
Synchronizing Embedding Changes in Side-Informed
Steganography
Mehdi Boroumand and Jessica Fridrich, Department of ECE, SUNY Binghamton, NY, USA, {mboroum1, fridrich}@binghamton.edu

Abstract
Historically, two different strategies have been proposed for
improving steganographic security by allowing each cover
element to be modified by +1 or −1 with unequal probabil-
ities: side-informed steganography and methods that clus-
ter the polarity of neighboring changes. In the first strat-
egy, the sender typically uses the knowledge of quantiza-
tion errors when developing / processing the cover before
embedding. In the latter, embedding on disjoint sub-lattices
employs heuristic rules to increase the probability that the
polarities of neighboring changes align. In this paper, we
propose a method for combining both strategies and exper-
imentally show an improvement in empirical security for
several types of side information on two datasets when ste-
ganalyzing with rich models as well as convolutional neural
networks.

Motivation
Steganography is a mode of covert communication in

which messages are embedded in inconspicuous cover ob-
jects to hide the very presence of the communicated secret.
Digital images are particularly suitable cover sources be-
cause they can hold large amounts of data and are com-
monly shared on social networks and attached to emails.
Moreover, there are thousands of applications available to
potential users.1

Since statistical detectability increases sharply with
the amplitude of embedding changes, steganographic
schemes typically modify the individual cover elements,
which encode the luminance or DCT coefficients using inte-
ger values, by at most ±1. The vast majority of embedding
algorithms do so with equal probabilities as this maximizes
the entropy (payload) embedded at each pixel [23, 22, 29,
35]. Two exceptions to this rule of thumb include side-
informed steganography [23, 20, 6, 19, 34, 17, 15, 14, 7]
and steganography that encourages neighboring embed-
ding changes to share the same polarity [30, 5, 24]. Since
both strategies have been shown to improve empirical se-
curity, in this paper we investigate whether they can be
combined to further boost the resistance to steganalysis.

Side-informed (SI) steganography is a general term
used for embedding schemes in which the sender makes
use of the so-called precover [26] that is subjected to some
sort of processing, development, or format conversion be-

1N. Johnson, “IoT Forensic Considerations and Steganogra-
phy Beyond Images.” Invited talk presented in the Network
and Cloud Forensics Workshop, IEEE Conference on Commu-
nications and Network Security, October 9–11, 2017, Las Vegas,
Nevada, USA.

fore embedding the secret message. Since the last step of
the processing pipeline is typically quantization, the sender
has access to the rounding errors and uses them to mod-
ulate the costs of changes by 1 and −1. SI steganogra-
phy generally prefers changing those cover elements whose
rounding errors are close to ±1/2 because such elements
are the most sensitive to small perturbations. For exam-
ple, a cover element with a non-rounded value 2.57, which
would round to 3, is allowed to be modified during embed-
ding to 2 with a small cost while changing the cover value
3 to 4 incurs a proportionally larger cost.

The first side-informed scheme was the embedding-
while-dithering steganography [15], in which the secret
message was embedded by perturbing the process of color
quantization and dithering when converting a true-color
image to a palette format. In perturbed quantization [16],
the cover JPEG is recompressed to create side-information.
The embedding prefers modifying DCT coefficients that
fall close to the middle of the quantization bins during
the second compression. The same idea can be applied
when the cover image is uncompressed and the sender em-
beds her message in its JPEG form. The rounding er-
rors of DCT coefficients can again be used to adjust the
costs of polarities of embedding changes [27, 34, 39, 25].
This methodology was later further advanced using the
paradigm of minimal-distortion steganography with ad-
vanced source coding [23, 20, 6].

While not studied in this paper, the authors wish to
point out that side-information can have many other forms
than rounding errors. In particular, when the sender has
access to an acquisition oracle (e.g., a camera or a scan-
ner [11, 13, 12]), she can acquire multiple exposures of the
same scene to estimate the preferred polarity of embedding
changes for cover elements that are most susceptible to
small noise, and thus better mimic the embedding changes
as acquisition noise [8]. In the so-called Natural Steganog-
raphy [1, 2, 38], also recognized as steganography by cover
source switching, the sender has access to the RAW im-
age capture and embeds the message in the developed do-
main by making the stego image look as if it was acquired
with a higher ISO setting. When the developing pipeline
is modelable, extremely large payloads can be embedded
with virtually perfect security.

In general, since side-information is only available to
the sender, it can improve empirical security by a rather
large margin. In [14], the author has shown that the
precover compensates for the lack of the cover model.
In particular, for a Gaussian model of acquisition noise,
precover-informed rounding is more secure than embed-

1IS&T International Symposium on Electronic Imaging 2020
Media Watermarking, Security, and Forensics 290-1

https://doi.org/10.2352/ISSN.2470-1173.2020.4.MWSF-290
© 2020, Society for Imaging Science and Technology



ding designed to preserve the cover model estimated from
the precover image, assuming the cover is “sufficiently non-
stationary.” Model-based binary SI embedding has been
analyzed in [7]. The authors provided an explanation for
why the the Fisher information (costs) in binary SI schemes
should be modulated by 1− 2|e|, where e is the rounding
error.

