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Abstract 

A novel robust video hashing scheme is proposed in this 

paper. Unlike most existing robust video hashing algorithms, the 

proposed video hash is generated based on the motion vectors 

instead of the image textures in the video stream. Therefore, 

neither full decoding of the video stream nor complex computation 

of pixel values is required. Based on analysis of motion vector 

properties regarding their suitability for robust hashing, an 

improved feature extraction mechanism is proposed and several 

optimization mechanisms are introduced in order to achieve better 

robustness and discriminability. The proposed hashing scheme is 

evaluated by a large and modern video data set and the 

experimental results demonstrate the excellent performance of the 

proposed hashing algorithm, which is comparable or even better 

than the complicated texture-based approaches. 

Introduction  
Robust video hashing is a technique for video identification. 

In contrast to cryptographic hash, robust hash is less sensitive to 

data modification. The robust hash value remains unchanged as 

long as the perceptual content is preserved. This characteristic 

makes it especially suitable for multimedia content identification, 

because most processing of multimedia content will cause 

modifications of the binary representation, e.g. compression, 

resampling, brightness/contrast adjustment, etc., which will result 

in very different cryptographic hash values for the perceptually 

same content [1]. 

In the literature, most existing video hashing algorithms are 

based on the texture of the frames. Many of them are based on 

image hashing methods, where a video is understood as a sequence 

of images [2]. However, treating videos as a sequence of images 

does not make use of their specific characteristics. Therefore, 

dedicated video hashing algorithms have been developed [3-8], 

which make use of the temporal feature between frames. Machine 

learning and deep learning techniques are also used in video 

hashing [9-10]. All of these algorithms still rely on the texture of 

the video frames. This means that a video stream must be first 

decoded to a sequence of images and the video hash is calculated 

based on the image content. Decoding a video stream into frames 

and working on those images is rather slow. This issue can be 

addressed by using motion vector to construct the video hashes. To 

the best of our knowledge, there is currently no video hashing 

scheme using motion vectors. 

The goal of this work is to develop an efficient robust video 

hashing algorithm based on motion vectors. In order to be 

applicable for video identification in practical applications, the 

robust video hash shall be robust to common video processing, e.g. 

compression, brightness/contrast adjustment, scaling, spatial and 

temporal cropping, frame rate conversion, etc. While it stays stable 

after content-preserving modifications, the robust video hash shall 

be sensitive to perceptual content changing, i.e. the hash values 

shall be of good discriminability between perceptually different 

video content.  

Motion vectors are stored separately as side data in H.264 

encoded videos [11], which can be extracted without decoding the 

pixel data. Thus, in contrast to texture based hashes, motion 

vectors can be extracted without decoding the entire video content. 

Therefore, a hashing scheme only based on motion vectors can 

save a significant amount of computation during hash generation. 

This enables a motion vector based video hashing technique to be 

potentially much faster than conventional texture based methods. 

Efficiency is particularly important for video content, as it usually 

involves a huge amount of data. 

This paper is organized as follows. In Section 2, the properties 

of motion vectors are introduced and their suitability for robust 

hashing is examined. The hash construction is presented in Section 

3 and the hash comparison approach is given in Section 4. 

Experimental results are shown in Section 5. We conclude the 

paper in Section 6.  

Properties of Motion Vectors 
Motion vectors have three primary properties: position, 

direction and length. In this section, we analyze which properties 

are suitable for robust hash generation.  

Positon 
As any vector, a motion vector has a start and an end point. 

The start point is the spatial source position, while the end point is 

the spatial target position in the motion compensation process. The 

target position is always the center of the (sub-)macroblock, 

leading to regular, grid-like structures. This means the target 

position does not represent the characteristics of a video, but rather 

the characteristics of the H.264 standard. 

Both the source and the target positions are susceptible to 

spatial attacks. For example, cropping, rotation, translation and 

mirroring will change both positions. In case of skewing and 

change of aspect ratio, the relation between the source and the 

target positions will also be altered. In addition, in re-encoding 

after video processing the encoder may choose different sources to 

predict particular (sub-)macroblocks, resulting in significant 

change of some motion vectors. 

