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Abstract
For PRNU-based forensic detectors, the fundamental test

statistic is the normalized correlation between the camera finger-
print and the noise residual extracted from the image in successive
overlapping analysis windows. The correlation predictor plays a
crucial role in the performance of all such detectors. The tradi-
tional correlation predictor is based on predefined hand-crafted
features representing intensity, texture and saturation character-
istics of the image block under inspection. The performance of
such an approach depends largely on the training and test data.
We propose a convolutional neural network (CNN) architecture
to predict the correlation from image patches of suitable size fed
as input. Our empirical finding suggests that the CNN general-
izes much better than the classical correlation predictor. With the
CNN, we could operate with a common network architecture for
various digital camera devices as well as a single network that
could universally predict correlations for content from all cam-
eras we experimented with, even including the ones that were not
used in training the network. Integrating the CNN with our foren-
sic detector gave state-of-the-art results.

Introduction
Digital camera sensor noise has been accepted as one of the

most important and valuable characteristics in the forensics re-
search community [1]. A range of seminal works by Fridrich et.
al. [2] establishes the fact that a unique spatially varying noise
pattern characterizes the sensor of each camera. Due to imperfec-
tions in the silicon wafer and inconsistencies in the manufacturing
process, the resulting intensity at every pixel varies when the sen-
sor is illuminated homogeneously. This gives rise to the sensor
noise pattern which is a unique fingerprint that is present in every
picture taken by the camera. This is also called the Photo Re-
sponse Non-uniformity or the PRNU noise and can be exploited
for device identification as well as manipulation localization. For
copy-move or splicing manipulations, the PRNU gets distorted by
the manipulated content in the image. A straightforward manip-
ulation localization algorithm inspects the query image in small
analysis windows and compares the local noise estimate to the
corresponding part of the camera fingerprint in terms of the nor-
malized correlation score. The content is marked as manipulated
if the test statistic falls below a suitably chosen threshold [7]. Re-
cently, the spatial dependency between neighboring pixels has
been exploited to improve the performance of the fundamental
detector [3, 4, 5].

The main challenge that the correlation-based sliding win-
dow detectors face is that the measured correlation strongly de-
pends on the image content. Dark, textured and saturated regions
in an image are likely to yield a low correlation score even in the
absence of manipulation. The correlation predictor has been pro-

posed to mitigate this challenge [7]. Based on local image features
representing the texture, intensity and saturation characteristics, it
predicts the expected value of the correlation score if the content
is genuine. The correlation predictor originally proposed by Chen
et. al. [7] is a least square fit to the quadratic expansion of features
representing the texture, intensity and saturation characteristics.
Recently, Korus et. al. [4] trained a feed forward neural network
with five hidden layers with the same features proposed in [7].

In this paper, we propose a correlation predictor based on
a convolutional neural network (CNN) architecture. We partic-
ularly emphasize the idea of following a data-driven approach,
allowing a deep neural network to automatically learn features
which are useful for predicting the correlation, rather than rely-
ing on hand-crafted features measuring the texture, intensity and
saturation attributes of the content. We demonstrate the efficacy
of the CNN by proposing a network architecture that outperforms
the performance of the feed-forward neural network predictor [4].
Along the way, we also demonstrate the power of the CNN to op-
erate on a universal setup, where we predict correlation very ac-
curately for patches from cameras not used for training the CNN.

In the rest of the paper, we review the classical correlation
predictor in the next section. We then discuss the literature on
common applications of CNN in image forensics. Subsequently,
we describe in detail the architecture of our proposed network.
We follow the architectural description with our experimental
setup and the detailed training procedure of the network. Sub-
sequently, we present manipulation localization results with the
classical correlation predictor as well as the proposed CNN pre-
dictor, with our manipulation localization algorithm [5], followed
by concluding the paper.

Correlation Predictor
The correlation predictor has been defined as a mapping

from a feature space to a real number. In the literature of im-
age forensics, typically it has been expressed as a linear combina-
tion of terms in a quadratic expansion of features quantifying the
intensity, texture and saturation characteristics [7]. It is basically
the prediction of the normalized correlation ρb = corr(xb,wb) ob-
served on small blocks of the image, assuming the content to be
genuine. Here, xb and wb respectively denote the PRNU signal
and the sensor noise measured in the b-the block in the image.
Following is a brief description of the features used in the classi-
cal correlation predictor [7].

