https://doi.org/10.2352/I1SSN.2470-1173.2020.4 MWSF-076

This work is licensed under the Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit hitp://creativecommons.org/licenses/by/4.0/ .

Detection of Malicious Spatial-Domain Steganography over
Noisy Channels Using Convolutional Neural Networks

Swaroop Shankar Prasad, University of Stuttgart, Germany, swaroopsprasad@gmail.com; Ofer Hadar, Ben-Gurion University of
the Negev, Israel, hadar@bgu.ac.il; llia Polian, University of Stuttgart, Germany, ilia.polian@informatik.uni-stuttgart.de

Abstract

Image steganography can have legitimate uses, for example,
augmenting an image with a watermark for copyright reasons,
but can also be utilized for malicious purposes. We investigate
the detection of malicious steganography using neural network-
based classification when images are transmitted through a noisy
channel. Noise makes detection harder because the classifier must
not only detect perturbations in the image but also decide whether
they are due to the malicious steganographic modifications or due
to natural noise. Our results show that reliable detection is possi-
ble even for state-of-the-art steganographic algorithms that insert
stego bits not affecting an image’s visual quality. The detection
accuracy is high (above 85%) if the payload, or the amount of the
steganographic content in an image, exceeds a certain threshold.
At the same time, noise critically affects the steganographic in-
Sformation being transmitted, both through desynchronization (de-
struction of information which bits of the image contain stegano-
graphic information) and by flipping these bits themselves. This
will force the adversary to use a redundant encoding with a sub-
stantial number of error-correction bits for reliable transmission,
making detection feasible even for small payloads.

Keywords: Image steganography, Malicious steganography,
Steganalysis, Transmission over noisy channels, Deep Learning,
Convolutional Neural Networks

Introduction

Image steganography [1] refers to embedding of information
(“payload”) P into an image / in a manner that is difficult to no-
tice by a human viewer (see Fig. 2 in the next section). Image
steganography can have legitimate or malicious (adversarial) pur-
poses. Among legitimate uses of steganography are watermark-
ing, e.g., adding information related to the image’s author to pro-
tect his/her intellectual property rights, and authenticating images
to counteract neural-network based “deepfake” attacks [2]. How-
ever, this paper deals with undesired, malicious steganography.

Fig. 1 illustrates two scenarios where communication over
a steganographic channel is used maliciously. In Fig. la, Alice
leaks sensitive data (such as private images not intended for Bob
or cryptographic key material) from the protected system, and
Bob receives them without legitimacy. This information leak-
age can be considered a passive threat. In contrast, an active
threat involving the same parties is shown in Fig. 1b: Bob uses
the steganographic channel to control malware previously planted
into the protected system. The purpose of this work is to de-
tect malicious steganography using neural networks. Consistent
with the usual naming in cryptography, Fig. 1 refers to this role as
“Eve”. Note that, in contrast to classical encryption scenario, here
Alice and Bob are trying to violate and Eve is trying to defend the
system’s security.

IS&T Infernational Symposium on Electronic Imaging 2020
Media Watermarking, Security, and Forensics

In this paper, we consider the problem of detecting malicious
steganography when images are transmitted over a noisy chan-
nel, such that some of the pixels of the received image do not
exactly match the original (sent) image. Examples of applications
affected by noise are low-power surveillance systems that com-
municate using wireless links with signals of marginal strength,
and monitors of (environmental) parameters that transmit images
over repeaters placed in potentially noisy environments. We as-
sume that the communication parties (Alice and Bob in Fig. 1)
“hijack” an existing transmission channel over which images are
being sent (and the quality loss due to noise is tolerable for the
specific application). Alice and Bob can modify the images to em-
bed stego information, but they cannot improve the channel, e.g.,
make it retransmit an image several times, add error-correcting
information or increase the signal strength.

