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Abstract

Camera sensor fingerprints for digital camera forensics
are formed by Photo-Response Non-Uniformity (PRNU),
or more precisely, by estimating PRNU from a set of im-
ages taken with a camera. These images must be aligned
with each other to establish sensor location pixel-to-pixel
correspondence. If some of these images have been resized
and cropped, the transformations need to be reversed. In
this work we deal with estimation of resizing factor in the
presence of one reference image from the same camera. For
this problem we coin the term semi-blind estimation of re-
sizing factor. We post two requirements that any solution of
this problem should meet. It needs to be reasonably fast and
exhibit very low estimation error. Our work shows that this
problem can be solved using established image matching in
Fourier-Mellin transform applied to vertical and horizontal
projections of noise residuals (also called linear patterns).

Introduction

Photo-response non-uniformity (PRNU) is a result of im-
perfections in imaging sensors. It appears as o�sets in
measured luminance and they are di�erent in every pixel of
the sensor. This o�set or bias is then passed through the
signal and image processing pipeline, thus becoming the
“fingerprint” of the sensor and consequently of the camera
itself. Because PRNU almost does not change over time
and does not repeat itself from one sensor to another, it is
useful in many forensic applications including source camera
verification. PRNU can be estimated from a single image
or even a video frame, although accuracy of the estimate
is low due to its very low signal-to-noise ratio. In order
to increase SNR of the estimate, more than one image is
typically used. PRNU estimation methods proceed by aver-
aging noise obtained from a reference set of images or video
frames [1, 2]. Averaging improves signal-to-noise ratio of
the estimate since random noise tends to average out. All
these “training” images must be aligned w.r.t. the imaging
sensor. This requirement is easily met if the camera is at
hand and all the training images can be taken with the
same camera setting. Flat field shots, bright, yet without
saturation, high resolution, and digital zoom turned o� are
recommended for the best result.

If the camera is not available and all training images
for PRNU estimation are given to us, a robust procedure
that guaranties geometrical alignment is needed. In this
work, we address the case when some images in the training
set are cropped and resized by an unknown factor and
eventually JPEG compressed. We will refer to this case

as inconsistent training set problem. This is not just an
academic problem. For example, smart phone cameras
often o�er HDR image capturing mode. We have shown
that many cameras slightly crop and upsample the images
during HDR processing in order to deal with insu�cient
data near the image borders [3]. Recently, some camera
models make HDR a default mode (such as LG G4).

Previously, resampling factor estimation has been stud-
ied mostly in two basic scenarios. The first, when the
original image before transformation is available, the es-
timation in the more general context of scaling, rotation,
and translation can be e�ciently achieved using Fourier-
Mellin transform [4] or Radon transform [5]. In the second,
blind detection, i.e. without having the original image for
matching procedure, relies on resampling artifacts in Fourier
domain [6, 7, 8, 9]. Bianchi and Piva exploit near lattice
distribution property of double JPEG images to estimate
both the resizing factor and previous JPEG quantization
parameters [10]. They first estimate the scaling factor be-
fore determining the original JPEG quality factor. This
method requires the image to be already JPEG compressed
before resizing. Their approach to scaling factor estimation
has some similarities to ours. We discuss them in detail in
the next section.

In the context of source camera identification, the
problem of resized images was first addressed by Goljan et al.
in 2008 [11]. Having the camera PRNU estimated, one can
use it as a reference signal and launch a brute force search
over a range of scaling factors while maximizing output
of a correlation based detector. The method can find the
scaling factor with very high precision but computational
cost can be high. Furthermore, it requires a number of non-
resized reference images for obtaining a su�ciently good
PRNU estimate, also known as camera fingerprint, that are
not always available. However, blind detection methods
typically do not achieve such precision.

We introduce a semi-blind detection and estimation of
image resizing. In this scenario, the original image is not
known, yet one other non-resampled image from the same
camera and the same imaging sensor is available for refer-
ence. Both images contain traces of the same PRNU, and
sensor pattern noise (SPN) in general, that are utilized in
a signal matching technique for detection of the resampling
factor and for PRNU spatial alignment. JPEG compression
artifacts known as “JPEG dimples” introduced to images
by certain JPEG in-camera implementations are utilized
as well if detected in the reference image. The proposed
method is put under scrutiny during PRNU estimation
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from inconsistent training sets, where a portion of traning
images is resized by unknown scaling factors and cropped.