The second class of embedding methods with asym-
metric embedding probabilities encourages synchronization
(clustering) of polarities of neighboring modifications. In-
teraction of embedding changes can formally be captured
with non-additive distortion functions [10]. The Gibbs
construction [10] is a general framework for embedding
with non-additive distortion, which is applicable whenever
the distortion can be written as a sum of locally sup-
ported potentials (i.e., no “action at distance”). So far,
the Gibbs construction has not produced a practical em-
bedding scheme with improved empirical security. This
is because it is not clear how to design non-additive dis-
tortion that properly captures the interaction of neighbor-
ing embedding changes and their impact on detectability.
In [33], the authors introduced a greedy distortion mini-
mization technique that they applied to embedding with
the non-additive UNIWARD distortion [23]. Disappoint-
ingly, a smaller total embedding distortion did not corre-
late with empirical detectability.2

Nevertheless, the intuition that synchronized neigh-
boring changes should improve security seems correct
based on the two following observations. First, since most
pixel predictors used to extract noise residuals for steganal-
ysis, e.g., as in the Spatial Rich Model (SRM) [18], use fil-
ters with alternating signs, they are less disturbed by em-
bedding changes with positively correlated polarities (see
Sec. 5.1 in [5]). Second, since the polarization of the embed-
ding directions depends on the exact embedding changes,
the selection channel (the embedding change probabilities)
are not available to the steganalyst, which decreases the ef-
ficiency of selection-channel-aware steganalysis, such as the
maxSRM feature set [9] (Sec. 5.2 in [5]). In the absence of
non-additive distortion functions that correlate with em-
pirical detectability, the research community turned their
attention to heuristic schemes.

The first method whose embedding mechanism consid-
ered the interaction of embedding changes was HUGO [32].
After determining the parities of all pixels to communicate
the desired payload, the authors execute the actual em-
bedding changes by +1 or −1 sequentially to minimize the
impact on the stego image represented using the SPAM
features [31]. In Clustering Modification Directions (CMD)
steganography [30], the embedding is executed on disjoint
interleaved sublattices embedded sequentially. The actual
neighboring changes on the previous sublattices are used to
decrease the costs in the direction of the majority of neigh-
boring change polarities. A different idea was explored
in [5], where the authors started from an additive scheme
and purposely designed a non-additive distortion function
as a sum of locally supported potentials. Recently, CMD

2This observation was already made in [21].

has been improved in [24], where the coupling of neigh-
boring embedding changes was derived by minimizing the
variational approximation of the KL divergence between a
Gaussian pixel residual model with non-zero mean and an
asymmetric Gaussian mixture.

Intuitively, it should be possible to combine both em-
bedding strategies. Note, however, that the evidence pro-
vided by side-information and the neighboring changes may
be in conflict as the majority of neighboring changes may
point in a different direction than the side-information.
The solution proposed in this paper is to first modulate
all pixel costs based on SI. The embedding proceeds on in-
terleaved sublattices with the coupling enforced by further
modulating the costs of different polarities by a multiplica-
tive factor that non-linearly depends on the local mean of
embedding changes weighted by their rounding errors.

In the next section, we describe relevant prior art on
SI steganography and steganography with coupled embed-
ding changes. In the third section, we investigate several
different approaches for combining both strategies and de-
termine the parameters of modulation factors. The results
of all experiments appear in Section “Experiments,” where
we report the empirical security of three different types
of side-information in two datasets with both rich models
and deep neural networks. Numerical results in the form
of tables appear at the end of the paper. The paper is
concluded in the last section, where we also elaborate on
possible future directions.

Relevant prior art
In this section, we describe relevant details of side-

informed steganography and steganography with synchro-
nized embedding changes.

Distortion-minimizing steganography
Currently, all modern steganographic schemes are de-

signed within the paradigm of distortion minimization as
this also allows efficient implementation in practice. Let
us assume for simplicity that the cover image is grayscale,
represented with integer values cij , 1≤ i≤M , 1≤ j ≤N ,
where M ×N are the number of rows and columns in the
image. We describe the more general version when each
cover element is assigned two potentially different costs,
ρij(1) and ρij(−1), that measure the impact on detectabil-
ity when the i, jth element is modified by 1 and −1, respec-
tively. The payload is embedded while minimizing the sum
of costs of all cover elements changed during embedding,∑

i,j

ρij(νij), (1)

where νij = sij − cij is the polarity of the embedding
change, and sij represent the stego image. We note that
the cost of no change is ρij(0) , 0 for all i, j. The sum is
over all elements in the image.