The noisy channels complicates the situation of both: the
attackers (Alice and Bob) and the defender (the detection proce-
dure, or Eve in Fig. 1). From the attacker’s point of view, not
all information encoded in the stego bits arrives. For example,
if Alice is trying to leak a password to Bob, Bob will receive a
distorted bit string that will not let him log in. The distorted pass-
word may still be of use for Bob (e.g., he may apply single or

Outside world

Image

m decoding :>
Malicious i
steganography @ @)

ﬁ Bob extracts

sensitive data
Alice sends

sensitive data

Protected system

Image
encoding

Legitimate :">
content

Eve tries to detect the manipulation

@

Protected system Outside world

Image
encoding

<] sorning |22

0 .

<:| Legitimate

content

Malicious

steganography
Alice installed malware 1 r
that receives
instructions from Bob Bob sends

malware control

Eve tries to detect the manipulation instructions

(b)
Figure 1. Malicious steganography between Alice (who has access to a
protected system but no communication channel to outside world) and Bob
(located in the outside world).

0761

(a) (b)

double bit-flips to the received data and try to log in with obtained
data); while this is a far better procedure than brute-force search,
many systems will deny access after a few attempts, rendering
the attack useless. In the active scenario in Fig. 1b, the malware
can be extremely resource constrained to avoid being discovered
and may not have the capabilities to do fault-tolerant decoding of
instructions received through the noise-affected stego channel.

From the defender’s point of view, the classification proce-
dure must distinguish the (undesired) effects of steganography
from the (unavoidable) consequences of noise. We are using a
convolutional neural network from an earlier publication [6] for
classification. In contrast to this (and other existing works on
deep-learning based steganalysis [7, 8, 9, 10]), we train the net-
work using cover and stego images affected by different types
and intensities of noise. We are investigating both: the impact of
noise on the steganographic channel (using three state-of-the-art
spatial-domain steganographic algorithms), and on the detection
performance of the neural network.

The remainder of this paper is organized as follows. The
considered steganographic methods and the noise models are ex-
plained in the next section. The convolutional neural network
and the learning procedures employed for detecting malicious
steganography are discussed afterwards. Finally, experimental re-
sults are reported.

Noise-affected Malicious Steganography
We consider popular spatial-domain stego algorithms WOW
[4], HUGO [3, 11] and S-UNIWARD [5] (see Fig. 2). Stegano-

graphic methods in transform domain [12] or video steganogra-
phy based on motion estimation [13] are not in scope of our work.

0762

(© (d)
Figure 2. (a) Example original image and image embedding steganographic information for (b) HUGO [3], (c) WOW [4] and (d) S-UNIWARD [5]. The bitmaps

below show the differences to the original image due to stego bits.

Spatial-domain steganography

In spatial-domain steganography [14], an image / is inter-
preted as an array of bits Iy,...,I, (e.g., n =512 x 512 x 8 bits
for a 512 x 512 pixel greyscale image). A steganographic algo-
rithm . takes the cover image I and a bit-string P called pay-
load and produces the stego image Is := #(I,P). In fixed-key
steganographic algorithms, the subset M € {1,...,n} of Is bits
is agreed in advance between the communicating parties, and .&
could just write P’s bits into positions from M; here, M serves as
the steganographic key. A simple fixed-key stego algorithm could
use the LSBs of every 16-th pixel in / as stego bits.

From the adversary’s point of view, it is more attractive to
use different keys for different images, taking into account knowl-
edge about the image, e.g., hiding stego bits near to sharp edges or
other high-activity regions within the image where they are diffi-
cult to recognize. However, transmitting an individual key for
each image requires a separate communication channel, which
does not exist in malicious steganography (if Alice and Bob of
Fig. 1 had a channel to send the stego bit positions, they could
use the same channel to leak information or control the malware
without any need for steganography in the first place).

State-of-the-art steganographic algorithms used in this paper
follow an intermediate path: they create a pseudo-random matrix
RandChange of size equal to the image and use this matrix as a
(fixed) key. Both the sender and the receiver know RandChange
(it is sufficient to share the seed of the pseudorandom number
generator used to create this matrix). Then, given a cover image,
an algorithm computes, for each image pixel, a cost function (e.g.,
the proximity of the pixel to a sharp edge) and decide whether to
use the pixel for stego data or not based on the comparison of
the calculated cost function with the corresponding position of
RandChange. Therefore, even though the same key is used, stego
bits are inserted at different, image-dependent positions.