In the next section, we introduce the semi-blind method
of resampling detection and estimation that is based on
pattern registration, describe the inputs for the matching
process, recall the LP definition for grayscale images, and
explain how JPEG dimples are utilized in this method. The
following section details an algorithm for PRNU computa-
tion from images inconsistent in scaling. A large experi-
mental section includes comparison with a blind method as
a baseline. The paper is concluded in the last section.

Semi-blind scaling factor estimation

The problem setup includes (i) one image I (probe im-
age) that has been uniformly resized by unknown factor “
starting from either a JPEG image produced by a digital
camera (including those on mobile devices) or an uncom-
pressed image in a raster format and (ii) one reference image
J (reference image) from the same camera in the same res-
olution as was I before resizing. Image I could have been
cropped as well. The goal is to estimate the factor “ and
do it with such precision that allows for the camera PRNU
estimation by averaging noise residuals of both images and
of more such resized images I1,I2, ...,In,when such “scaling
inconsistent” set of images serves for PRNU training.

We propose using Fourier-Mellin transform (originally
described by Reddy and Chatterji [12]) for matching pro-
jections of sensor pattern noise in the resized image and
the reference image from the same camera. Successful
matching procedure outputs both relative scaling factor
and translation vector. Direct application of this regis-
tration technique to two di�erent images that contain the
same camera SPN cannot work correctly because the image
content overwhelms the common SPN. On the other hand,
our attempts to perform the registration to the images
noise residuals were successful for many image pairs but
not satisfactory for the target application of PRNU estima-
tion. Inspired by the resilience of the linear pattern (LP)
in the blind method for rotation angle detection [13], we
extract LP from images noise residuals and apply the above
matching method to the two-dimensional representations
of LPs. Linear patterns can be interpreted as horizontal
and vertical projections that, functioning as directional
low-pass filters, eliminate most random noise. This fact
explains why the matching method developed for images
with structured content can work for the weak SPN signal.
After the scaling factor is determined, correlation test with
the PRNUs from both images, after the estimated resizing
is reversed, verifies whether or not the resampling factor is
determined correctly.

Linear pattern computation

Representing a grayscale m ◊ n image with m ◊ n ma-
trix I, I œ {0, . . . ,255}m◊n, its noise residual is defined as

W(0) = I ≠ F (I), (1)

where F is a denoising filter. We use the wavelet-based
Daubechies 8-tap denoising method described in [14].

Before computing linear pattern from the noise residual,
normalization steps are applied to W(0) to make it zero-
mean, unit sample variance:

W = W(0) ≠w, where w = 1
mn

qm,n
i,j=1 w

(0)
ij is the sam-

ple mean of W(0).
W = WÒ

1
mn

qm,n

i,j=1
w2

ij

, where the denominator is the

sample standard deviation of W.
The (normalized) linear pattern of W is the m ◊ n

matrix L = L(W) with elements

Lij = ri + cj , (2)

where ri and cj are the averages of the ith row and jth
column of W,

ri = 1
n

nÿ

j=1
wij , cj = 1

m

mÿ

i=1
wij . (3)

Once the choice of the filter F is fixed, we call L the linear
pattern of image I. Notice that the linear pattern of L is L
itself [13].

From FFT-based image registration to LP-method

Image registration problem including determining scal-
ing, rotation, and translation parameters of one transformed
image with respect to its original copy can be e�ciently
solved by transforming the images into log-polar space
of Fourier-Mellin transform. Phase correlation method is
then applied in order to find translation in the log-polar
space. This translation in vertical and horizontal directions
translates to scaling and rotation of the image in spatial
domain. This method was introduced by Reddy and Chat-
terji [12] in 1996. In this paper, it will be referred to as
“FM registration”. While the transformed image is a�ected
by interpolation and rounding noise, and possibly by JPEG
compression, the method works under random noise attack
as well.

