
Score-based likelihood ratios for camera device identification
Stephanie Reinders+, Li Lin+, Wenhao Chen†, Yong Guan†, Jennifer Newman+

+Department of Mathematics, †Department of ECPE, Iowa State University, Ames, Iowa, USA, {srein, llin, wenhaoc, guan, jlnew-
man}@iastate.edu

Abstract
Many areas of forensics are moving away from the notion

of classifying evidence simply as a match or non-match. Instead,
some use score-based likelihood ratios (SLR) to quantify the sim-
ilarity between two pieces of evidence, such as a fingerprint ob-
tained from a crime scene and a fingerprint obtained from a sus-
pect. We apply trace-anchored score-based likelihood ratios to
the camera device identification problem. We use photo-response
non-uniformity (PRNU) as a camera fingerprint and one minus
the normalized correlation as a similarity score. We calculate
trace-anchored SLRs for 10,000 images from seven camera de-
vices from the BOSSbase image dataset. We include a comparison
between our results the universal detector method.

Introduction
Digital image forensics consists of two main types problems:

source identification problems and forgery and tampering detec-
tion problems. Source identification problems can be further di-
vided into two key problems: camera model identification and
camera device identification. The goal of camera model identifi-
cation is to identify the particular camera make and model used
to capture a digital image. The camera device identification prob-
lem goes a step further and aims to identify not only the make
and model but the specific camera device used to capture an im-
age. This paper applies score-based likelihood ratios (SLR) to the
camera device identification problem. We consider the scenario
where, given a digital image from an unknown camera device and
a specific known camera device, we want to determine whether
the image originated from that specific device. Not only do we
want to decide whether the image originated from that device, we
also want to determine the strength or weakness of the evidence
in favor of that decision. SLRs afford us a means of quantifying
the weight of the evidence.

The vast majority of work in camera device identification
employs a universal detector method [1, 2, 3, 4, 5, 6, 7, 8]. Photo-
response non-uniformity (PRNU) [9] serves as a camera finger-
print for the specific camera device under consideration. The
noise residual is estimated from the image in question and com-
pared to the camera fingerprint using a similarity score, such as
peak-to-correlation energy (PCE). A set of matching similarity
scores – scores between noise residuals of images and camera fin-
gerprints that originate from the same camera device – is gener-
ated from a database of training images. Likewise, a set of non-
matching scores – scores between noise residuals of images and
camera fingerprints that do not originate from the same camera
device – is generated. The sets of matching and non-matching
scores are used to select a decision threshold t. The score be-
tween the noise residual of the image in question and the camera
fingerprint of the specific device is compared to the threshold t

and a binary decision of match or non-match is made. The mo-
tivation behind using a universal detector is that once a reference
dataset of matching and non-matching scores is created, the deci-
sion threshold does not need to be readjusted if the input image or
camera fingerprint changes.

Score-based likelihood ratios (SLR) quantify the weight of
evidence, providing more information than a binary decision of
match or non-match. SLRs have been applied to various fields
of forensics, such as shoeprint [10], glass [10], and handwriting
[11] evidence. Hepler et. al. [11] showed that the end result of
the SLR for handwriting evidence depends heavily on the method
used to define non-matches and in some cases different definitions
lead to different conclusions on the same evidence. They present
three methods for defining non-matches – source-anchored, trace-
anchored, and general match. We adapt the three definitions for
non-matches presented by Hepler et. al. to fit the device iden-
tification problem. The source-anchored method considers non-
matching scores between a camera fingerprint from the specific
camera device and noise residuals of images from other cam-
era devices. The trace-anchored method considers non-matching
scores between the noise residual of the image in question and
camera fingerprints from devices other than the specific device.
Lastly, the general match method considers non-matching scores
between the noise residual of an image from a device other than
the specific device and a camera fingerprint from a second device
other than the specific device.

SLRs for camera device identification use a similarity score
and PRNU as the camera fingerprint. They create sets of match-
ing and non-matching scores like the universal detector method.
Instead of choosing a decision threshold, SLRs fit probability den-
sity functions to both sets of scores. Both pdfs are evaluated at the
score between the noise residual of the image in question and the
camera fingerprint, and the SLR is the ratio of the results. SLRs
were first applied to the camera device identification problem by
Nordgaard and Hoglund in 2011 [12]. Van Houten, Alberink, and
Geradts wrote a follow-up paper later that year [13]. Both papers
only consider the source-anchored definition of non-matches. To
the best of our knowledge, SLRs have not appeared in the cam-
era device identification literature since. The main contribution of
this paper is to introduce the trace-anchored definition of SLRs to
camera device identification.