IS&T Infernational Smposium on Electronic Imoging 2020

Media Watermarking, Security, an

Forensics

Modeling and impact of noise

We assume that the stego image is transmitted through a
channel affected by two kinds of noise: Gaussian noise applied
to each pixel and packet loss, modeled as a burst of 2 x 2, 4 x 4,
8 x 8 or 16 x 16 pixel blocks being replaced by values O (black).
Examples of both kinds of noise can be found in Fig. 4. This trans-
mission transforms an image—with or without steganographic
information—into a distorted image. We write the distorted ver-
sions of the original and the stego image as I’ and I, respectively.

Note that we assume natural noise, not human intervention
with the image, like cropping or resizing (which would also be
easy to detect). It is possible to eliminate or reduce noise on the
communication protocol level, e.g., via re-transmissions or us-
ing error-correcting codes [15, 16, 17], but we assume scenarios
where such techniques either have not been applied or do not fully
eliminate all occurring noise.

From the attacker’s point of view, the noisy channel has two
effects: bit-flips on the stego bits and desynchronizing the stego
algorithm. The first effect occurs for each algorithm .7: wher-
ever the stego bits are located, they are subject to the same noise
as all other bits of the image and can change their value (flip).
Desynchronization can occur for complex stego algorithms which
determine the stego bits positions based on an image’s features,
when these very features were modified during transmission due
to noise. For example, assume that algorithm .7 selected stego bit
positions based on sharp edges in /; the payload was embedded
and the stego image transmitted. A few packets were lost during
transmission and the received image contains black pixel blocks
that were not present in the original image. When the receiving
party re-runs . to determine stego bit positions, different posi-
tions (and in general a different number of them) will be returned;
the bits on these positions will not contain the stego data.

pixel 1 pixel 2 Cover image I:

00101041/10010111 10001010 011010¢1/10010101

Q100101/1|11110010}116607011 00100000
_-"—/

Stego algorithm + Sent payload P: 1011

selects bit locations '

Stego image I.:

001010100101 11 10001010 01 1010@10010101
10100101 01001011110011001011 00100000

Transmission over
noisy channel
No(i?e-affected stego image /I’

011010100 0111 10001010 01101001{10010101
(0]01001011 11110011 11001011}001000d0|

Desynchronization:
wrong bit positions
Received payload: 11010

Figure 3. Example of distortions during transmission of a payload through
the steganographic channel

Stego bit flip

IS&T Infernational Symposium on Electronic Imaging 2020
Media Watermarking, Security, and Forensics

Fig. 3 illustrates the distortions. Algorithm .7 selects four
locations within the image data /, and the bits of payload P = 1011
are written into these locations, resulting in image Ig. During the
transmission, five bits, including one stego bit, are flipped. Run-
ning .¥ on the received distorted image I_’g results in desynchro-
nization: five instead of four locations are identified, only two of
them correct. The received payload 11010 is completely unrelated
to the sent payload P.

The adversary can try to counteract noise by applying redun-
dancy, e.g., transmitting the same information multiple times or
use error-correcting codes [15, 16, 17]. This will decrease the
bandwidth of the steganographic channel, and the adversary will
have to use more images to store the same stego information, thus
increasing the chances of being detected. As an alternative, the
attacker can increase the number of payload bits encoded into one
image (the used stego algorithms provide parameter & that sup-
ports such a decision). As we will see later, this increases the
probability of detection as well.

Desynchronization is more difficult to counteract, because
the sending party (e.g., Alice in Fig. 1) does not know which and
how many bits are lost. Even worse, malicious steganographic
channels are usually unidirectional. Even if Alice included, e.g.,
synchronization sequences or checksums into the stego message,
Bob has no chance to acknowledge a correct receipt of the mes-
sage or request a re-transmission. We are not aware of a satis-
factory solution to the desynchronization problem and expect that
if it exists, it comes with a heavy overhead. Without such a so-
lution, the adversary must resort to simple, non-adaptive stego
algorithms that store stego bits in fixed positions; such manipula-
tions should be easier to detect than the sophisticated algorithms
considered in this paper.