In our semi-blind scenario, the common signal in the
probe and in the reference image is the sensor SPN rather
than the image content. The content of the images should
be viewed as a special type of strong noise on top of the
SPN. In order to make the above image registration method
work, even when rotation is absent, the amount of noise has
to be reduced. For this purpose, we apply the denoising
filter (1) to both, image I and image J, obtaining WI
and WJ. This step alone can in some cases be su�cient
to make matching of SPN and scaling factor estimation
possible. Nevertheless, taking linear patterns of the two
images, L(WI) and L(WJ), yields much more desirable
outcome, i.e. correctly estimating the transform parameters
with higher probability. We determined that the high-pass
emphasis filter (HPEF) (Formula (23) in [12]) is not required
in our application. We stress that rotation is not considered
in this work. The main reason is that the LP obtained from
the probe image does not carry information about rotation.
We refer to the previously mentioned work [13] that can
be used to estimate the rotation angle with high precision
(without the reference image).
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LP-method:
1. Compute WI and WJ(according to Equation 1)
2. Compute L(WI) and L(WJ) from images I and J.
3. Estimate scaling factor “ and translation vector [t1, t2]

by running FM registration (with HPEF removed) on
L(WI) and L(WJ).

Here, we point out di�erences from the approach by Bianchi
et al. [10]. Inspired by Kirchner et al. [8], they apply the sim-
plest high-frequency filters g =

#
≠ 1

2 ,1, 1
2
$

to image columns
and rows. This step can be viewed as an attempt to re-
move the image content, which is what we do using filter
1 ≠ F . They only work with the magnitude of the filtered
image. After forming row and column sums, they arrive at
vectors ah and av, an analogy to our vectors r and c. The
next steps are di�erent from ours since the method is blind,
without any side information. They stay in one-dimension,
taking magnitude of DFT of ah and av, inserting median
filtering step, and computing the final vector f̃ as the sum of
horizontal and vertical components (only defined for square
images). Further analysis of peaks in f̃ introduced by the
JPEG blockiness artifacts existing in the image before re-
sizing allows computation of the likely scaling factor.

Implied from their definition, linear patterns capture
biases in pixel intensity values in columns and rows of the
images. These biases are transformed but not destroyed by
image resizing. Another prominent bias was discovered in
JPEG images by Agarwal and Farid [15]. JPEG dimples are
positive or negative biases in one out of 64 pixels in every
8x8 block. They are caused by a “faulty” implementation
of JPEG compression. Due to their repetitive character
they can be easily detected. If JPEG dimples are detected
in the reference image J they likely have been present
in the probe image I before resizing as well. For this
reason, we can expect that some combination of LP and
dimples obtained from the reference image will make the
registration procedure more reliable than using LP only.
In the following, we determine the presence and type of
JPEG dimples according to the method published in [15].
The dimples will be represented with binary matrix D of
the same dimensions as the image, omitting the (content
dependent) prominence map.

LPD-method:
1. Compute WI and WJ(according to Equation 1)
2. Compute L(WJ) from the reference image J.
3. Detect dimples D from the reference image J. If not

detected, use LP-method.
4. Estimate scaling factor “ and translation vector [t1, t2]

by running FM registration (with HPEF removed) on
WI and L(WJ) + DJ.

Notice that we do not work with JPEG dimples DI from the
probe image. Such dimples were introduced to the probe
image after resizing operation. The JPEG dimples that had
been present before resizing are displaced, which prevents us
from localizing them before estimating the scaling factor “.
Thus, we work with entire WI and a linear combination of
LP and dimples from the reference image. Although a gen-
eral linear combination of the form –L(WJ)+ (1 ≠ –)DJ

Algorithm 1
Input: Ii, i œ [1..n] ,all originated from the same source
camera, "inconsistent in scaling."

1. Take m random pairs of images Ii,Ij , i ”= j
2. Extract noise residuals Wi,Wj

3. [u,v] = argmaxi,j

!
corr

!
Wi,Wj

""

4. Form initial fingerprint F = Wu + Wv

5. For the remaining n ≠ 2 images Ik, k œ [1..n] ,k ”= i,
k ”= j

• [P CE1,s1] = P CE (F,IkWk), where s1 is a possible
small spatial translation

• Invert scaling for Ik and Wk using the proposed LPD-
method ≠æIÕ

kWÕ
k

• [P CE2,s2] = P CE
!
F,IÕ

kWÕ
k

"
, where s2 is a possible

spatial translation
• If P CE2 > P CE1 and P CE2 > 20

– Correct WÕ
k for spatial translation and add it to

F.
• Else if P CE1 > 20

– Add Wk to F.

for other choices of – than 1
2 may yield better performance

in particular cases, our limited experiments suggested that
FM registration is quite insensitive to –, 0 Æ – Æ 0.8 and
the dependence varies from camera to camera and across
reference images. Therefore, we set – = 0.5 (see step 4) in
all our experiments.