Image Intensity
Due to the reason that the PRNU term is multiplicative, the

correlation is higher in areas of high intensity. However, the
PRNU term is not present in saturated regions. Hence, for all
sites with intensity above a critical value γ , the intensity is attenu-
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Figure 1: Proposed architecture of the convolutional neural network used to predict correlation.

ated. The intensity feature has been defined as the average image
intensity attenuated close to the maximum dynamic range, which
corresponds to the range γ ≤ xi < 255, where xi denotes the i-th
pixel in the image in column-major order. Mathematically:

fI =
1
|B| ∑i∈B

att(xi), (1)

where, the attenuation function att(x) is defined as:

att(x) =

{
exp(−(x− γ)2/δ ) if x > γ

x/γ if x≤ γ
(2)

In equation (2), |B| denotes the number of pixels in the block B
and the parameters γ and δ vary for different camera models.

Texture
The correlation tends to be lower in textured regions. Since

the textured regions correspond to high frequency, some traces of
the textured content is also present along with the noise residual
due to imperfect filtering which weakens the PRNU signal, which
is essentially our signal of interest. The texture feature is defined
as follows:

fT =
1
|B| ∑i∈B

1
1+σi2

, (3)

Here, σi refers to the standard deviation of the image in a
5×5 window around the i-th pixel in the image in column-major
order.

Signal Flattening
The predictor would overestimate the correlation in a rela-

tively flat and high intensity unsaturated area, with a low value
of local variance. The saturation feature is defined as the fraction
of pixels in a block with average local standard deviation below a
threshold. Mathematically:

fS =
1
|B|
|{i ∈ B,σi < ηxi}|, (4)

Here, η is a constant which depends on the variance of the
PRNU and σi is the local standard deviation of the image intensity
of a block of reasonable size around the i-th site in the image
block.

Texture-Intensity
The measured correlation also strongly depends on the col-

lective influence of texture and intensity. Sometimes, highly
textured regions are also high-intensity regions. The Texture-
Intensity feature measures the combined effect of texture and in-
tensity in an image and is defined as:

fT I =
1
|Bb| ∑

i∈Bb

att(xi)

1+σi2
(5)

where, att(x) and σi has meanings as defined before.
The correlation predictor has been modeled as a linear com-

bination of these features and their second order terms [7], where
the coefficients of the polynomial are obtained through a least
square regression fit. Korus et. al. [4] used the same features to
train a feed-forward neural network with five hidden layers. We
found the predictor proposed in [4] to be more effective than the
least square fit proposed in [7], so we omit the discussion on the
least-square fit here. We choose the predictor proposed by Korus
as our benchmark to compare our CNN-based predictor, both in
terms of the prediction error as well as manipulation localization
performance with our detector [5].

Deep Learning in Image Forensics
Deep learning in computer vision problems has seen remark-

able success applying the convolutional neural network (CNN)
in problems like image classification [19], image captioning [20]
etc. Given a sufficiently large training set, CNN-s are capable to
learn the best features automatically from the data for the given
task. The CNN has already been successfully applied in image
forensics [8, 9, 10, 11, 12] as well as in steganalysis of JPEG
images[13, 14]. In [8], the authors propose a CNN to automati-
cally learn hierarchical representations from input color images,
specifically for the detection of splicing and copy-move manipu-
lations. In [9], the authors introduce a new form of convolutional
layer in the proposed CNN architecture to suppress image content
and adaptively learn manipulation detection features. In [10], the
authors show that a class of residual-based descriptors can be re-
garded as a constrained CNN. In [11], the authors propose a CNN
architecture to classify the type of global processing applied to
an image. In [12], the authors propose a CNN-based architec-
ture to extract a camera model fingerprint which they termed as
Noiseprint. Thus, the CNN has been applied to a wide variety
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Figure 2: Plot of prediction error vs features characterizing the image content. Left: Intensity feature, Middle: Texture feature, Right:
Signal flattening feature. : feature-based, : CNN
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Figure 3: Manipulation localization comparison with different de-
tectors for classical and CNN predictors (Uncompressed images)

of forensic problems which gave us enough motivation to explore
if the CNN could work as a correlation predictor. The idea was
to let the CNN learn features automatically to predict the corre-
lation depending upon the image content, rather than relying on
hand-crafted features. Our goal was to come up with a common
network architecture that would work substantially well for all
camera models.