Steganography Detection

The detection (or steganalysis) problem addressed in this pa-
per is: given a received distorted image I’, decide, using deep
learning, whether the image contains steganographic manipula-
tions or not, without knowing the undistorted images / or Ig. In
contrast to extensive literature on image steganalysis [7, 8, 9, 10],
we focus on images received through noisy channels.

We adopt the neural network initially introduced in [6]. The
network consists of 2 Convolutional layers with hyperbolic tan-
gent activation function. In the first convolutional layer a single
kernel of size 3 x 3 is used, whereas 64 kernels each of size 509 x
509 is employed in the second layer. No Pooling layer is used and
the fully connected part is a simple output layer with 2 softmax
neurons. Stochastic Gradient Descent (SGD) optimization algo-
rithm with a batch size of 100 samples, learning rate of 0.005,
decay of 5e-7 and zero momentum is chosen. In contrast to [6],
we applied early stopping with a patience of 5 to overcome over-
fitting and improve detection accuracy. The neural network was
modelled using TensorFlow 2.0. All images were normalized to
[0,1] before feeding it into the neural network.

Experimental Results

We perform two sets of experiments: we investigate the im-
pact of noise on the error rate of the steganographic channel and
on the detection performance of the neural network from the last
section.

076-3

Figure 4. Example effects of Gaussian noise (middle) and packet loss (right)

Generation of the dataset

We use images from the BOSSBASE [18] and RAISE [19]
datasets. More specifically, the training set is constructed from
first 7,000 images from BOSSBASE and first 4,000 from RAISE;
the test set from last 3,000 images from BOSSBASE and next
1,000 from RAISE; and the prediction set from 2,000 of remain-
ing 3,156 images from RAISE. Since each image is used in one
stego-free and one stego version, the total cardinalities of the
three sets are 22,000 (training), 8,000 (test) and 4,000 (predic-
tion). We used HUGO, WOW and S-UNIWARD stego algorithms
with fixed-stego key implementations from [20].

Fig. 5 summarizes how the sets of distorted images I’ and I
used for experiments are obtained. For each image, we can de-
cide which of the three considered stego algorithms will be used
and set parameter «. (Essentially, ¢ is the proportion of stego
bit locations found by the stego algorithm that will be used; for
instance, @ = 0.4 means that payload bits will be placed on 40%
of the identified locations). Both images (the cover image / and
the stego image Ig) are then distorted by adding Gaussian noise
and packet loss. We aim at images which have a sufficient qual-
ity, quantified by distortion-related PSNR between 30 and 60 (a
noisy channel that leads to a lower PSNR would perhaps be rather
useless in practice). Gaussian noise is determined by its standard
deviation; we use values between 0.3 and 11 because they lead to
PSNR of 60 and 30, respectively. Packet loss is defined by the
size of the block that is zeroed when one packet is lost (we con-
sidered 2 x 2,4 x 4, 8 x 8 or 16 x 16 pixel blocks); the packet loss
ratio PLR (values between 0.001 and 0.01) and the average burst
length ABL (values between 4 and 30) [21].

Bit flips and Classification
Payload parameter: error rate accuracy
a=0.1,0.2,0.30r04
AR
Stego algorithm:
WOW, HUGO or Error rate CNN
S-UNIWARD estimation
\ Stego
Cover image / Embed image s
(BOSSBASE, payload bits
RAISE) Distorted
image /’,
Add : Prepare
distortions Distorted dataset
/ \ image I
Gaussian noise Packet loss
parameters parameters

Figure 5. Generation of experimental data

0764

Error-rate estimation

Table 1 summarizes our results on the impact of the noisy
channel on steganographic operation for the HUGO algorithm.
We observed that for adaptive algorithms used here, the transmis-
sion of an image over an unreliable channel practically always
results in desynchronization, i.e., different numbers and positions
of stego bits found before and after transmission. This suggests
that a steganographic algorithm should include synchronization
features, even though their optimal design is currently unclear.
Table 1 shows the effect of various types of noise on the error rate
of the steganographic channel assuming perfect synchronization
(the receiver knows the correct bit positions).