Estimation of PRNU from inconsistent sets of

reference images

Having the semi-blind resizing factor estimation
method developed, we present a straightforward algorithm
for PRNU estimation from a set of images some of which
may have been resized (Algorithm 1).

The number m should be chosen based on prior infor-
mation about the minimum number of non-resized images
in the set, and such that the probability of taking at least
one pair of non-resized images is su�ciently large. Further-
more, the threshold of 20 guaranties skipping images that
are very likely not correctly spatially synchronized with
other images.

Experiments

For experimental evaluation of the proposed method we
use the SDR_HAND subset of the dataset provided by
a research group from the University of Florence [16] and
expanded by test images from three phone cameras listed as
A18-20 in Table 1. All these images are in JPEG format as
produced by the cameras in their default settings. The total
number of cameras represented in this dataset is 26. Table 1
lists all cameras in this dataset, JPEG quality factors QF1
of all images (italic font emphasizes “closest” quality factors
of custom quantization), image dimensions and detected
presence of JPEG dimples.
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Table 1. List of the cameras in “UNIFI HDR+3” dataset. JPEG

quality factors in italic represent the standard qualities that are

“closest” to the custom quantization tables. Presence of JPEG

dimples in images from each camera is denoted in column ’Dimp’.

Camera name/model QF1 Resolution Dimp
A01 Gionee S55 95 3120◊4208 Yes
A02 Huawei P8 94 4160◊3120 No
A03 Huawei P9 95 3264◊1840 Yes
A04 Huawei P10 95 3968◊2976 Yes
A05 Huawei Mate Pro10 92 3968◊2976 Yes
A06 Huawei Y5 95 3264◊2448 Yes
A07 Galaxy S7 96 4032◊3024 No
A08 Galaxy S7 96 4032◊2268 No
A09 Galaxy Note 5 93≠95 5312◊2988 No
A10 Galaxy J7 97 4128◊3096 No
A11 Xiaomi 5 97 3456◊4608 No
A12 Huawei RY6 94 2448◊3264 No
A13 Huawei RY6 94 2448◊3264 No
A14 Xiaomi 5A 97 4160◊2340 No
A15 Xiaomi 3 97 4608◊2592 No
A16 OnePlus 3t 95 4640◊3480 No
A17 Asus Zenfone-2 90 3264◊1836 No
A18 Xiaomi 3 97 4608◊2592 No
A19 Xiaomi Note 4 #0 87 3120◊4160 No
A20 Xiaomi Note 4 #1 87 3120◊4160 Yes
I01 iPhone 8 92 3024◊4032 No
I02 iPhone SE 92,94 4032◊3024 Yes
I03 iPhone 7 94 4032◊3024 Yes
I04 iPad Air 95 2592◊1936 Yes
I05 iPhone 6 92 2448◊3264 Yes
I06 iPhone 5S 95 3264◊2448 Yes

For experiments involving controlled JPEG compres-
sion before image resizing, one hundred of uncompressed
images from Bossbase [17] were used. Both proposed meth-
ods were implemented in Matlab. In particular, the Fourier-
Mellin transform image registration method imregcorr was
adopted with a small modification, in which the high fre-
quency filter HPEF was removed for better performance
in our settings. Since we have not attempted to estimate
image rotations in this work we disabled unnecessary com-
putations regarding the angle estimation in order to gain
processing speed.
Experimental setup