A steganographic scheme that embeds with the mini-
mal expected total cost modifies each cover element with
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probabilities

βνij =
exp(−λρij(ν))

1 + exp(−λρij(1)) + exp(−λρij(−1)) . (2)

At the boundary of the dynamic range (for an 8-bit
image, this means for 0 and 255), one can adopt sev-
eral different strategies: 1) allow embedding by changing
the boundary values to encode the same ternary symbol
(e.g., the change by +1 at cover value 255 would be exe-
cuted as 253), 2) allow only “inward” embedding by mak-
ing the costs of out-of-range changes infinity, 3) forbid-
ding changes of boundary values altogether. The impact of
these three choices on empirical security depends on the im-
age source [36]. For embedding schemes tested in this pa-
per, we simply use their implementations as originally pro-
posed, e.g., MiPOD uses Strategy 1, while S-UNIWARD
and HILL use Strategy 2.

Side-informed steganography
Most SI schemes begin with a regular (i.e., not SI)

additive embedding algorithm that assigns costs ρij to
each pixel, which is usually determined by some heuris-
tic rule that assesses the content complexity (noise) in a
local neighborhood of pixel i, j. Thus, fundamentally, the
costs of both changes are considered to be the same.

Assuming the steganographer has access to a precover
(unquantized cover), which we denote xij , the sender com-
putes the rounding errors eij = xij − [xij ], −1/2 ≤ eij ≤
1/2, where [x] denotes the operation of rounding to the
nearest integer within the dynamic range of the cover. In
the absence of embedding, the steganographer would sim-
ply send the cover image cij = [xij ]. In ternary SI steganog-
raphy,3 the costs of both change polarities are modulated
based on the rounding error [6]:

ρij(sign(eij)) = (1−2|eij |)ρij (3)
ρij(−sign(eij)) = ρij , (4)

where ρij(ν) are the modulated costs. It makes intuitive
sense to make the costs proportional to 1− 2|eij | because
when |eij | ≈ 1/2 a small perturbation of xij could cause
xij to be rounded to “the other side.” On the other hand,
the costs are unchanged when eij ≈ 0, as the SI does not
provide any information about preferred polarity of the
embedding change. A theoretical justification of this mod-
ulation for schemes that minimize detectability rather than
cost appears in [7] where the authors showed for binary SI
schemes that the steganographic Fisher information should
be modulated by (1−2|eij |)2.

For embedding schemes that do not use costs and, in-
stead, minimize statistical detectability based on a cover
model, such as MiPOD [35, 37], their SI version starts by
first computing the (symmetric) embedding change proba-
bilities βij derived to minimize (an approximation to) the

3Binary SI schemes only allow modification of cover elements
by sign(v) [23, 19, 20, 34]. Binary schemes are not considered
in this paper.

KL divergence between the cover and symmetric stego mix-
ture by solving the following equation for each pixel i, j:

βijIij = λ ln
1−2βij
βij

, (5)

where Iij is the steganographic Fisher information, which
reflects the impact of embedding on the cover model, and
λ is a Lagrange multiplier determined by the payload size.
To incorporate side-information, the sender next converts
the embedding probabilities into costs by inverting (2)

ρij = log
(
1/βij −2

)
, (6)

and finally modulates them by rounding errors as in (3).

Steganography with synchronized embedding
changes

Another way of improving steganographic security is
to encourage neighboring changes to share the same polar-
ity. This has the effect of curbing the range of local pixel
differences or noise residuals used for steganalysis. In par-
ticular, in [5] the authors linked the improvement in secu-
rity to the fact that noise residuals from which steganalysis
rich features are typically formed use sign-alternating ker-
nels [18] and the observation that the coupling partially
masks the embedding change probabilities (the selection
channel) from the steganalyst.

Steganographic schemes that cluster the polarity of
embedding changes typically work on a collection of dis-
joint sublattices [30, 5, 24]. In this section, we detail
the CMD (Clustering Modification Direction) steganogra-
phy [30] as the proposed method shares some similarity
with this approach. CMD starts with an additive embed-
ding scheme with costs ρij , and partitions the cover image
into four interleaved sublattices

L1 = {(i, j)| mod (i,2) = 1 and mod (j,2) = 1} (7)
L2 = {(i, j)| mod (i,2) = 1 and mod (j,2) = 0} (8)
L3 = {(i, j)| mod (i,2) = 0 and mod (j,2) = 0} (9)
L4 = {(i, j)| mod (i,2) = 0 and mod (j,2) = 1}. (10)

It then embeds a quarter of the payload in each sublat-
tice, starting with L1. In sublattices L2, . . . ,L4, the mod-
ification at pixel i, j is encouraged to be the same as the
majority of actual embedding changes already executed in
the local cross-neighborhood

Cij = {(i−1, j),(i+ 1, j),(i, j−1),(i, j+ 1)} (11)

by decreasing the cost at pixel i, j by 1
9 (this factor was de-

termined experimentally) if there are more changes in that
direction in the cross-neighborhood Cij than in the oppo-
site direction. Formally, let us denote the local average of
embedding changes, νkl = skl− ckl, as

µij = 1
4
∑

(k,l)∈Cij

νkl. (12)
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Figure 1: Modulation factor (16) as a function of the local
weighted mean x= µ(w) for p= 2,9,100, and α ∈ {0,1/9}.
The values p = 9 and α = 0 provided the best empirical
security.