Each row of Table 1 corresponds to a combination of noise
sources with specific parameters. For packet loss, these are the
packet size (block in the image that is zeroed if a packet is lost),
ABL and PLR explained above; we also report how many packets
with the selected size are included in the 512 x 512 pixel image
and how many of them were lost. For the Gaussian noise, we con-
sider two values 0.3 and 11 (which lead to a PSNR of roughly 60
and roughly 30, respectively). We run HUGO algorithm with two
representative values of & and report the stego bits accommodated
within the image. For each set of noise parameters and each ¢,
Table 1 includes the PSNR of the distorted image, the number of
bit flips affecting the stego bits in this image, and the error rate
(the latter number divided by the total number of stego bits).

Interestingly, the error rate is largely determined by the stan-
dard deviation of the Gaussian noise and practically unaffected
by parameters related to packet loss. This is because even very
few lost pixel blocks dramatically deteriorate the image quality;
for instance, already nine 8 x 8 blocks are sufficient to reach our
minimal target PSNR around 30. Relatively few stego bits are
affected in such images, and the error rate seen by the adversary
is low. In contrast, Gaussian noise worsens the quality gradu-
ally, and relatively many bits—including stego bits—must be af-
fected for PSNR between 30 and 60. We observe rates between
5% and 25% that can be considered severe and call for a strong
error-correcting solution. Even if the attacker is transmitting short
pieces of information (e.g., 128-bit encryption keys or control in-
structions for malware), a large number of redundant bits will be
needed to communicate them reliably.

Space constraints prevent us from publishing the counter-
parts of Table 1 for the other two stego algorithms, but the results
are almost algorithm-independent. Fig. 6 summarizes the average

IS&T Infernational Smposium on Electronic Imoging 2020

Media Watermarking, Security, an

Forensics

Table 1: Error rate over steganographic channel for HUGO

Noise Parameters o = 0.4 (23,523 stego bits) a =0.1 (4,717 stego bits)
Noise Type Packet Size | ABL | PLR | Total Packets lost | Std.dev | Avg. Avg. Error Avg. Avg. Error
Packets | (avg.) PSNR | bit flips | rate[%] PSNR | bit flips | rate[%]
) 0.3 56.8 1111 4.73 60.07 223 4.73
Gaussian only ; 11 30.59 | 5907 25.11 30.59 | 1177 24.96
Packet Loss only - 32.29 40 0.17 32.29 8 0.17
2%2 11 0.0035 65535 221 0.3 32.28 1164 4.95 32.28 229 4.85
Gaussian + Packet Loss 11 2838 | 5872 2497 | 2838 | 1181 25.03
Packet Loss only - 34.56 36 0.15 34.56 9 0.19
4x4 21 0.0023 16384 38 0.3 34.53 1161 4.94 34.53 235 4.98
Gaussian + Packet Loss 11 2891 | 5842 2484 | 2891 | 1170 248
Packet Loss only - 3547 26 0.11 3547 5 0.11
8§x8 23 0.0022 4096 9 0.3 35.46 1172 4.98 35.46 231 49
Gaussian + Packet Loss 11 2923 | 5931 2521 2923 | 1203 25.5
Packet Loss only - 34.95 25 0.11 34.95 5 0.11
16 x 16 16 0.0019 1024 2 0.3 3491 1148 4.88 3491 229 4.85
Gaussian + Packet Loss 11 2888 | 5932 2522 | 2888 | 1190 2523

error rates; it can be seen that the determining factor in all cases Table 2: Detection accuracy for ditferent scenarios