Having around 20 images from each camera, the first
10 images serve as probe images and the rest as reference
images (one test pair of the probe and the reference image
in every single test). Wavelet denoising filter as in [1] is
used to obtain noise residuals WI and WJ. Each probe
image Ii is subject to resizing using bilinear interpolation
method to produce image Ii(“). The range of “ in our
experiments is limited to 0.7 < “ < 1.3. Particularly chosen
scaling factors are 4th roots of {0.25, 0.4, 0.55, 0.7, 0.85,
0.95} symmetrically laid around 1, i.e. “ œ{0.707, 0.795,
0.861, 0.915, 0.960, 0.987, 1, 1.013, 1.040, 1.085, 1.139, 1.205,
1.293} (rounded to three decimal points). This choice makes
sure that more tests include scaling factors near 1 than far

from 1. We have not attempted to test and optimize the
method for much wider range of scaling factors. The next
step in producing probe images is JPEG compression with
standard quality factor varying it from 60 to 100, QF2 œ
{60,65,70,75,80,85,90,92,94,96,98,100}. The option of no
compression is included as well, denoted in tables as “NC”. A
small o�-center image cropping by [10,30] pixels is applied
at the end in order to introduce additional spatial shift
between the test images and reference images, removing 40
rows and 40 pixels in total from each. The purpose of this
cropping is to remove implicit information about scaling
factor. Relative scaling between Ii(“) and J is estimated
using LP-method and LPD-method. This experiment is
repeated for each camera in the dataset.

Performance of the proposed methods over a range

of scaling factors

Our first test is designed to show how often the LPD-
method correctly determines the scaling factor with high
precision with respect to the camera model, true scaling
factor, and JPEG compression factor QF2. For a test pair,
the success is reported if the estimation error is below
precision level ‘. The default precision in the tests is ‘ =
0.002. Tables 2, 3, and 4 show the success rate w.r.t. scaling
factor, averaged over all quality factors QF2. These tables
depict cameras that produced images with JPEG dimples.
For these 11 cameras the tables show how the success rate
changed as the method evolved from registration of noise
residuals only (WI with WJ), LPs only in the LP-method
and to registration of LP+dimples with WJ in the LPD-
method. Success rates for the other 15 cameras can be found
in Table 5. The plots in Figure 1 summarize how these
three methods compare overall for all 26 cameras mixed
together. Using JPEG dimples along with LP improves the
performance of resampling estimation significantly whenever
the test image before resizing was JPEG compressed by
dimples introducing JPEG module.

The LPD method works surprisingly good for some
cameras yet it mostly fails for certain camera models,
namely Galaxy-S7, Huawei-RY6, and iPhone 8. Interest-
ingly, recognizing non-resized images (scaling factor equal to
1) has the highest accuracy, except Huawei P8, for which up-
sizing is detected much better than downsizing. Assuming
the camera model is known, for example from the metadata
of the reference image, it is possible to make automated
decision whether to launch the LP-method or any other
alternative method for resizing estimation.

Note: It is not a mistake that the JPEG dimples were
detected in images from Xiaomi Note 4 #1, yet not detected
in those from Xiaomi Note 4 #0. EXIF headers of the im-
ages reveal that each camera features a di�erent software
that is responsible for image processing. The camera #0
(A19) has ’mido-user 7.0 NRD90M V9.6.2.0.NCFCNFD
release-keys’ software while the camera #1 (A20) has ’Me-
diaTek Camera Application’ software installed.

Robustness to JPEG compression

The previous tables do not tell us how the final JPEG
compression of the resized images reduces the capability of
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Table 2. Success rate (%) of the registration method using noise residuals only, averaged over all JPEG quality factors (precision

‘ = 0.002).

W-only Scaling Factor
Camera name/model 0.71 0.8 0.86 0.91 0.96 0.99 1 1.01 1.04 1.09 1.14 1.2 1.29
A01 Gionee S55 74 85 86 95 99 100 100 95 99 98 100 99 100
A03 Huawei-P9 35 64 62 67 69 80 98 75 78 72 79 88 82
A04 Huawei-P10 46 82 85 89 92 90 100 94 95 99 99 100 100
A05 Huawei-Mate 10 Pro 99 100 100 100 100 100 100 100 100 100 100 100 100
A06 Huawei-Y5 14 18 21 37 27 52 100 56 30 35 61 72 51
A20 Xiaomi-Note 4 #1 40 62 55 81 82 79 100 78 89 77 75 87 94
I02 iPhone SE 35 43 54 65 61 64 100 65 68 72 72 70 72
I03 iPhone 7 45 57 65 65 68 70 99 72 73 78 76 69 78
I04 iPad-Air 1 0 1 0 1 0 81 3 0 3 0 1 8
I05 iPhone 6 18 18 31 28 38 55 98 57 48 45 56 68 58
I06 iPhone 5S 0 0 0 0 1 2 89 1 1 0 1 1 1

Table 3. Success rate (%) of the LP-method for listed cameras averaged over all JPEG quality factors (precision ‘ = 0.002).