Therefore, the source and the target positions of motion 

vectors are subject to change in video processing and neither of 

them is suitable for robust hash generation. 

Direction 
Motion vectors do not always reflect the actual movement of 

the video content. Motion vectors are calculated by the motion 

estimation process in the encoder, which estimates the motion of 

each macroblock individually, which is not necessarily the same as 

the overall motion of the object represented by the block. This 

introduces some “chaos”, causing motion vectors not matching the 

overall direction of movement.  

In addition, the direction of motion vectors is susceptible to 

some attacks, e.g. rotation, skewing and mirroring. Also re-

encoding will cause severe changes of vector direction. Due to the 

lack of fixed point for reference, the absolute direction of motion 
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vectors is not suitable for robust hashing. A possible solution to 

cope with these circumstances is to use the difference between 

frames. However, our early experiments show that even with 

advanced filtering, the vector direction is still rather unstable after 

re-encoding. Therefore, the direction property is not used in our 

robust hashing scheme. 

Length 
The length of a motion vector represents the amount of 

movement of a (sub-)macroblock. Although in some cases the 

length of motion vectors could also deviate vastly from the actual 

object movement, our early experiments show that the length is 

much more stable under attacks than the direction. Only simple 

filtering is required to make the length property usable for robust 

hashing. Hence, the length of motion vectors is used to construct 

the robust hash in our scheme. 

However, the length of a motion vector will be changed in 

some video operations like scaling, skewing and change of aspect 

ratio. Therefore, these issues have to be addressed by 

corresponding mechanisms and a proper feature need to be 

extracted based on the length of motion vectors. 

 

Figure 1. Video hash generation 

Hash Construction 
Based on the length of motion vectors, a histogram-based 

feature is extracted from the video to construct the robust hash. 

The hash generation consists of the following steps, as illustrated 

in Figure 1. 

Motion Vector Extraction and Filtering 
First, motion vectors are extracted frame by frame from the 

video stream. Usually many motion vectors have a length of zero, 

which are useless for hash construction and therefore are filtered 

out during the extraction process.  

For the motion vectors with a non-zero length, their lengths 

are normalized by dividing the frame diagonal. The normalization 

helps to mitigate the threat of resolution-changing attacks like 

scaling and change of aspect ratio.  

Feature Histogram Creation 
Figure 2 shows the length histogram of the extracted non-zero 

motion vectors from 1000 videos in our test data set. Since the 

normalized lengths of most motion vectors are rather small, only 

the vectors in the range from 0 to 0.1 is plotted, presenting more 

than 99.62% of all motion vectors. The red line is the moving 

average, showing the trend. Note that a logarithmic scale is used 

for the y-axis. 

For hash construction, it is more important to analyze the 

variation of motion vectors between videos. If motion vectors 

within a certain length range show more variation between videos 

than other vectors, they are more valuable for hash construction 

and should get a higher weight. On the contrary, omnipresent 

vector lengths should be given a lower weight or can be neglected 

completely.  

 

Figure 2. Distribution of motion vector lengths 

As shown in Figure 2, the length distribution is very 

heterogeneous. The quantity of short motion vectors is far more 

than long vectors. Therefore, the variation has to be calculated 

using relative values to avoid biasing towards the vector lengths 

that occur more frequently as following 

𝜇𝑖 =
1

𝑁
∑ 𝑥𝑛,𝑖

𝑁
𝑛=1  (1) 

𝑣(𝑋𝑖) = {
1

𝑁
∑

|𝑥𝑛,𝑖−𝜇𝑖|

𝜇𝑖

𝑁
𝑛=1 𝑖𝑓 𝜇𝑖 > 0

0 𝑖𝑓 𝜇𝑖 = 0
 (2) 

where 𝑥𝑛,𝑖 is the average vector count per frame for the i-th bin in 

the length histogram of the n-th video. N is the total number of 

videos and 𝜇𝑖  is the average vector count per frame across all 

videos. |𝑥𝑛,𝑖 − 𝜇𝑖| 𝜇𝑖⁄  represents the relative difference between 

𝑥𝑛,𝑖 and the global average 𝜇𝑖. 𝑣(𝑋𝑖) indicates the variation of the 

average vector count 𝑥𝑛,𝑖 within the i-th bin across all videos.  