is the magnitude (standard deviation) of Gaussian noise. Stego Payload Number Detection
algorithm param. a | of epochs | Accuracy [%]
Detection performance > 0.1 84 74.05
We trained the neural network that classifies distorted stego- 5 HUGO 04 60 975
free vs. distorted stego images for all three steganographic algo- .% 01 84 7558
rithms and all noise parameters considered. Table 2 reports the = WOW
number of epochs and the detection accuracy (relative frequency ,§ 04 58 96.55
of correct classification) of this network on the unseen prediction § 0.1 75 74.98
set. The training took roughly 4 minutes per epoch on a Tesla ® | S-UNIWARD 04 60 95.75
K80 GPU with 12 GB memory. The results have been obtained : :
using early stopping. As an example, training without early stop- 0.1 95 71.93
ping as in [6] would take 108 epochs (or 7.2 hours) for WOW with T? HUGO 04 60 96.45
a = 0.1 and a combination of Gaussian noise and packet loss, and g
the network would achieve 72.95% accuracy. The results in Table S WOW 0.1 85 78.63
2 (with early stopping) are: 74.85%, obtained in 94 epochs or 6.3 E 0.4 50 93.48
hours. g 0.1 80 76.9
From Table 2, one can see that the employed NN detects A~ S-UNIWARD
. . . 0.4 58 95.6
steganography insertion very well for high values of parameter
a (0 < o < 1), which determines how many bits of an image % 0.1 94 74.85
are used for steganographic information. Fig. 7 shows training -
% Wow 0.2 60 81.05
g 0.3 54 86.6
30 25.13 25.16 g 0.4 45 94.1
25.04 25.05 25.10 25.22 ©
25 Z 0.1 98 73.2
g g HUGO 0.4 47 96.68
g1 E S UNIWARD 0.1 97 73.65
5 5] -
Sw s 451 O 0.4 48 94 .45
473 475 492 490
5 0.14
, e I I and test accuracy for one algorithm “WOW” and a combination
pL G(06=03) G(o=11) PL+G(0=0.3) PL+G(o=11) of Gaussian noise and packet loss (the other algorithms behaved
HHUGO mWOW = S-UNWARD similarly). Furthermore, from Table 2, it can be seen that irre-
spective of the stego algorithm, the combination of both Gaussian
Figure 6. Average error rates for different stego algorithms and noise pa- noise and packet loss has the greatest impact on detection accu-
rameters (G = Gaussian, PL = packet loss) racy followed by Gaussian noise only and packet loss only.

IS&T Infernational Symposium on Electronic Imaging 2020
Media Watermarking, Security, and Forensics 0765

Model Accuracy

Model Accuracy

Model Accuracy

10

Accuracy

07 f

/
| FANIFiIN A
/ — / W

@

/\f

P

N

10

09

=
@

20
Number of epochs

(a)

0 40 0 10

20
Number of epochs

(b)

=
g
a
407 .
R TR
0.6
= Training / = Training
Testing 05 7 Testing
40 50 &0 o 20 40 60 80
Number of epochs
()

Figure 7. Training accuracy (classification of the training set) and test accuracy (classification of the test set) of WOW stego algorithm with parameter a set to
(a) 0.4 (resulting in 23,754 stego bits per 512 x 512-pixel image on average); (b) 0.2 (10,379 stego bits per image); (c) 0.1 (4,643 stego bits per image).

Conclusions and Future Work

We have considered the problem of steganalysis over noisy
channels, pointing out the implications of noise to both: perform-
ing steganography and detecting it. We improved the deep learn-
ing strategy and observed good detection accuracy on realistic im-
ages. Our results indicate that steganalysis becomes feasible when
the amount of stego information in an image increases. At the
same time, even moderate noise with limited effect on the qual-
ity of the images themselves can have grave consequences for the
steganographic channel, leading to very large error rates. While
an adversary could find a fault-tolerant scheme to still transmit
the information, it would require a large number of redundant bits
and therefore be detectable by our deep-learning approach.

In the future, we plan to design countermeasures against
malicious steganography based on strategically inducing errors
on the communication channel while avoiding too harsh conse-
quences for the image quality. We would also like to understand
better what an adversary has to do to overcome the desynchro-
nization problem, and prevent him from doing so.

References
[1] T. Morkel, J. H. P. Eloff, and M. S. Olivier. An overview of image

steganography. In ISSA, pages 1-11. ISSA, Pretoria, South Africa,

2005.

B. Dolhansky, R. Howes, B. Pflaum, N. Baram, and C. Canton-

Ferrer. The deepfake detection challenge (DFDC) preview dataset.

CoRR, abs/1910.08854, 2019.

T. Filler and J. J. Fridrich. Gibbs construction in steganogra-

phy. IEEE Trans. Information Forensics and Security, 5(4):705-720,

2010.

V. Holub and J. J. Fridrich. Designing steganographic distortion

using directional filters. In WIFS, pages 234-239. IEEE, 2012.