LP-Method Scaling Factor
Camera name/model 0.71 0.8 0.86 0.91 0.96 0.99 1 1.01 1.04 1.09 1.14 1.2 1.29
A01 Gionee S55 82 93 55 100 94 90 100 95 86 98 88 74 88
A03 Huawei-P9 45 98 64 100 98 100 100 32 15 81 67 92 79
A04 Huawei-P10 1 77 87 85 92 78 100 100 62 81 99 100 100
A05 Huawei-Mate 10 Pro 100 100 100 100 100 100 100 100 94 100 100 100 100
A06 Huawei-Y5 2 0 58 24 41 97 100 75 81 85 66 59 89
A20 Xiaomi-Note 4 #1 42 73 83 94 89 87 98 76 88 90 88 95 97
I02 iPhone SE 82 80 92 92 95 96 100 96 98 96 96 95 98
I03 iPhone 7 60 78 86 77 78 94 100 94 95 93 93 94 95
I04 iPad-Air 0 2 0 1 29 32 85 28 32 18 7 26 25
I05 iPhone 6 43 69 87 98 91 92 95 94 99 93 92 94 86
I06 iPhone 5S 0 22 2 8 34 8 99 63 63 67 45 65 62

Table 4. Success rate (%) of the LPD-method for listed cameras averaged over all JPEG quality factors (precision ‘ = 0.002).

LPD-Method Scaling Factor
Camera name/model 0.71 0.8 0.86 0.91 0.96 0.99 1 1.01 1.04 1.09 1.14 1.2 1.29
A01 Gionee S55 98 99 99 100 100 100 100 100 100 100 100 100 100
A03 Huawei-P9 91 99 98 100 100 100 100 100 99 100 100 100 100
A04 Huawei-P10 29 80 86 88 93 79 100 100 65 97 100 100 100
A05 Huawei-Mate 10 Pro 100 100 100 100 100 100 100 100 100 100 100 100 100
A06 Huawei-Y5 68 89 97 100 96 100 100 100 100 100 100 100 100
A20 Xiaomi-Note 4 #1 86 98 100 100 100 100 100 100 100 100 100 99 100
I02 iPhone SE 91 92 94 95 95 98 100 97 100 99 98 98 100
I03 iPhone 7 68 90 96 97 96 98 100 98 98 99 98 99 100
I04 iPad-Air 4 25 21 32 48 53 100 56 29 21 28 68 67
I05 iPhone 6 77 95 99 100 100 100 100 94 93 94 100 88 100
I06 iPhone 5S 8 15 18 42 32 48 100 57 62 73 52 63 68
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Table 5. Success rate (%) of LPD-method for listed cameras averaged over all JPEG quality factors (precision ‘ = 0.002).

LP-Method Scaling Factor
Camera name/model 0.71 0.8 0.86 0.91 0.96 0.99 1 1.01 1.04 1.09 1.14 1.2 1.29
A02 Huawei P8 13 61 3 0 3 2 58 72 69 66 64 74 68
A07 Galaxy-S7 12 7 8 12 14 15 83 36 22 39 30 35 42
A08 Galaxy-S7 2 2 0 10 2 8 29 3 2 4 0 0 0
A09 Galaxy-Note 5 27 51 37 55 60 74 89 78 60 68 56 67 49
A10 Galaxy-J7 62 65 69 69 78 79 100 54 42 68 68 58 52
A11 Xiaomi 5 55 78 88 72 63 82 99 86 82 83 82 82 83
A12 Huawei-RY6 0 0 0 0 0 0 46 22 15 23 35 10 28
A13 Huawei-RY6 0 2 0 0 0 0 52 36 5 18 36 5 37
A14 Xiaomi-5A 37 29 17 39 45 33 91 69 65 70 72 71 48
A15 Xiaomi-3 76 100 100 97 100 87 99 75 89 89 75 85 58
A16 OnePlus-3t 68 82 83 85 82 75 95 76 87 69 68 67 65
A17 Asus Zenfone-2 82 97 93 91 100 98 100 100 100 95 99 89 57
A18 Xiaomi-3 88 100 91 90 92 99 100 91 98 82 83 88 75
A19 Xiaomi-Note4 #0 94 98 100 100 100 100 100 78 99 100 95 100 100
I01 iPhone 8 0 8 4 5 5 17 85 21 6 5 3 1 1

the LPD-method. This is best depicted in Figure 2. Here,
the rates are averaged over all scaling factors from 0.7 to
1.3. The performance drops very slowly with compression
quality with two exceptions, iPad Air and iPhone 5S, for
which compression quality has a stronger impact on the
method performance. More detailed success rates for images
from just two cameras are shown in Figure 3, where it is
clearly noticeable that the LPD-method starts breaking
down mostly at the low end of scaling and JPEG quality
factors.