If µij 6= 0, the costs are modulated as follows:

ρij(sign(µij)) = 1
9ρij (13)

ρij(−sign(µij)) = ρij , (14)

and, when µij = 0 the costs of both change polarities are
the same as in the original scheme.

Side-informed steganography with synchro-
nized embedding changes

In this section, we explore different ideas for combin-
ing side-informed embedding with clustering of polarities of
neighboring changes. Note that side-information and the
actual changes in a local neighborhood can be “in agree-
ment” or “disagreement.” For example, a negative round-
ing error translates into decreasing the cost of changing
the pixel by −1 while a majority of embedding changes in
the neighborhood of the same pixel may point in the oppo-
site direction, creating thus a conflict. The cover image is
split into the same four interleaved sublattices as above and
one quarter of the message is embedded in each sublattice.
Then, pixel costs of some additive embedding scheme ρij
are computed and modulated as in (3)–(4) to incorporate
the side-information. We denote the costs modulated by
SI as ρ(SI)

ij (±1).
On the first sublattice L1, one quarter of the message

is embedded with the side-information modulated costs
ρ

(SI)
ij (±1). Moving to the second sublattice, for each pixel

(i, j) ∈ L2, we first compute a weighted average of the
actual embedding changes νkl ∈ {−1,0,1} from its cross-
neighborhood Cij

µ
(w)
ij = 1

4
∑

(k,l)∈Cij

wklνkl, (15)

with weights

wkl =
{

1−2|ekl| when sign(eklνkl)> 0
1 otherwise.

The weighting, which is similar to weighting of costs
in SI schemes(3), helps take into account how much each
pixel in the cross-neighborhood was modified w.r.t. its
precover value. In particular, embedding changes of pixels
with |ekl| ≈ 1/2 have wkl ≈ 0 while wkl = 1 when the SI and
the actual embedding change “point in opposite directions.”

When µ(w)
ij = 0, the neighboring changes do not affect

the SI-modulated costs ρ(SI)
ij (±1). When µ(w)

ij 6= 0, the em-

bedding costs ρ(SI)
ij are further modulated by a soft step

function shown in Figure 1

ρ
(nmSI)
ij (sign(µ(w)

ij )) = ρ
(SI)
ij (sign(µ(w)

ij )) (16)

×
(

(1−α)(1−|µ(w)
ij |)

p+α)
)

(17)

ρ
(nmSI)
ij (−sign(µ(w)

ij )) = ρ
(SI)
ij (−sign(µ(w)

ij )), (18)

where p is a positive integer and 0≤α≤ 1 to be determined
experimentally.

The embedding in the remaining two sublattices L3
and L4 follows the same steps as for sublattice L2. This
method will be called “nmSI” as in “Neighborhood Modu-
lated Side-Informed” steganography.

Note that when removing the weighting in (15) and
setting α = 1/9 and p =∞ (see Figure 1), we obtain a
direct combination of SI embedding and the CMD algo-
rithm [30] because the term (1−|µij |)∞ is equal to 0 when-
ever |µij | > 0, e.g., when there are more changes in the
cross neighborhood in one direction than in the opposite
direction. For a tie or no embedding changes in the neigh-
borhood, µij = 0, which results in no cost modulation by
neighboring changes as in CMD, leaving the rounding er-
ror eij as the only factor affecting the costs of changes of
different polarities. We call this method SI-CMD.

Determining the parameters
To determine the parameters α and p for the cost mod-

ulation by neighboring changes (16), we adopted the fol-
lowing experimental setup. The additive embedding algo-
rithm is HILL [29] at 0.4 bpp and image source BOSS-
base 1.01 with 10,000 true-color images obtained using
the same script as the original BOSSbase but removing
the RGB to gray conversion. The side-information was
obtained by RGB to gray conversion using the formula
0.2989×R+ 0.5870×G+ 0.1140×B in Matlab. The non-
rounded pixel values served as the precover. Steganalysis
was carried out with SRM and maxSRM feature sets and
the ensemble classifier [28]. The total detection error PE
with equal priors averaged over ten random 5,000/5,000
splits of the dataset was used for evaluating empirical se-
curity.
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0.4 bpp SRM maxSRMd2
HILL 0.2552±0.0026 0.2264±0.0015

CMD-HILL 0.3015±0.0034 0.2681±0.0016
SI-HILL 0.3338±0.0034 0.3175±0.0037

SI-CMD-HILL 0.3296±0.0034 0.3350±0.0034
nmSI (p=∞, α= 1

9 ) 0.3342±0.0021 0.3378±0.0026
nmSI (p= 9, α= 0) 0.3678±0.0020 0.3499±0.0022

Table 1: Average total detection error under equal priors PE for HILL, CMD-HILL, SI-HILL, SI-CMD-HILL, and two
versions of the proposed nmSI-HILL. Steganalysis with SRM and maxSRMd2 [9] and the ensemble classifier [28].