Figure 3 shows the distribution of the variation of motion 

vector lengths. The spikes on some bins of short length are caused 

by the fact that the motion vectors of these lengths only exist in 

one single video. The red line in Figure 3 is the moving average, 

which shows long motion vectors have higher variation between 

videos than short vectors. In other words, long motion vectors are 

more representative. However, as above-mentioned, the number of 

long vectors are far less than the short ones, which means that long 

vectors are valuable but they do not occur frequently. Therefore, 

although the shorter motion vectors have lower variation and more 

single spikes, they should not be ignored in the hash construction. 

To take both variation and quantity into account, we multiply the 

normalized trend lines of Figure 2 and Figure 3. The result is 

shown in Figure 4.  

The area under the curve in Figure 4 can be divided into 

equally sized slices, as indicated by the blue lines as an example. 

In this example, the area is divided into 4 slices, which means that 

a feature histogram of motion vectors with 4 bins shall be created 

for each frame. Each bin contains the motion vectors of lengths 

falling in the corresponding slice, serving as a feature value. Figure 

5 shows the sequence of the first bin values of all frames in a 

video. We refer to this sequence as a feature signal and each value 

in the signal as a sample.  

The area under the curve in Figure 4 can be divided into more 

or less equally sized slices, resulting in feature histograms with 

different number of bins. Table 1 lists the bin ranges for 

histograms with different number of bins.  
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Figure 3. Variation of motion vector lengths 

 
Figure 4. Multiplication of normalized vector length and variation distribution 

 
Figure 5. Feature signal of the first bin values (test video 1080p) 

Table 1 Bin ranges of histograms with different number of bins 

 3 Bins 4 Bins 5 Bins 6 Bins 

Bin 1 0.00138 0.00098 0.00078 0.00065 

Bin 2 0.00467 0.00254 0.00180 0.00138 

Bin 3 1.0 0.00665 0.00363 0.00254 

Bin 4  1.0 0.00856 0.00467 

Bin 5   1.0 0.01034 

Bin 6    1.0 

 

Feature Histogram Transform 
For videos with different resolutions, the amplitude of their 

feature signals varies greatly, because high-resolution videos tend 

to have much more motion vectors than low-resolution videos. To 

make the feature signal invariant to scaling, instead of using the 

absolute vector count and global average per bin, the number of 

vectors of each bin is divided by the total number of vectors of the 

current frame, leading to a relative histogram for that particular 

frame. Then the relative value is subtracted and subsequently 

divided by the relative global average. The relative global average 

can be derived by dividing the number of vectors in each bin by 

the total vector number. 

I-Frame Bridging 
Since there are no inter-prediction data for I-frames, the 

number of motion vectors for I-frames is always zero. This leads to 

undesired notches in the feature signal. Moreover, these notches do 

not occur at the same time point when comparing different videos. 

To remove these notches, the gap caused by I-frames is bridged by 

replacing the zero number of vectors by the average values of its 

two direct neighbor frames. If the first or the last frame has zero 

motion vectors, a linear interpolation based on the next two 

neighbors is done. If one of them is also zero, then the value of the 

other one is taken.  

Low-pass Filtering 
Even though the notches caused by I-frames are removed by 

bridging, adjacent sample values in feature signals still vary 

greatly, resulting in unstable high frequency variance. Even just re-

encoding may lead to different sample values, resulting in different 

signal shapes not matching to each other. To mitigate this problem, 

the feature signal is smoothed by applying a low-pass filter to 

extract the long-term trend that is more stable under attacks. 