Likelihood ratios provide another method for quantifying the
weight of evidence. The key difference between score-based like-
lihood ratios (SLR) and likelihood ratios (LR) is that SLRs model
similarity scores applied to features while LRs directly model fea-
tures. Initially, LRs were applied to the camera model identifica-
tion problem for RAW images [14] and JPEG images [15]. Later
they were adapted to be suitable for the camera device identifica-
tion problem for RAW images [16] and JPEG images [17]. The
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universal detector method, which relies on similarity scores and
PRNU, has been tested against cropping [3], scaling [3], gamma
correction [18], denoising [18] and compression [7, 18]. The uni-
versal detector method has also been extended to account for lens
distortion [19]. Because of its relative newness in the literature,
the LR model has not yet been tested, to our knowledge, against
such transformations. For this reason, we chose to expand the use
of SLRs in device identification, instead of focusing on LRs.

We present a framework for trace-anchored score-based like-
lihood ratios for the camera device identification problem in the
Score-Based Likelihood Ratios section. We summarize relevant
work in the Related Work section. Our methodology and experi-
ments are detailed in the Experiments section.

Score-Based Likelihood Ratios
In this section, we first discuss photo-response non-

uniformity and similarity scores. Then we introduce our frame-
work for trace-anchored score-based likelihood ratios.

Photo Response Non-Uniformity for Device Iden-
tification

Lukas et. al. [9] introduce the method of using photo-
response non-uniformity (PRNU) as a camera fingerprint to ad-
dress the device identification problem. Each camera imprints its
unique camera fingerprint in every image that it takes, but the fin-
gerprint is very faint and exists at the noise level of the image.
Lukas, Fridrich and Goljan introduce methods of extracting the
PRNU from a camera and the noise residual from individual im-
ages [9].

We use the PRNU extraction code [20] in our experiments.
Here we summarize the PRNU framework used in [5]. Let I be
the image output from a camera that includes noise, and let I0 be
the perfect image absent any noise. Denote the true PRNU, or
camera fingerprint, as K, and denote all other noise components
from the image as Θ. Then the image output I can be modeled as

I = I0 + I0K +Θ (1)

where multiplication is performed element-wise. In practice, we
are unable to acquire the true camera fingerprint K, so instead we
estimate it with a maximum likelihood estimator K̂. We obtain
K̂ by first acquiring N images I(1), I(2), ...I(N) from the camera in
question. Using a denoising filter F we estimate the noise residu-
als from each image W (i) = I(i)−F

(
I(i)

)
for i = 1,2, ...N. Then

the PRNU estimate is

K̂ =
∑

N
i=1 W (i)I(i)

∑
N
i=1

(
I(i)

)2 (2)

Similarity Score
Normalized correlation was used as the similarity score in

early camera device identification works [1, 9, 18, 21]. The peak-
to-correlation energy (PCE) score later replaced normalized cor-
relation as the similarity score [3, 4, 5]. Goljan showed that if
a periodic signal such as linear pattern is present, the decision
threshold needs to be adjusted if normalized correlation is the
score, but does not need to be adjusted if PCE is the score [4].
We used PCE as the similarity score for our first score-based like-
lihood ratio experiments, but the large variance of PCE scores

(on the order of 106) on our image data resulted in a large num-
ber of inconclusive SLR values. (Inconclusive results occur when
the SLR defined in equation 5 has zero in the denominator and
a very small number in the numerator.) Normalized correlation
has much smaller variance on our image data (on the order of
10−3) than PCE so it produces many fewer inconclusive SLR re-
sults. The primary benefit of the PCE is that the decision thresh-
old is more stable than with normalized correlation. Because we
compute a decision threshold every time we compute a new SLR,
we can safely use normalized correlation as our similarity score.
More precisely, we use one minus the normalized correlation as
our similarity score because it can be implemented as a built-in
distance function in Matlab.