1 2 3 4 5 6 7 8 9 10 15 200.3

0.32

0.34

0.36

0.38

0.4

p

P
E

Figure 2: Average total detection error under equal priors
PE and its statistical spread over ten splits of BOSSbase
into training and testing as a function of the parameter p
in (16). Additive embedding scheme HILL at 0.4 bpp, SI
from RGB to gray conversion, SRM, ensemble classifier.

According to our experiments, α= 0 gave the best re-
sults. To determine the value of the exponent p, in Figure 2
we show the detection error for nmSI-HILL at 0.4 bpp as
a function of p (with α= 0). The value p≈ 9 corresponds
to a rather flat optimum. Table 1 shows the average total
detection error under equal priors PE of HILL [29], CMD-
HILL [30], SI-HILL [6], SI-CMD-HILL, and nmSI-HILL
with two sets of values for the parameters p and α. The
case of nmSI-HILL with p =∞ and α = 1/9 was included
to show the effect of weighting the embedding changes by
1−2|ekl| when computing µij in (15).

As expected, SI boosts security more than synchro-
nizing the polarities of neighboring modifications. The
synchronization improves the security of SI-HILL by 3.5%
(SRM) and 3.25% (maxSRMd2). The proposed nmSI-
HILL improves upon a naive combination of SI and CMD-
HILL by almost 4% (SRM) and 1.5% (maxSRMd2).

Experiments
In this section, we report the results of all experiments

to show the benefit of synchronizing the polarity of neigh-
boring embedding changes with SI. We do so for three types
of side-information, two different datasets, and with ste-
ganalysis implemented with rich models as well as a deep
neural network SRNet [3].

Datasets
Two datasets were used for our experiments: BOSS-

base 1.01 (as described in the previous section) and a
dataset derived from images made available to ALASKA
competitors during the recent steganalysis challenge [4].

Experiments on BOSSbase were carried out only for
one type of side-information when converting a true color
image to gray exactly as explained in the previous section.
Since there are only 10,000 images in this dataset, steganal-
ysis was executed only using the SRM and maxSRMd2 fea-
ture sets coupled with the ensemble classifier. Detection
with deep convolutional neural networks [40, 3, 41, 42] was
not included for this dataset because such detectors require
much larger datasets for proper training.

For more realistic conditions, and to be able to inves-
tigate other types of side-information with the SRNet, we
added experiments on a second dataset derived from 47,260
RAW images provided as part of the steganalysis compe-
tition ALASKA.4 Available from the same web site is the
script for developing the RAW images to the TIFF format,
which we modified to only use the ’dem_amaze.pp3’ RAW
converter and output uncompressed images of the same
size. The reader is referred to the above-cited ALASKA
web site for more information about the script.

Evaluation metric
The detection performance was measured with the to-

tal classification error under equal priors PE = 1
2 (PFA +

PMD) on the testing set, where PFA and PMD stand for
the false-alarm and missed-detection probabilities. For rich
models with the ensemble on BOSSbase, we report PE on
the testing set averaged over ten random equal size splits
into training and testing sets.

On ALASKA, due to its large size and to be able to
compare the results with network detectors (SRNet), which
are much more computationally demanding to train, in
agreement with most prior art, we report the results for one
random 40,460 / 3,200 / 3,600 split of the database into
training / validation / testing. Rich models were trained
on the union of the training and validation sets. Based
on the results reported in [3], the statistical spread of the
detection error (scaled to [0,1]) for the SRNet in terms of
the mean absolute deviation is 0.002–0.003, which is com-
parable to what has typically been reported for detectors
implemented with rich models.

4https://alaska.utt.fr
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Figure 3: Average detection error PE as a function of payload size for four versions of HILL, S-UNIWARD, and MiPOD.
BOSSbase 1.01, SRM (left), maxSRMd2 (right), ensemble classifier. The graphs contain the original embedding algorithm,
CMD and SI versions, and the combination of SI and synchronized embedding polarities (nmSI). SI by RGB to gray
conversion.
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Figure 4: Detection error PE as a function of payload
size for four versions of HILL on ALASKA dataset. Top
down, side-information obtained by RGB to gray conver-
sion, quantization from 16 to 8 bits, and resizing. Steganal-
ysis with maxSRMd2 and ensemble.
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Figure 5: Detection error PE of SRNet for four versions of
HILL. ALASKA, side-information RGB to gray.