Histograms of estimation errors in Figure 4 provide
some insight into the precision LPD-method achieves. Er-
rors smaller than 0.001 make 66% when images were down-
sized in the range of scaling factors 0.7 < “ < 1. This number
increases to 71% when images were upsized ( 1 < “ < 1.3).
These histograms also suggest that relaxing the precision
threshold from 0.002 to 0.003 would increase success rates
in the previous tables only negligibly.

The role of prior JPEG compression

Intuitively, the stronger the LP in the image prior to
resizing, the better the registration method should work.
Because JPEG compression has a “side e�ect” in creating
blockiness, one can expect that it might add to the LP
strength. On the other hand, the LP itself changes with
JPEG compression. It is therefore interesting to see how
the JPEG compression applied prior to the image resizing
e�ects the proposed LPD-method. In order to gain control
over the level of compression we start with a set of 100
uncompressed images from Bossbase. The images are first
JPEG compressed with one of the quality factors QF1 and
then resized. The range for QF1 is the same as for QF2
before. No second compression follows this time. Each such
test image is paired with a fixed reference image (’1339.tif’)
for running the LPD-method. The range of scaling factors
remains within the interval [0.7 1.3]. The test results plotted
in Figure 5 show the pattern. Best success rates are for

quality factor QF1 between 90 and 94, decreasing slowly as
QF1 decreases. High quality QF1 > 95 means lower success
rate, up to 16 percentage points for QF1 = 100. If we
require twice higher precision, ‘ = 0.001, the success rates
drop about 7 percentage points regardless of the quality
factor of the prior JPEG compression.

Comparison of the LPD method with the blind

method

Although blind methods for estimating resizing factors
have disadvantage of having no access to side information
about the source camera and the images it produces, we
believe it is worth it to show superiority of the proposed
semi-blind method to a blind method. For simplicity of
its implementation we chose the blind method proposed
by Kirchner in 2008 [6]. In our test, limitations of the
blind method are leveraged. Since it cannot di�erentiate
between downsizing and upsizing we ran separate tests for
downsized and upsized images. Non-scaled images (scaling
factor equal to 1) were not subject of this test.

Test setup: 100 uncompressed images from Bossbase,
original resolution images, all from one camera. The refer-
ence image is fixed as ’1339.tif’.

Parameters: Precision ‘ = 0.002.
The plotted results in Figure 6 show that the blind

method cannot compare to the LPD-method at least at
the same precision level. The performance of the blind
method varies wildly with the scaling factor that needs to
be estimated.

Computation of PRNU from inconsistent set of ref-

erence images

The purpose of the last experiment is to test Algorithm
1. The scaling inconsistent sets are formed by 10 images in
JPEG format “right from the camera” and other 10 (or less
when 20 images are not available in the SDR subset) images
resized by randomly generated scaling factor ⁄, 0.7 Æ ⁄ Æ 1.3
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(a)

(b)

Figure 1. Success rates of the two proposed methods in comparison to

scaling factor estimation by direct registration of noise residuals (W-only).

All 26 cameras (a), iPhone 6 (b).
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Figure 2. Success rate (%) of the LPD-method vs. JPEG quality factor

QF2 averaged over all scaling factors (precision ‘ = 0.002).
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Figure 3. Correctly-estimated scaling factors out of 10 tests for each scal-

ing and JPEG quality factor. Tables shown for two representative cameras,

Huawei P10 and iPhone 7 (precision ‘ = 0.002).