Moving average filters with different window sizes are used in our 

test. The red line in Figure 5 shows a low-pass filtered signal using 

a window size of 11 samples. 

Resampling 
Videos can have different frame rates. When the same video 

is re-encoded with a different frame rate, the drift over time will 

result in different signal shapes and length, which causes matching 

problem when comparing their feature signals. To address this 

problem, the feature signal is resampled to a fixed frame rate. In 

our test, 25 frames per second (fps), which is one of the commonly 

used frame rates, is used.  

Normalization 
The range of sample values vary in case of feature histograms 

with different number of bins. The more number of bins, the 

narrower is the value range. In addition, the range of sample values 

also vary for different vector lengths. The longer the vector, the 

larger is the value range. However, short vectors occur much 

frequently than long vectors. Therefore, using the entire global 

value range for normalization leads to a loss of precision.  

In order to achieve a high resolution for the actual data range, 

a special [-1, 1] normalization is used to adjust the feature signal. 

The 0.2-quantile is mapped to -0.6, while the 0.8-quantile is 

mapped to 0.6. The sample values smaller than the 0.2-quantile 

and the values larger than 0.8-quantile are linearly mapped to the 

values in the range [-1.0, -0.6] and [0.6, 1.0], respectively. When 

the values are 5/3 times smaller than 0.2-quantile or larger than 

0.8-quantile, they are clipped and mapped to -1.0 and 1.0, 

respectively. The following equation is used to determine the p-

quantile. 

𝑥𝑝 = {

1

2
(𝑥𝑝𝑁 + 𝑥𝑝𝑁+1) 𝑖𝑓 pN ∈ ℤ

𝑥⌊𝑝𝑁⌋+1 𝑖𝑓 pN ∉ ℤ
 (3) 

where N is the length of the feature signal and ⌊⋅⌋ indicates the 

floor function.  

Quantization and Hash Generation 
To get a more compact hash, quantization is applied on both 

temporal- and y-axis. On the temporal axis, this is done by 

dividing the samples into segments and calculating the average 

value for each time-segment. The quantization on temporal axis 

has similar effect as low-pass filtering, which can be omitted when 

temporal quantization is sufficient.  

On the y-axis, the process is similar. The y-axis is divided 

into segments. The number of segments are determined by the 

requested resolution. For instance, for a resolution of 4 bits per 

sample, 16 segments shall be divided on y-axis. The sample values 

falling into the first segment are encoded as 0000, those in the 

second segment are encoded as 0001, and those in the last segment 

as 1111.  
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Hash Comparison 
The normalized cross-correlation is used to compare the 

similarity between hashes, which is defined as  

𝑛𝑜𝑟𝑚_𝑐𝑜𝑟𝑟(𝑥, 𝑦) =
∑ 𝑥𝑖∙𝑦𝑖

𝑁
𝑖=1

√∑ 𝑥𝑖
2𝑁

𝑖=1 ∙∑ 𝑦𝑖
2𝑁

𝑖=1

 (4) 

where x and y are two feature signals and both x and y contain N 

samples.  

Feature signals may be of different lengths, which are 

determined by the number of frames in the video stream. For 

instance, the feature signals generated from temporally cropped 

video clips are shorter than those of the original videos. To identify 

cropped videos, the feature signals are compared with time shift, 

resulting in a sequence of similarity values. The time shift leading 

to the maximal similarity indicates the best timely alignment of 

two videos.  

Experimental Results 

Test Data Set 
To evaluate the proposed hash scheme, a video data set is 

created, which includes 2000 videos in 11 categories. The duration 

of each video ranges from 40 to 65 seconds. The videos in each 

category are randomly divided into two sets: known set and 

unknown set. Each set contains 1000 videos in total. The known 

set is used to create a reference hash database. Table 2 lists the 

number of videos in each category and the video lengths.  