BOSSbase
Figure 3 shows the average detection error PE

achieved with the SRM and maxSRMd2 features and the
ensemble for four different versions of HILL, S-UNIWARD,
and MiPOD and five payloads on BOSSbase with SI in the
form of the rounding errors when converting a true-color
image to grayscale. The graphs do not show error bars
as they were too small in the graphs to see and made the
markers harder to discern. Tables containing the full nu-
merical results, including the statistical spread, are at the
end of the paper.

The results are consistent across the embedding algo-
rithms and both steganalysis feature sets. SI offers a big-
ger boost in security than CMD. When combined in nmSI,
they improve empirical security w.r.t. SI schemes by more
than 4% in terms of PE for the largest tested payload. This
improvement naturally diminishes with decreased payload
because of the lower density of embedding changes. The
gain of synchronization of neighboring change polarities in
SI schemes (nmSI vs. SI) is slightly smaller (by about 1%)
than the gain provided by CMD vs. regular additive ver-
sion of the embedding. This is to be expected because
the SI and neighboring changes can be in conflict (point in
opposite directions).

ALASKA
On this dataset, we experimented with three types of

side-information for HILL: resizing, color conversion, and
quantization (the same processing was investigated in [6]).
For resizing, the RAW image was developed to a full reso-
lution true-color (8 bit per channel) image, then converted
to gray, resized (cubic kernel) so that the smaller size was
256, and centrally cropped to 256× 256. For color con-
version, the full resolution true-color image was resized to
a true-color image so that the smaller size was 256, cen-
trally cropped to 256×256, and then converted from RGB
to gray as above. For quantization, the image was de-
veloped to a 16-bit per channel TIFF, centrally cropped to
256×256, then converted to 16 bit gray, rounded and quan-
tized to 8 bit. The intermediate representation of the data
for resizing, color converion, and quantization, respectively,
is: RAW → RGB-FULL(8B) → GRAY-FULL(DBL)
scale→ RGRAY-256×256(DBL), RAW→ RGB-FULL(8B)→
RGB-256×256(8B) → GRAY-256×256(DBL), and RAW
→ RGB-FULL(16B) crop→ RGB-256×256(16B) → GRAY-
256×256-DBL(16B) → GRAY-256×256(16B) → GRAY-
256×256-DBL(8B). The abbreviation FULL stands for full
resolution, DBL for double Matlab format, and the num-
ber in round brackets is the number bits (quantization)
representing each pixel / color.

Because the images are smaller and also because this
dataset is more noisy than BOSSbase, the tested payloads
were increased to 0.2, 0.4, 0.6, and 0.8 bpp. The results ob-
tained with the maxSRMd2 features and the ensemble clas-
sifier are shown in Figure 4. The benefit of synchronizing
polarities of neighboring embedding changes is more than
4% for the largest payloads and it decreases for smaller
payloads. The results for resizing and color conversion are
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very similar both in terms of absolute detectability and
the improvement of combining synchronization with SI. For
quantization, the boost is smaller but consistent with the
smaller benefit of CMD applied to HILL in this dataset.

Due to the significantly larger computational complex-
ity of training the SRNet, we report the results only for SI
from color conversion. Sample tests with the selection-
channel-aware version of the SRNet, the SCA-SRNet,
showed that the knowledge of the selection channel either
did not help or brought only a small improvement over SR-
Net. This is probably due to the combined effect of SI and
synchronization as both modulate the selection channel in
a way that is not available to the steganalyst. Moreover,
because training the SCA version is slower, we only report
the results with the SRNet. The detection error of the SR-
Net is significantly lower than what has been achieved with
rich models, especially for lower payloads (Figure 5). The
results are, however, consistent with rich models in terms
of trends and mutual comparison across the four versions
of the embedding algorithm.

Conclusions
This paper proposes a novel idea to incorporate

synchronization of the polarities of neighboring embed-
ding modifications in steganography with side-information.
Both measures have previously been shown to improve em-
pirical security on their own. Also, both lead to asym-
metric embedding change probabilities of modifications by
±1. The proposed method first modulates the costs by
the side-information, and then embeds the message on
four interleaved sublattices. The first sublattice is em-
bedded using only the side-information, while the side-
informed costs of pixels in the remaining three sublat-
tices are further adjusted by a multiplicative factor that
non-linearly depends on a weighted average of neighboring
changes. The method is tested for three spatial-domain
embedding schemes, three types of side-information, on
two datasets, and with both rich-feature models and deep
neural detectors. The results are rather consistent across
all tested algorithms, types of side-information, and de-
tectors. The synchronization of embedding change polar-
ities offers an additional boost in empirical security over
purely side-informed schemes that is slightly smaller than
the boost of synchronizing the polarities in the original ad-
ditive schemes. We hypothesize that this due to the fact
that side-information may “point to the opposite direction”
than the majority of neighboring changes, which leads to
a conflict.

Our future effort will be directed towards a model-
based scheme in which the coupling of neighboring change
polarities is dictated by minimizing the KL divergence be-
tween the cover model and its asymmetric stego mixture
similar to the approach proposed in [24].