(a) (b)
Figure 4. Histogram of absolute estimation errors for 10 ◊ 26 test images

from 26 cameras, JPEG quality factors QF2ranging from 80 to 100: (a) for

errors collected over the range of scaling factors 0.7 < “ < 1 and (b) for

errors collected over the range of scaling factors 1 < “ < 1.3 (The histogram

plots are clipped at 0.01).
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Figure 6. Success rate of the LPD-method compared to the blind

method [6] at QF1 = 90,100 and no prior compression.

(same for every camera). Such sets are prepared for each
camera listed in Table 1. For comparison, we run the direct
form of PRNU estimation using maximum likelihood (ML)
formula as in [1] that is not aware of scaling performed to
some images.

For a relative measure of fingerprint quality we take
one flat image from the same camera and run camera iden-
tification test for this extra image with each computed
fingerprint. The higher PCE ([18]) indicates the higher
quality PRNU estimation. Alternatively, the larger corre-
lation coe�cient can also point to the better fingerprint
quality. The measured PCEs for both algorithms and their
ratio are shown in Table 6. In order to reduce a potential
bias that the extra image might have on the results, the
gain ratio is averaged over three pairs of PCE measurements
obtained from tests with three extra images.

The gain obtained from Algorithm 1 is significant. It
increases even more as the portion of resized images in the

training gets larger (not shown in this table). Interestingly,
what appears to be the largest gain seen among the 26
cameras for cameras Huawei P8, Huawei RY6, and One
Plus 3t, cannot be fully attributed to the scaling correction.
Some of the gain Algorithm 1 provides is due to the small
proper spatial translation correction unexpectedly needed
for some images from these cameras.

Table 6. Improvement in PRNU estimation through Algorithm 1.

PCE in the middle columns is computed using one flat image.

The gain in fingerprint quality is due to the LPD-method. The

gain ratio is computed as the average ratio P CELPD/P CEML for

three flat images entering the camera identification test.

Camera name/model PCE PCE Gain
(ML) (LPD) ratio

A01 Gionee S55 1459 3366 2.253
A02 Huawei P8 469 2496 5.589
A03 Huawei P9 303 899 2.948
A04 Huawei P10 3833 5511 1.437
A05 Huawei Mate Pro10 5319 13695 2.594
A06 Huawei Y5 19859 47440 2.292
A07 Galaxy S7 879 2080 2.336
A08 Galaxy S7 5843 13723 2.383
A09 Galaxy Note 5 7114 19187 2.622
A10 Galaxy J7 14663 31227 2.108
A11 Xiaomi 5 2423 5111 2.114
A12 Huawei RY6 1480 5922 4.098
A13 Huawei RY6 1680 7022 4.089
A14 Xiaomi 5A 12017 18463 1.550
A15 Xiaomi 3 6206 12518 2.029
A16 OnePlus 3t 418 1634 4.763
A17 Asus Zenfone-2 8413 16901 1.948
A18 Xiaomi 3 21474 37841 1.751
A19 Xiaomi Note 4 #0 3446 7652 2.128
A20 Xiaomi Note 4 #1 452 1315 2.788
I01 iPhone 8 1838 2515 1.350
I02 iPhone SE 13684 29170 2.155
I03 iPhone 7 432 1111 2.379
I04 iPad Air 2732 4864 1.762
I05 iPhone 6 7667 17986 2.360
I06 iPhone 5S 1322 2733 1.831

Conclusions

Image resizing detection and estimation has mostly been
studied in “blind” scenario, where no side information is
available. We introduced “semi-blind” scenario, in which
one other image from the same digital camera is provided
as a reference. We show that vertical and horizontal pro-
jections (linear patterns) of sensor pattern noise derived
from the reference image can be used in an established im-
age registration procedure to determine scaling factor and
translation with high precision. This method is applicable
to most images from mobile devices that have later been
resized and JPEG compressed again. Presence of any JPEG
compression is not a necessary condition for the proposed
method to work. On the other hand, if the resized image
had been JPEG compressed, which is a typical practice,
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the performance of the proposed method increases. More-
over, a presence of so-called JPEG dimples caused by prior
JPEG compression is accounted for to boost the probability
of successful estimation at high precision. The proposed
method is shown to improve PRNU estimation from train-
ing sets consisting of scaled images, without adding much
computational complexity.

The proposed method has its limitations. It may not
work for cameras that produce images with very weak or
random linear patterns. Future e�orts in the semi-blind
scenario will include the case when rotation of the image is
added on top of scaling and translation.
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