Proposed CNN architecture
We propose a convolutional neural network architecture to

predict the local correlations at every pixel in an image. Our
network architecture consists of 7 un-pooled convolutional lay-
ers followed by a pooling layer and a fully connected layer. We
follow some of the design choices which were successful in the
works [14] and [15]. In [15], the authors proposed a CNN-based
image denoiser with convolutional filters of size 3× 3, without
having any pooling layers in between convolutional layers. Also,
in [14], the authors use 16×16 pooling size before the fully con-
nected layer. In our proposed network architecture as shown in
Figure 1, we have all convolutional layers un-pooled with 3× 3
filters and a 16×16 pooling before the fully connected layer. The
network that we propose has a total of 7 CONV layers. Among
the 7 convolutional layers, the first 5 layers are having 16 filters
each and the next 2 layers are having 32 filters each. All filters
are of dimension 3×3. We added batch normalization after each
convolutional layer, followed by the leaky RELU non-linearity.
The leaky RELU function has a small negative slope which pre-
vents stopping of parameter updates during training due to zero
gradients [16]. We used max-pooling after the last convolutional
layer. A window of size 16× 16 was used for pooling. The out-
put from the pooling layer is a set of 32 blocks of size 18× 18
which is fed to the fully connected layer. For our benchmark pre-
dictor based on the feedforward neural network, we simply had 5
inputs going to the fully connected layer (the 4 features proposed
by Chen et. al. [7] and a bias term). The output of the fully con-
nected layer of our network is one single number, which is the
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Figure 4: Manipulation localization comparison with different de-
tectors for classical and CNN predictors (JPEG compressed im-
ages)

correlation value that the network predicts from the input image
block. Batch normalization is used as a preprocessing step after
each of the convolutional layer in the network. This process typ-
ically normalizes the data to follow a unit Gaussian distribution.
It is a necessary step because the distribution of each layer’s input
changes during training, as the parameter of the previous layer is
updated, which slows down the training process [17]. Weights
in the convolutional layer are initialized with the random normal
initializer. Xavier initializer is used to initialize the weights in
the Fully connected layer [18]. In each convolutional layer we
use L2 regularization to avoid overtraining of the network, which
ensures that the network would generalize better on unseen data.
We used patches from randomly chosen untampered images from
the Realistic Tampering dataset [4], to train the network for each
camera. From each camera, a large set of image blocks were cho-
sen to train the network. To compute the loss function during the
training, we also had the known correlation values for each patch
used in training the network. We considered patches of dimen-
sion 64× 64 to train the network. A Mean Square Error (MSE)
based loss function was used to compute the loss during the train-
ing process. The MSE is defined as the average prediction error
for each batch of patches used in training. The prediction error
is computed from the known correlation values for each image
block of size 64×64.

Experimental Setup
Our experimental results are based on the Realistic Tamper-

ing dataset [4] and the Dresden [28] dataset. The Realistic Tam-
pering dataset comprises of 220 uncompressed manipulated im-
ages from 4 different camera models, 55 from each camera. There
are also 220 corresponding images which are untampered. Also,
there are separate images to train the respective camera model
(i.e. for fingerprint estimation as well as predictor training). We
also created JPEG versions of the Realistic Tampering dataset for
quality factors 70, 80 and 90 to perform experiments with JPEG
images for various settings. For the Dresden dataset, we worked
with 175 uncompressed images from a Nikon D70 camera model.
The proposed network was trained to operate on a per-camera set-

ting (i.e. training a separate predictor for each camera), as well as
a universal setting (a single predictor for all cameras).