SLR Framework
In this section we will introduce a framework for a score-

based likelihood ratio for the camera device identification prob-
lem. This framework applies to the situation where forensic an-
alysts have two pieces of evidence: (1) a digital image eu from
an unknown camera device that was involved in a crime; and (2)
a camera fingerprint es from a suspect’s camera device cs. We
make the assumption that the analysts have access to the device
cs and are able to take images on it for analysis. We refer to the
device cs as the specific known device. The analysts want to deter-
mine whether the questioned image eu and the camera fingerprint
es originate from the same camera device, namely the suspect’s
device cs. In order to compute an SLR the analysts would also
identify a set ca of relevant alternative camera devices. These al-
ternative devices might be cameras obtained from other suspects
for example.

The prosecution’s hypothesis is that questioned image eu and
a camera fingerprint es originated from the same camera device,
while the defense’s hypothesis is that image eu and camera finger-
print es did not originate from the same camera device:

Hp : eu and es originated from the same camera device (3)

Hd : eu and es didn’t originate from the same camera device (4)

Because it is hard to compare eu and es directly, we will in-
stead compare the noise residual xu of image eu with the camera
fingerprint es. We will use the similarity score ∆ to compare xu
and es. We choose ∆ to be one minus the sample correlation (im-
plemented using the Matlab function pdist2 with the correlation
distance metric).

In order to determine the range of scores that could be ex-
pected if the prosecution’s hypothesis is true we need to generate
a set of matching scores Ds for the specific device cs. We gen-
erate this set of scores by randomly selecting 50 images from cs
and computing a PRNU reference image et . Note that the camera
fingerprint et is not necessarily the same as the camera fingerprint
es although they are both from the same camera. We randomly
select another 50 images from cs not used to create et . For each
of these 50 images we compute the score between et and the noise
residual of the image. We repeat this process five times, each time
randomly selecting 50 images for the PNRU reference image and
a disjoint set of 50 images for comparison.

To determine the range of scores that could be expected if
questioned image eu originated from a camera device other than
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cs, we generate a set of trace-anchored non-matching scores Du
conditioning on the questioned image eu. For each device in the
set of alternative camera devices ca we randomly select 50 im-
ages and create a PRNU reference image and calculate the score
between the noise residual xu of image eu and the PRNU reference
image. We repeat this 5 times for each device in ca.

We fit probability density functions fm to the set of matching
scores Dm and fn to the set of non-matching scores Dn with the
Matlab function fitdist using a kernel distribution object and
the normal kernel function. Similar methods are used in [22, 23].
The trace-anchored score-based likelihood ratio is defined

SLRtrace =
fm(∆(xu,es) = δ | es,Hp)

fn(∆(xu,es) = δ | xu,Hd)
. (5)

The numerator of the SLR is the pdf fs evaluated at the score
δ = ∆(xu,es), while the denominator is the pdf fu evaluated at
δ . If the SLR is greater than 1 then the value of the numerator
is larger than the value of the denominator. This means that the
score δ is more like the matching scores than the non-matching
scores. The larger the SLR is than 1, the stronger the evidence
is in favor of the prosecution’s hypothesis over the defense’s hy-
pothesis. Conversely, an SLR less than 1 supports the defense’s
hypothesis over the prosecution’s, and the closer the SLR is to
zero the stronger that support is.

Related Work
In this section we summarize the previous work that has been

done with source-anchored SLRs and universal detectors in cam-
era device identification.

Source-anchored SLR for camera device identifi-
cation

Score-based likelihood ratios were first applied to the device
identification problem by Nordgaard and Hoglund [12], although
the authors use the term “approximate likelihood ratio.” They use
the source-anchored method to define non-matches and perform
simulations on a set of two camera devices. Van Houten, Alberink
and Geradts expanded Nordgaard and Hoglund’s experiments to
include ten devices [13], also using the source-anchored SLR. We
build upon this previous work by considering the trace-anchored
SLR, which has not been presented in device identification before.

Universal Detector Methods
Ideally, an analyst would simply be able to compare the noise

residual of a questioned image with the PRNU of the suspect’s
camera device and determine whether they match. Unfortunately,
no such direct method exists. Instead, the analyst looks at many
examples of matches, comparing the noise residuals of images
with the PRNU of their source cameras, and non-matches, com-
paring the noise residuals of images with the PRNU of other cam-
eras. More specifically, a similarity score is used to measure the
similarity between a noise residual and a PRNU estimate. The an-
alyst considers a set of matching scores and non-matching scores
and determines whether the particular score δ between the ques-
tioned image and the PRNU of the suspect’s camera looks more
like a matching score or a non-matching score. The traditional
approach chooses the threshold t that produces a specified false
acceptance rate, and then compares δ to the threshold t to decide
match or non-match.