V. Holub, J. J. Fridrich, and T. Denemark. Universal distortion func-

[4]

[5]
tion for steganography in an arbitrary domain. EURASIP J. Infor-
mation Security, 2014:1, 2014.

M. Salomon, R. Couturier, C. Guyeux, J.-F. Couchot, and J.M.
Bahi. Steganalysis via a convolutional neural network using large

[6]

convolution filters for embedding process with same stego key: A
deep learning approach for telemedicine. European Research in
Telemedicine, 6(2):79-92, 2017.

[7] Y. Qian, J. Dong, W. Wang, and T. Tan. Deep learning for steganal-

0766

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

ysis via convolutional neural networks. In Media Watermarking,
Security, and Forensics, volume 9409 of SPIE Proceedings, page
94090]. SPIE, 2015.

L. Pibre, J. Pasquet, D. Ienco, and M. Chaumont. Deep learning
is a good steganalysis tool when embedding key is reused for dif-
ferent images, even if there is a cover sourcemismatch. In Media
Watermarking, Security, and Forensics, pages 1-11. Ingenta, 2016.

S. Baluja. Hiding images in plain sight: Deep steganography. In
NIPS, pages 2069-2079, 2017.

D. Ye, S. Jiang, S. Li, and C. Liu. Faster and transferable deep
learning steganalysis on GPU. J. Real-Time Image Processing,
16(3):623-633, 2019.

T. Pevny, T. Filler, and P. Bas. Using high-dimensional image mod-
els to perform highly undetectable steganography. In Information
Hiding, volume 6387 of LNCS, pages 161-177. Springer, 2010.

B. Kaur, A. Kaur, and J. Singh. Steganographic approach for hiding
image in dct domain. International Journal of Advances in Engi-
neering & Technology, 1:72-78,2011.

Y. Cao, X. Zhao, D. Feng, and R. Sheng. Video steganography with
perturbed motion estimation. In Information Hiding, volume 6958
of LNCS, pages 193-207. Springer, 2011.

M. Hussain, A. W. A. Wahab, Y. I. B. Idris, A. T. S. Ho, and K.-H.
Jung. Image steganography in spatial domain: A survey. Sig. Proc.:
Image Comm., 65:46-66, 2018.

I. Koren and C. Mani Krishna.
Kaufmann, 2010.

V. I. Korzhik, G. Morales-Luna, and K. Loban. Stegosystems based
on noisy channels. IJCSA, 8(1):1-13, 2011.

V. Korzhik, G. Morales-Luna, K. Loban, and I. Marakova-Begoc.
Undetectable spread-time stegosystem based on noisy channels. In

Fault-tolerant systems. Morgan

Proc. Int’l Multiconf. Computer Science and Information Technol-
ogy, pages 723-728. IEEE, 2010.

P. Bas, T. Filler, and T. Pevny. “Break our steganographic system”:
The ins and outs of organizing BOSS. In Information Hiding, vol-
ume 6958 of LNCS, pages 59-70. Springer, 2011.

D.-T. Dang-Nguyen, C. Pasquini, V. Conotter, and G. Boato.
RAISE: a raw images dataset for digital image forensics. In MMSys,
pages 219-224. ACM, 2015.

Steganographic algorithms. http://dde.binghamton.edu/download/,
(Accessed December 24, 2019).

O. Hadar, R. Shmueli, R. Huber, and M. Huber. Effects of com-
pression parameters on the perceived quality of video stream over a
lossy internet protocol network. Optical Engineering, 45(8):087003,
2006.

IS&T International Swposium on Electronic Imaging 2020
Media Watermarking, Security, and Forensics

JOIN US AT THE NEXT El!

Electronic Imaging

IS&T International Symposium on
SCIENCE AND TECHNOLOGY

Imaging across applications . . . Where industry and academia meet!

e SHORT COURSES * EXHIBITS « DEMONSTRATION SESSION ¢ PLENARY TALKS
e INTERACTIVE PAPER SESSION ¢ SPECIAL EVENTS ¢ TECHNICAL SESSIONS -

www.electronicimaging.org

imaging.org