Training the network separately for each camera
model

First we trained the network for each camera in the Realis-
tic Tampering dataset [4]. We used patches from the untampered
images, where each patch is of size 64× 64 pixels. Images were
converted to greyscale before sampling the patches. For all the
image patches, we also had the corresponding normalized corre-
lation value computed between the patch noise residue and the
corresponding patch from the fingerprint. The training set thus
consists of known image patches and corresponding correlation
values. For training with uncompressed images, we randomly se-
lected 105 blocks (about 5 percent of the total 1080×1920 blocks
per image) from each of the 55 pristine images in the dataset. We
also trained the network separately with JPEG images compressed
with quality factors of 70, 80 and 90, to test against the respec-
tive quality factors. The JPEG images used for training were im-
ages which were meant to be used explicitly for training the cam-
era models in the Realistic Tampering dataset. After the training
of the network, we performed manipulation localization with our
DRF detector [5] on both uncompressed images as well as JPEG
compressed images of the above mentioned quality factors.

Training a single network for all camera models
We were also able to achieve state-of-the-art manipulation

localization performance with a single CNN predictor which is
trained on patches from all cameras of the Realistic Tampering
dataset. This is a promising result considering the fact that sep-
arate training is needed for every digital camera when we work
with the feature-based predictor proposed by Chen et al. [7], to
achieve an equivalent manipulation localization performance for
any PRNU-based detector. To train a common predictor with the
CNN, we used a greyscale patch from the image in first chan-
nel, the corresponding patch from the noise residue in the sec-
ond channel and the corresponding patch from camera fingerprint
in the third channel. Hence, the input to the network has three
channels in this case and is of dimension 64× 64× 3. We used
25K patches from each camera model of the Realistic Tamper-
ing dataset, for a total of 105 patches for training the network. It
should be noted here that we have 3 channels in this case, which
are not RGB channels, but we feed the greyscale image patch in
channel - 1, corresponding patch residual in channel - 2 and cor-
responding patch from PRNU in channel - 3. For the per camera
predictor, we only used the greyscale patches for training (hence
only one single channel).

We measured the performance of each predictor in terms
of the absolute prediction error, as well as the performance of
manipulation localization in terms of MCC score, when we in-
tegrate each predictor with our image manipulation localization
algorithm [5]. The MCC score is defined as:

MCC =
T P×T N−FP×FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)

(6)

where, TP is the number of true positives, TN is the number of
true negatives, FP is the number of false positives and FN is the
number of false negatives.
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Figure 5: Manipulation localization performance with CNN for JPEG images. Predictors trained with Left: Q = 70, Middle: Q = 80,
Right: Q = 90. Algorithms: Adaptive window , Segmentation guided , Multiscale fusion , DRF Graphcut (CNN)

Experimental Results
In Figure 2, we demonstrate the efficacy of the CNN with

some examples from the Realistic Tampering dataset, with the
plot of absolute prediction error against the features character-
izing the intensity, texture and saturation for the two predictors.
The CNN predictor is the one obtained from the universal setup,
where patches from all 4 cameras were used from the Realistic
Tampering dataset for training the network. For the feature-based
predictor, we trained the predictor 10 times, each time with a dif-
ferent set of 30K image patches. Among the 10 trained predic-
tors per camera, we picked the one which gave the best overall
MCC score of manipulation localization, separately for each cam-
era. The feature-based predictor was trained with known features
computed for images patches of dimension 64× 64. We observe
that the CNN predictor does a better prediction of correlation than
the feature-based predictor and gives an overall lower prediction
error. This demonstrates the efficacy of the CNN to generalize
over all cameras, which does a better prediction than the feature-
based predictor, even under the universal setup. Figure 3 shows
the comparison of the two predictors under per camera and uni-
versal setup when they are integrated with our manipulation lo-
calization algorithm [5]. The results shown in Figure 3 are for
uncompressed manipulated images from the Realistic Tampering
dataset. The comparison is based on MCC score for manipula-
tion localization results. For all the predictors, the same detector
have been used [5]. We observe that the CNN predictor clearly
outperforms the feature-based predictor when we have a predic-
tor for each individual camera we work with, as well as when we
have a universal predictor trained with patches from all camera
devices in the dataset. We found that the CNN does considerably
better than the feature-based predictor, which demonstrates the ef-
ficacy of the CNN to operate under a universal setup and its ability
to generalize on unseen data. As expected, we observe a perfor-
mance drop under the universal setup for both the predictors when
compared to the per camera setup. However, it is also interesting
to observe that even under the universal setup, the performance of
the CNN is very comparable with the best operating point of the
feature-based correlation predictor under the per camera setup.