Experiments
Methodology

We use 10,000 images from the BOSSbase image database
[24]. The images come from seven digital still cameras: Canon
EOS 400D, Canon EOS 40D, Canon EOS 7D, Canon Rebel XSi,
Pentex K20 D, Nikon D70 and Leica M9. We start with the im-
ages in their native camera format and save them as TIFF files in
Photoshop. To avoid the complexity introduced by different sizes
of images, we center-crop the images to 512×512 and save them
in the png file format in Matlab. We use the code referenced in
[5] and made available on their website [20] to estimate PRNU
reference images and extract noise residuals from individual im-
ages. We use 50 images to create PRNU reference images in all
of our experiments. We use one minus the normalized correla-
tion as the similarity score. We use kernel density estimation with
Gaussian kernels to fit the probability density functions following
work done in [22, 23].

Results
We compute trace-anchored SLRs for each image in the

BOSSbase dataset as follows: we in turn treat each image as the
questioned image. For each questioned image eu, we in turn treat
each BOSSbase device as the specific known device cs. We es-
timate the noise residual xu from eu and the camera fingerprint
es from 50 images from cs and calculate the trace-anchored SLR
for eu given es as described in the Score-Based Likelihood Ratios
section.

Figure 1 shows boxplots of the SLRs calculated for images
from the Canon EOS 7D device when each BOSSbase device is
in turn treated as the specific known source device. The first box-
plot on the left in Figure 1 represents the case where we have
true matches. I.e. we compute the SLR between images from the
Canon EOS 7D and camera fingerprints from the Canon EOS 7D.
The other six boxplots in Figure 1 show the cases where we have
non-matches. I.e. we calculate the SLR between images from the
Canon EOS 7D and camera fingerprints from other devices. As
desired, the log(SLR) values are greater than zero for the match-
ing cases, and mostly less than zero for the non-matching cases.
We see similarly good results for the Canon Rebel XSi, Leica
M9, Nikon D70, and Pentex K20D in Figures 2, 3, 4, and 5 re-
spectively.

The results are not as good for images from the Canon EOS
40D and the Canon EOS 400D and are displayed in Figures 7
and 6. For the Canon EOS 40D, we see that the log(SLR) val-
ues for true matches are greater than zero. However, we see that
the log(SLR) values are incorrectly greater than zero when the
Canon EOS 400D is the specific source device. In this case the
SLR results in misleading evidence in support of the prosecution
hypothesis Hp. We see a similar phenomenon for images from
the Canon EOS 400D when the Canon EOS 40D is the specific
known source device.

Figures 1-7 exhibit two types of misleading evidence. If the
log(SLR) value for a true non-match is positive, it is misleading
evidence in favor of the prosecution hypothesis Hp, while If the
log(SLR) value for a true match is negative, it is misleading ev-
idence in favor of the defense hypothesis Hd . Table 1 shows the
rates of misleading evidence in support of the prosecution hypoth-
esis Hp. Each row corresponds to the device whose images are
each treated as the questioned image. The rate for questioned im-
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Figure 1. Boxplots of log10(SLR) values for images from device Canon EOS

7D by specific known source device
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Figure 2. Boxplots of log10(SLR) values for imag es from device Canon

Rebel XSi by specific known source device
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Figure 3. Boxplots of log10(SLR) values for images from device Leica M9 by

specific known source device
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Figure 4. Boxplots of log10(SLR) values for images from device Nikon D70

by specific known source device
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Figure 5. Boxplots of log10(SLR) values for images from device Pentex

K20D by specific known source device
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Figure 6. Boxplots of log10(SLR) values for images from device Canon EOS

400D by specific known source device
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Figure 7. Boxplots of log10(SLR) values for images from device Canon EOS

40D by specific known source device
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age device Canon EOS 400D and specific known device Canon
Rebel XSi is 0.0060 and is calculated as the number of images
from the Canon EOS 400D whose log(SLR) for specific device
Canon Rebel XSi is greater than zero divided by the total num-
ber of images from the Canon EOS 400D. As expected from the
boxplots, we see that the rate of misleading evidence in support of
Hp is quite high when the questioned image device is the Canon
EOS 400D and the specific known device is the Canon EOS 40D
and vice versa. Despite the few outliers that appear in the box-
plots, we see from table 1 that the rates of misleading evidence
in support of Hp for all other cases is quite low. Table 4 shows
the rates of misleading evidence in support of the defense hypoth-
esis Hd . We see that 24.59% of the questioned images from the
Canon EOS 40D were mistakenly identified as non-matches with
that device. The rates of misleading evidence in support of Hd is
less than 0.0628 for the other six devices.

