload length
B = 1, if we assume that fewer than half of the bits switched value
for a given number of bit repeats R, the confidence is just the
proportion of how many bits switched value over the total number
of bit repeats. Now the payload is more than one bit in length, and
we assume that fewer than half of the bits switched value for each
bit position. Thus, the confidence, calculated as the sum of ∆ j,
j ∈ (0,B− 1) for the data set A and the data set B, is the sum of
the number of bits that switched value among the total number of
bit positions.

In Eq. 24, we already developed a closed form solution for
each bit position assuming that the pure payload set has fewer
minority bits α than the mixture of payload and phase, which has
β minority bits. It is a function of the common payload bit repeat
count N, the phase bit repeat count M in the mixture of payload
and phase data sets, and the bit error probability ε . So for B = 1
we can define it as in Eq. 26:

P{α < β |B = 1} ≡ f (α < β ;N,M,ε) (26)

For B> 1, with the assumption that fewer than half of the bits
switched value in each bit position index, the number of minority
bits in each bit position index is the same as the number of bits
that switched value in that bit position index. In addition, from our
experiments, we found that when the payload bit length is large
(i.e. B > 63), the probability that the payload value is the same
as the phase value at each bit position index is about 0.5. Thus,
the sum of the minority bits for the whole payload bit length B
can be separated into two parts: one for those bit position indices

where the phase bit has the same original value as the payload, and
the other for those bit position indices where the phase original
value is different from the payload. Since the random variables
that determine whether or not the bits switch value are i.i.d., at
each bit repeat, the minority bit difference mainly comes from the
first part: those bits where the payload and phase have different
original values.

So, we can rewrite the probability P(C1 > C2) using the for-
mula developed for payload bit length B = 1, but with the new
variables, as shown in Eq. 27. This approximation is validated
using simulation.

P{C1 > C2}= P{α < β} ≈ f (α < β ;
N
2

B,
M
2

B,ε) (27)

Step 2: Compute the conditional probability of success-
fully decoding the payload

Now assume that we already correctly separated the phase
from the payload; so for each bit position, we have N +M bit
repeats for data sets A and B. We will compute the probability of
successfully decoding the payload conditioned on the event C1 >
C2.

The conditional probability that the detected bit value P̂
′( j) is

the same as the original bit value P
′( j) is equal to the conditional

probability that fewer than half of the bits switched value. It can
we calculated as:

P{P̂
′( j)

= P
′( j)|C1 > C2}

=
K

∑
k=0

(
(N +M)

k

)
(ε)k(1− ε)(N+M)−k

(28)

where K is half of the number of bit repeats for the payload:

K =

⌊
(N +M)

2
−1
⌋

(29)

The conditional probability that the entire payload is cor-
rectly decoded is the joint conditional probability that every bit in
the payload is correctly decoded. Recall that we model the trans-
mission error as identical and independent at each bit position, so
the joint probability of successfully decoding the entire payload
is just the product of the probabilities of successfully decoding at
each bit position.

P{P̂
′
= P|C1 > C2}

=
B−1

∏
j=0

P{P̂( j)
= P( j)|C1 > C2}

=

{
K

∑
k=0

(
(N +M)

k

)
(ε)k(1− ε)(N+M)−k

}B

(30)

Step 3: Compute the conditional probability of success-
fully decoding the phase

Note that for the phase encoding, we will encode the mini-
mum number of bit shifts to go from the standard form S to the
payload P. This number is denoted as C. We transfer the decimal
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value C to a binary string, denoted as U̇. The maximum number
of bits c needed to represent the decimal value C can be calcu-
lated in Eq. 31. The method we use to to encode the phase row
is to repeat the string U̇ until all the B bits of length are used to
form the phase. So for a phase row U with bit length B, the actual
bit-repeat count Ṁ can be calculated as shown in Eq. 31, since in
each phase row, we repeat each bit in the binary representation of
C approximately B

c times.

c = dlog2 Be (31)

Ṁ ≈ B
c

M (32)

Let’s denote the decoded circularly shifted phase as ˆ̇U
′
; so we

have:

Û
′
= [Û

′(0)
, Û
′(1)

, . . . , Û
′(c−1)

] (33)

ˆ̇U
′
= [ ˆ̇U

′(0), ˆ̇U
′(1), . . . , ˆ̇U

′(c−1)] (34)

Similar to the requirement to correctly decode the payload,
in order to decode the phase, we require that fewer than half of
the phase bits change their value during the transmission. Note
that here we assume that each phase bit has the same number M
of repeat rows. Thus,

˙K =

⌊
Ṁ
2
−1
⌋

(35)

P{ ˆ̇U
′
= U̇

′
|C1 > C2}=

c−1

∏
j=0

P{ ˆ̇U
′( j) = U̇

′( j)|C1 > C2}

=

{ ˙K

∑
k=0

(
M
′

k

)
(ε)k(1− ε)M

′−k

}c (36)

Step 4: Compute the final decoding rate
Without correctly separating the payload and phase data ar-

ray, the chance to correctly decode the payload and phase bits
is very low. Thus, we can approximate the probability of suc-
cessfully decoding the payload as the product of the conditional
probability of successfully decoding the payload and phase given
that the payload and phase data are successfully separated, and
the probability of successfully separating the payload and phase
data.