Figure 4 shows the comparison of the two predictors on
JPEG images. We found that the CNN is much more effective
than the feature-based predictor, especially with test images of
lower quality factors. Here we show the result for the Realistic
Tampering dataset on test images of quality factors 70 and 80.

Both the predictors were trained separately on a quality factor of
70 in this case. For test images with higher quality factors, even
with a small training set, we found the CNN to give comparable
results as the feature-based predictor.

Figure 5 shows some more results with JPEG compressed
manipulated images from the Realistic Tampering dataset. Here,
we compare the performance of our manipulation localization al-
gorithm with three other state-of-the-art manipulation localization
algorithms proposed by Korus.et.al. [4]. The predictor used for
our detector [5] is the CNN and the predictor used for algorithms
proposed by Korus is the feature-based predictor. For each qual-
ity factor Q, the predictor as well as the manipulated images are
of the same quality factor Q. For this experiment, we considered
Q = 70, Q = 80 and Q = 90 respectively. We observe that our
algorithm with the CNN predictor clearly outperformed all the
detectors proposed in [4], for all camera models in the Realistic
Tampering dataset, for all the three quality factors. Figure 6 shows
the predicted correlation maps obtained with the CNN as well as
the feature-based correlation predictor, along with the actual cor-
relation map for some manipulated images of Realistic Tampering
dataset.

To verify the efficacy of the universal CNN on images from
unseen cameras, we used the CNN predictor trained on the Re-
alistic Tampering dataset to test manipulation localization perfor-
mance on the Dresden dataset. For this purpose, we chose 175
uncompressed images from a Nikon D70 camera in the Dresden
dataset and replaced a square region of size 384×384 located at
a random position in the image by the content from a different
camera. We then crop all images to the size of 1080× 1920 pix-
els. The CNN trained on the uncompressed images from Realistic
Tampering dataset under the universal setup was used to predict
the correlation for each test image from the Dresden dataset. Fig-
ure 7 shows some manipulation localization results from the Dres-
den dataset with our DRF algorithm [5]. The average MCC score
for the tested images was 0.84272.

Conclusion
In this paper, we propose a CNN-based correlation predic-

tor to predict the correlation between the noise residue and the
camera fingerprint, which is the fundamental test statistic for all
PRNU-based forensic detectors. We operated with a common
network architecture for all the camera devices we worked with
and trained the network per camera device, as well as a sin-
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Figure 6: Correlation and predicted correlation maps with different predictors. From left to right: 1. Original image 2. manipulated image 3. actual
correlation map 4. predicted correlation map (feature-based) 5. predicted correlation map (CNN). Based on: Realistic Tampering dataset

gle universal predictor for all devices in the dataset. Our mo-
tivation was to follow a data-driven approach and automatically
learn the features for predicting correlation, rather than relying
on hand-crafted features. Our experimental findings suggest that
the CNN generalizes better than the feature-based correlation pre-
dictor. We obtained better manipulation localization performance
with the CNN with our DRF-based manipulation localization al-
gorithm, outperforming the previous best results with the feature-
based predictor. We also observed that the CNN does consider-
ably better than the feature-based predictor, especially with JPEG
images of lower quality factors. We could also achieve state-of-
the-art manipulation localization performance under the univer-
sal setup, which gave promising results even on unseen cameras.
Our results indicate that the proposed network architecture can be
considered as the first stepping stone towards replacing the tra-
ditional feature-based correlation predictor with a deep-learning
approach.
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image; manipulated image; ground truth; mask generated with the CNN predictor.
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