In order to better understand the cause of the high rates of
misleading evidence for Canon EOS 40D and 400D, we imple-
ment the universal detector method where we select a decision
threshold to minimize the average of the false acceptance rate and
false rejection rate and the SLR method for 50 randomly selected
questioned images from the Canon EOS 400D. Table 1 shows the
confusion matrix for the class predictions from the universal de-
tector method and Table 2 shows the confusion matrix of class
predictions from the SLR method. We see that the universal de-
tector and SLR methods both do well in the case of true matches
and their prediction results are similar. The SLR method misclas-
sifies 37 out of 50 true non-matches as matches, which is roughly
comparable to the false acceptance rate we observe in Figure 6.
Table 1 shows that the universal detector method also misclassi-
fies some true non-matches as matches, although not as many as
the SLR method. Because both methods rely on the same PRNU
estimates and the same similarity score, if the PRNUs and simi-
larity scores used in the universal detector method are unable to
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Table 3. Rates of misleading evidence in support of Hp

specific known device
questioned image device Canon Canon Canon Canon Leica Nikon Pentex

EOS 40D EOS 400D EOS 7D Rebel XSi M9 D70 K20D
Canon EOS 40D 0.9016 0 0 0 0 0
Canon EOS 400D 0.6987 0.0030 0.0060 0.0037 0.0015 0.0007

Canon EOS 7D 0.0030 0.0037 0.014 0.0052 0.0089 0.0015
Canon Rebel XSi 0.0029 0.0059 0.0069 0.0127 0.0093

Leica M9 0.0018 0.0040 0.0083 0.0156 0.0091 0.0018
Nikon D70 0.0019 0.0019 0.0087 0.0165 0.0097 0.0039

Pentex K20D 0.0057 0.00423 0.0150 0.0114 0.0129 0.0165

Table 4. Rates of misleading evidence in support of Hd

specific known device
questioned image device Canon Canon Canon Canon Leica Nikon Pentex

EOS 40D EOS 400D EOS 7D Rebel XSi M9 D70 K20D
Canon EOS 40D 0.2459
Canon EOS 400D 0.0628

Canon EOS 7D 0.0037
Canon Rebel XSi 0.0044

Leica M9 0.0062
Nikon D70 0.0058

Pentex K20D 0.0043

Table 1. Confusion matrix of class predictions of universal
detector for 50 randomly selected Canon EOS 400D images
and specific known devices Canon EOS 400D and Canon EOS
40D

predicted class
match non-match

Tr
ue

C
la

ss match 48 2

non-match 7 43

Table 2. Confusion matrix of class predictions of SLR for
50 randomly selected Canon EOS 400D images and specific
known devices Canon EOS 400D and Canon EOS 40D

predicted class
match non-match

Tr
ue

C
la

ss match 47 3

non-match 37 13

perfectly distinguish between the two classes, we don’t expect the
SLR method to be able perfectly distinguish between the classes
either. Thus we can attribute some of the false acceptance ob-
served in the SLR method to the underlying inseparability of the
classes. However, this does not account for all of the observed
false acceptance rate, and we plan to study this further in future
work.

Conclusions and Future Work
We develop the framework for trace-anchored score-based

likelihood ratios (SLR) as a method to quantify the weight of ev-
idence in the camera device identification problem. We calculate
the trace-anchored SLRs for 10,000 png images from seven de-
vices from the BOSSbase image dataset. For five of the BOSS-
base devices, we achieve good results where the log(SLR) values
for true matches are greater than zero and the log(SLR) values
for most non-matches are less than zero. Images from two of the
devices have positive log(SLR) values for a non-matching device,
which is considered misleading evidence.

We plan to extend the experiments in this paper to larger
images datasets with more devices. We also plan to implement
and compare the source-anchored and general match SLRs with
the trace-anchored SLR.
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