Thus, the final decoding rate can be computed as the product
of Eqs. 25, 30, and 36:

P{P̂ = P}= P{P̂
′
= P

′
} ·P{ ˆ̇U

′
= U̇

′
}

= P{P̂
′
= P

′
|C1 > C2} ·P{ ˆ̇U

′
= U̇

′
|C1 > C2} ·P{C1 > C2}

(37)

Results: Validate the closed form solution
The closed form solution is validated with experimental re-

sults. Here is the procedure of the experiment:
1. Randomly generate one sequence of payload data with a

given length.
2. Encode the data array (circular coding).
3. Generate i.i.d. sequence of error values.
4. Crop the data array.
5. Decode the payload.
6. Calculate the average decoding success rate.

The number of bit repeats for each position might be differ-
ent due to the crop window size and location. To simplify the cal-
culation, we set the crop window height H to be an integer, which
is a multiple of the interleaving phase period V . Thus, among the
H rows of data in the crop window, there are H/V rows of phase,
and H · (V − 1)/V rows of payload. In addition, we assume that
the number of columns W is also an integer multiple of the pay-
load length B. So for each row in the crop window, there will be
the same number of occurrences for each value of the bit position
index j.

We start from the simplest case, B = 1, and then extend it
to many bits, i.e. B > 1. The transmission error ε is randomly
generated, and sampled from 1% to 50%, with a step size of 1%.
The validation is done for each major equation, including:

• Probability of separating payload and phase data set in Eq.
27 (refer to Fig. 5). The simulated curve closely matches
the theoretical curve, which proves the closed-form formula
is well approximated.

• Conditional probability of decoding the payload in Eq. 30.
This part was validated by Sun et al. [6].

• Conditional probability of decoding the phase in Eq. 36.
The closed form solution and validation process is very sim-
ilar to the Eq. 30.

• The final probability of decoding the original payload in Eq.
37. The validation of the simulation result with theoretical
solution is shown in Fig. 7. Here it also shows the theatrical
and simulated results are well matched.

Note that for the simulation, when the confidence is exactly
50%, the decoder will select the first phase row. But in the for-
mula, we require that fewer than half of the repeating bits switch
value. To accommodate this situation, we take an average of the
floor and ceiling operations of the bits for which the confidence is
50%. The simulation result is shown in Fig. 6

The Euclidean distance between the simulated and theoret-
ical results will decrease when the number of simulation trials
increases (10k → 40k → 100k), which is shown in Fig. 8. In
other words, the simulation approaches the theory asymptotically.

When the bit length becomes very large (B ≥ 67), the prob-
ability P1 of separating the payload and phase becomes very high
compared to the probability P2 and P3 of decoding the payload and
the phase, respectively. So we can use P2P3 ≈ P1P2P3 to simplify
the computation (refer to Fig. 9).
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(a)

(b)

(c)
Figure 5: Comparison of probability of successfully separating payload
and phase bits based on theory and simulation for (a) N = 128, M = 12,
B = 1; (b) N = 128, M = 12, B = 4; (c) N = 128, M = 12, B = 7.

Figure 6: Validation of the theory by simulation, B = 67, V = 13, D = 2,
W = 67, H = 13, V = 13.

Figure 7: Validation of the theory by simulation: the final decoding rate.
The simulated decoding success rate is the average of 40k different sam-
ples of error at each transmission error rate. For the first comparison
group, B = 25, N = 15, and M = 4; for the second comparison group,
B = 67, N = 14, and M = 2; for the last comparison group, B = 128,
N = 22, and M = 1.
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Figure 8: Effect of increasing the number of simulation trials on the match
between the theoretical ad simulation results. (a) Decoding success rate as
a function of error rate. (b) The Euclidean distance between the simulated
and theoretical results.

Figure 9: The approximation of the final decoding rate. P1: the probabil-
ity of separating payload and phase defined in Eq. 27; P2: the conditional
probability of decoding the payload in Eq. 30; P3: the conditional prob-
ability of decoding the phase in Eq. 36; P1P2P3: the final probability of
decoding the original payload in Eq. 37. P2P3: the approximation of the
final probability of decoding the original payload in Eq. 37. The simu-
lated decoding success rate is the average of 40k different samples of the
error at each transmission error rate.

Conclusion

To the best of our knowledge, this is the first paper to analyze
the performance of the circular coding method in a noisy channel.
A closed form solution is developed to calculate the decoding suc-
cess rate for a given message payload length and bit position re-
peat count under different transmission error rates. This closed
form solution is also validated by simulating the decoding pro-
cess with noisy samples. With this decoding rate prediction, we
can design the encoding/decoding system with the desired per-
formance under different given transmission error rates. On the
other hand, for a given encoding/decoding system, we will have
the expected success rate as a measure of confidence for users.
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