All code used to produce the results in this paper,
including the network configuration files are available from
http://dde.binghamton.edu/download/.

Acknowledgments
The work on this paper was supported by NSF grant

No. 1561446. Thanks belong to Jan Butora for preparing
the ALASKA datasets for this paper.

References
[1] P. Bas. Steganography via cover-source switching. In

IEEE International Workshop on Information Foren-
sics and Security, Abu Dhabi, December 4–7 2016.

[2] P. Bas. An embedding mechanism for natu-
ral steganography after down-sampling. In IEEE
ICASSP, New Orleans, March 5–9 2017.

[3] M. Boroumand, M. Chen, and J. Fridrich. Deep resid-
ual network for steganalysis of digital images. IEEE
Transactions on Information Forensics and Security,
14(5):1181–1193, May 2019.

[4] R. Cogranne, Q. Giboulot, and P. Bas. The ALASKA
steganalysis challenge: A first step towards steganal-
ysis "Into the wild". In R. Cogranne and L. Verdoliva,
editors, The 7th ACM Workshop on Information Hid-
ing and Multimedia Security, Paris, France, July 3–5,
2019. ACM Press.

[5] T. Denemark and J. Fridrich. Improving stegano-
graphic security by synchronizing the selection chan-
nel. In J. Fridrich, P. Comesana, and A. Alattar,
editors, 3rd ACM IH&MMSec. Workshop, Portland,
Oregon, June 17–19, 2015.

[6] T. Denemark and J. Fridrich. Side-informed steganog-
raphy with additive distortion. In IEEE Interna-
tional Workshop on Information Forensics and Secu-
rity, Rome, Italy, November 16–19 2015.

[7] T. Denemark and J. Fridrich. Model based steganog-
raphy with precover. In A. Alattar and N. D. Memon,
editors, Proceedings IS&T, Electronic Imaging, Me-
dia Watermarking, Security, and Forensics 2017, San
Francisco, CA, January 29–February 1, 2017.

[8] T. Denemark and J. Fridrich. Steganography with two
JPEGs of the same scene. In IEEE ICASSP, New
Orleans, March 5–9 2017.

[9] T. Denemark, V. Sedighi, V. Holub, R. Cogranne, and
J. Fridrich. Selection-channel-aware rich model for
steganalysis of digital images. In IEEE International
Workshop on Information Forensics and Security, At-
lanta, GA, December 3–5, 2014.

[10] T. Filler and J. Fridrich. Gibbs construction in
steganography. IEEE Transactions on Information
Forensics and Security, 5(4):705–720, 2010.

[11] E. Franz. Steganography preserving statistical prop-
erties. In F. A. P. Petitcolas, editor, Information Hid-
ing, 5th International Workshop, volume 2578 of Lec-
ture Notes in Computer Science, pages 278–294, No-
ordwijkerhout, The Netherlands, October 7–9, 2002.
Springer-Verlag, New York.

[12] E. Franz. Embedding considering dependencies be-
tween pixels. In E. J. Delp, P. W. Wong, J. Dittmann,
and N. D. Memon, editors, Proceedings SPIE, Elec-
tronic Imaging, Security, Forensics, Steganography,
and Watermarking of Multimedia Contents X, volume

8
290-8

IS&T International Symposium on Electronic Imaging 2020
Media Watermarking, Security, and Forensics

http://dde.binghamton.edu/download/


0.1 0.2 0.3 0.4 0.5
HILL 0.4356±0.0022 0.3678±0.0036 0.3063±0.0031 0.2552±0.0026 0.2115±0.0019

CMD-HILL 0.4548±0.0021 0.4001±0.0032 0.3498±0.0023 0.3015±0.0034 0.2631±0.0027
SI-HILL 0.4747±0.0012 0.4351±0.0025 0.3893±0.0019 0.3338±0.0034 0.2833±0.0018

nmSI-HILL 0.4742±0.0012 0.4426±0.0022 0.4075±0.0024 0.3673±0.0027 0.3263±0.0026

Table 2: PE for four versions of HILL, SRM, ensemble classifier, BOSSbase, side-information RGB to gray.

0.1 0.2 0.3 0.4 0.5
S-UNIWARD 0.4083±0.0020 0.3275±0.0022 0.2648±0.0030 0.2117±0.0026 0.1698±0.0026

CMD-S-UNIWARD 0.4332±0.0026 0.3640±0.0029 0.3095±0.0027 0.2626±0.0024 0.2209±0.0022
SI-S-UNIWARD 0.4549±0.0018 0.4021±0.0029 0.3419±0.0026 0.2836±0.0029 0.2344±0.0021

nmSI-S-UNIWARD 0.4575±0.0021 0.4135±0.0016 0.3667±0.0027 0.3216±0.0033 0.2781±0.0018

Table 3: PE for four versions of S-UNIWARD, SRM, ensemble classifier, BOSSbase, RGB to gray.