From the videos in the known set, a test set of attacked videos 

is created. In each category, half of the videos are randomly 

selected to form the test set, i.e. the attacked set contains 500 

videos in total. For each video in the test set, eight kinds of attacks 

are applied. With different parameters in each attack, 36 attacked 

versions are created per video, resulting in 18000 attacked videos 

in the attacked set. Table 3 lists the attack categories and the 

applied parameter values. Note that in order to show the limit of 

the proposed scheme some selected attack parameters are rather 

extreme and the attacked videos do not have acceptable quality any 

longer. For instance, the perceptual quality gets severely degraded 

when reducing the frame rate to 50% of the original one or 

applying a constant rate factor of 45.  

Table 2 Test video data set: known set and unknown set 

Category 

KNOWN UNKNOWN 

Count 
Duration 

[hh:mm:ss] 
Count 

Duration 
[hh:mm:ss] 

Animation Movie 31 00:31:14 31 00:30:16 

Cinema 29 00:28:56 28 00:28:00 

Comedy and Fun 34 00:34:06 35 00:34:33 

House Building 97 01:37:10 98 01:37:55 

Music Video 33 00:32:55 32 00:31:44 

Nature and Travel 145 02:25:09 144 02:23:58 

News 79 01:18:52 78 01:18:01 

Quiz Shows 150 02:29:50 150 02:30:00 

Science and 
Technology 

129 02:08:54 130 02:10:26 

Sports 123 02:03:01 124 02:04:01 

Talk Shows 150 02:29:36 150 02:30:12 

Total 1000 16:39:47 1000 16:39:10 

Table 3 Attack categories and parameters 

Attack Category Parameter Description 
Parameter 

Value 

Random Frame 
Dropping 

n frames dropped, 
k times 

n=1,5,10 
k=1,2,4 

Frame Rage 
Change 

multiple of the source 
frame rate 

0.5, 0.75, 
1.25,1.5 

Mirroring mirroring type 
horizontal, 
vertical 

Reduce Quality constant rate factor (CRF) 30,35,40,45 

Rotation rotation in degrees 
-15,-10,-5, 
5, 10, 15 

Scaling 
multiple of the original 
dimension 

0.4, 0.6, 
0.8, 1.2, 1.4 

Spatial Cropping 
remaining part as multiple 
of the original dimension 

0.7, 0.8, 0.9 

Temporal Cropping 
cropped part in seconds 
from the beginning 

5, 10, 15 

 

Test Parameters 
In the evaluation, the parameter values listed in Table 4 are 

used, which are determined by our parameter optimization tests. 

The low-pass filter is turned off, i.e. setting the size to one sample. 

The test results show that additional filtering does not improve the 

results when a proper resolution is chosen in the horizontal 

quantization step. Two hashes are considered as a match if the 

similarity value exceeds the given threshold.  

Table 4 Test Parameters 

Parameter Value 

Low-pass Filter Size 1 Sa (off) 

Horizontal Resolution 10 Sa 

Vertical Resolution 32 Sa 

Similarity Threshold 0.4 

 

Results of Single Bin 
The proposed scheme is first tested with hash values 

generated by a single bin. The hash values of the known set are 

generated by each single bin of a 4-bin feature histogram to create 

the hash database. Subsequently, the hash values of the unknown 

and the attacked sets are generated and compared with the hash 

database. Figure 6 and Figure 7 show the true positive rate and the 

false positive rate of the unknown set and the attacked set. For the 

known set, a true positive of 1.0 and a false positive rate of 0.0 are 

achieved throughout the entire threshold value range. 

In Figure 6 and Figure 7, it is shown that when a similarity 

threshold is chosen to ensure a high true positive rate, the false 

positive rate keeps high. Conversely, if a low false positive rate is 

ensured, the true positive rate decreases significantly. The hash 

generated by Bin 1 achieves the best results. However, it can not 

achieve a satisfactory true positive rate while keeping a low false 

positive rate at the same time. Before the false positive rate gets 

too high, only a true positive rate of 0.85 can be reached. Therefore, 

more than one bin need to be combined to reduce the false positive 

rate. 