0.1 0.2 0.3 0.4 0.5
MiPOD 0.4206±0.0021 0.3510±0.0021 0.2948±0.0033 0.2640±0.0033 0.2061±0.0013

CMD-MiPOD 0.4419±0.0026 0.3912±0.0022 0.3439±0.0030 0.2985±0.0025 0.2590±0.0025
SI-MiPOD 0.4578±0.0023 0.4139±0.0031 0.3672±0.0028 0.3181±0.0029 0.2725±0.0033

nmSI-MiPOD 0.4611±0.0017 0.4242±0.0015 0.3897±0.0022 0.3543±0.0033 0.3109±0.0025

Table 4: PE for four versions of MiPOD, SRM, ensemble classifier, BOSSbase, RGB to gray.

0.1 0.2 0.3 0.4 0.5
HILL 0.3863±0.0014 0.3188±0.0030 0.2703±0.0030 0.2264±0.0015 0.1887±0.0023

CMD-HILL 0.4125±0.0030 0.3568±0.0030 0.3142±0.0030 0.2681±0.0016 0.2413±0.0025
SI-HILL 0.4832±0.0031 0.4336±0.0019 0.3740±0.0020 0.3191±0.0022 0.2669±0.0035

nmSI-HILL 0.4818±0.0020 0.4442±0.0033 0.3983±0.0032 0.3509±0.0029 0.3096±0.0026

Table 5: PE for four versions of HILL, maxSRMd2, ensemble classifier, BOSSbase, RGB to gray.

0.1 0.2 0.3 0.4 0.5
S-UNIWARD 0.3808±0.0022 0.3030±0.0025 0.2456±0.0029 0.2005±0.0023 0.1651±0.0016

CMD-S-UNIWARD 0.3951±0.0037 0.3344±0.0029 0.2839±0.0026 0.2435±0.0022 0.2104±0.0015
SI-S-UNIWARD 0.4784±0.0013 0.4264±0.0019 0.3656±0.0020 0.3045±0.0031 0.2518±0.0028

nmSI-S-UNIWARD 0.4800±0.0027 0.4400±0.0020 0.3867±0.0035 0.3385±0.0017 0.2916±0.0027

Table 6: PE for four versions of S-UNIWARD, maxSRMd2, ensemble classifier, BOSSbase, RGB to gray.

0.1 0.2 0.3 0.4 0.5
MiPOD 0.4002±0.0018 0.3331±0.0019 0.2750±0.0026 0.2313±0.0017 0.1926±0.0016

CMD-MiPOD 0.4249±0.0023 0.3669±0.0016 0.3233±0.0030 0.2793±0.0020 0.2425±0.0023
SI-MiPOD 0.4805±0.0021 0.4344±0.0024 0.3743±0.0017 0.3192±0.0023 0.2680±0.0030

nmSI-MiPOD 0.4806±0.0022 0.4463±0.0034 0.3952±0.0023 0.3527±0.0026 0.3048±0.0026

Table 7: PE for four versions of MiPOD, maxSRMd2, ensemble classifier, BOSSbase, RGB to gray.
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0.2 0.4 0.6 0.8
HILL 0.2985 0.2072 0.1533 0.1118

CMD-HILL 0.3282 0.2493 0.1946 0.1547
SI-HILL 0.4107 0.2897 0.2054 0.1503

nmSI-HILL 0.4171 0.3281 0.2497 0.1944
Table 8: PE for four versions of HILL, maxSRMd2, en-
semble classifier, ALASKA, side-information from RGB to
gray.

0.2 0.4 0.6 0.8
HILL 0.2683 0.1494 0.0918 0.0525

CMD-HILL 0.3113 0.1807 0.1117 0.0739
SI-HILL 0.4238 0.2649 0.1497 0.0858

nmSI-HILL 0.4356 0.2958 0.1804 0.1039
Table 9: PE for four versions of HILL, maxSRMd2, en-
semble classifier, ALASKA, side-information from quanti-
zation from 16 to 8 bits.

0.2 0.4 0.6 0.8
HILL 0.2963 0.2053 0.1563 0.1146

CMD-HILL 0.3249 0.2521 0.1981 0.1579
SI-HILL 0.4049 0.2944 0.2131 0.1514

nmSI-HILL 0.4232 0.3290 0.2500 0.1936
Table 10: PE for four versions of HILL, maxSRMd2, en-
semble classifier, ALASKA, side-information from resizing.

0.2 0.4 0.6 0.8
HILL 0.2047 0.1168 0.073 0.0483

CMD-HILL 0.2500 0.1567 0.099 0.0725
SI-HILL 0.3467 0.1947 0.1183 0.0756

nmSI-HILL 0.3657 0.2347 0.1556 0.1065
Table 11: PE achieved with SRNet for four different ver-
sions of HILL. ALASKA, side-information from RGB to
gray.
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