Results of Combined Bins 
Combining hashes from more than one bin can improve the 

false positive rate. However, considering all bins does not always 

lead to better results, but can have a negative impact on the true 

218-4
IS&T International Symposium on Electronic Imaging 2020

Media Watermarking, Security, and Forensics



 

 

positive rate and the performance. Therefore, only two or three 

bins, which are performing best, are combined in the following 

tests. 

To determine the best performing bins, the results of feature 

histograms with different number of bins are analyzed using the 

same parameter settings. The results are listed in Table 5, which 

give the best three bins of the feature histograms containing 3 to 6 

bins. Note that the first and the last bin always have the best 

performance, which conforms to our previous analysis that the 

short motion vectors have largest quantity and the longest vectors 

have most variation. 

Based on the results of best performing bins, two bin- 

combination strategies are defined as follows. 

Two-Bins The two best performing bins are used. For each 

bin, the best match is determined independently from the other bin. 

A pair of hashes are only considered as a match, if the results from 

both bins are the same.  

Majority Voting The three best performing bins are used. 

The best match of each bin is determined independently. Only 

when two of three results are the same, will it be considered as a 

match. 

Compared to the results of single bin, both the two-bins and 

the majority voting combination strategies achieve significant 

lower false positive rates at the cost of slightly lower true positive 

rates. The majority voting strategy gets good true positive rate, but 

the false positive rate is relatively higher in general. In comparison, 

the two-bins strategy shows better trade-off, achieving a true 

positive rate of 0.95 for the attacked set and a false positive rate of 

0.01 for the unknown set.  

Figure 8 shows the true positive rates for each individual 

attacks. The proposed scheme delivers very good and stable results 

across all attack categories. For rotation, random frame dropping 

and mirroring true positive rate of 98% and higher is reached in all 

test cases. For scaling with a factor of 0.6 and up, temporal 

cropping of 5 seconds, frame rate changes down to 0.75, spatial 

cropping to 90% and quality reduction with a CRF of 30, the 

aforementioned true positive rate is also achieved. Only in case of 

more severe attacks, the true positive rate decreases. For example, 

using only half of the original frame rate, downscaling the video to 

only 40% of the original size or reducing the quality to lower 

levels significantly affects the detection rates. However, most of 

these attacks have a perceivable impact on the content, leading to 

unacceptable video quality.  

Note that nearly all videos that cannot be correctly detected 

lead to a false negative instead of a false positive. This property is 

crucial for practical applications of illegal video identification and 

screening.  

Discussion 
A direct comparison with other existing video hash algorithms 

is not easily feasible because of using different data sets and 

attacks. Therefore, only qualitative result comparison is provided 

here. A precision and recall rate of 95% each is reported in [3]. 

Using the same definition for precision and recall as in [2], our 

scheme achieves a recall rate of 94.7% and a precison rate of 

99.9% on the attacked set. The ROC curve presented in [2] shows 

similar results. Approximately 95% of videos have been correctly 

detected when accepting a false positive rate of 1%. This shows 

that our scheme compares well to other more complex schemes in 

the previous work. 

 
Figure 6. True positive rate of the unknown and the attacked sets 

 
Figure 7. False positive rate of the unknown and the attacked sets 

Table 5 Top three best-performing bins 

 Primary Bin Secondary Bin Tertiary Bin 

3 Bins Bin 1 Bin 2 Bin 3 

4 Bins Bin 1 Bin 4 Bin 2 

5 Bins Bin 1 Bin 5 Bin 2 

6 Bins Bin 6 Bin 1 Bin 2 

 

Conclusion 
In this work, a novel motion vector based robust video 

hashing scheme has been proposed. In contrast to the texture-based 

hashing algorithms in the literature, the proposed hashing scheme 

does not require full decoding of the video stream, because the 

hash value is generated by only using the features extracted from 

the motion vectors. To improve the hash discriminability and the 

robustness, a histogram-based feature extraction mechanism is 

proposed and several optimization steps are introduced. The good 

test results demonstrate that robust video hashing based on motion 

vectors is feasible and performs well. 
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Figure 8. True positive rate of the attacked set 
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