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Abstract
To read a digital watermark from printed images requires

that the watermarking system read correctly after affine distor-
tions. One way to recover from affine distortions is to add a syn-
chronization signal in the Fourier frequency domain and use this
synchronization signal to estimate the applied affine distortion.
If the synchronization signal contains a collection of frequency
impulses, then a least squares match of frequency impulse loca-
tions results in a reasonably accurate linear transform estimation.
Nearest neighbor frequency impulse peak location estimation pro-
vides a good rough estimate for the linear transform, but a more
accurate refinement of the least squares estimate is accomplished
with partial pixel peak location estimates. In this paper we will
show how to estimate peak locations to any desired accuracy us-
ing only the complex frequencies computed by the standard DFT.
We will show that these improved peak location estimates result in
a more accurate linear transform estimate. We conclude with an
assessment of detector robustness that results from this improved
linear transformation accuracy.

Introduction
A blind watermarking system, as described in Cox [3], must

recover watermarks after geometric distortions without access to
the original cover image. Affine distortions, which include scal-
ing, rotations, cropping and translation distortions, are the sim-
plest and most important geometric distortions and this paper will
focus on them. More complex non-linear geometric distortions,
often found in camera capture, include projective transforms or
spherical aberrations. If the watermark is printed and then cap-
tured with a scanner or smart phone, then estimating and recover-
ing from geometric distortions becomes an acute problem.

When a watermarked image is printed and captured, the re-
sulting image is distorted. This distortion is usually close to an
affine transform when restricted to a small region. An affine map-
ping has the form,

A(x) = M(x)+ t, (1)

where x ∈ R2, M is a 2× 2 matrix and t is a translation 2-vector.
Reading a watermark from this captured image requires estimat-
ing this affine transform so that the watermark extraction process
is aligned properly.

We know from previous work, such as Alattar [1], that a syn-
chronization signal in the frequency domain can be used to cor-
rect many forms of geometric distortions, especially affine distor-
tions. For example, one can insert a set of frequency impulses,
which are just corrugations in the spatial domain. These fre-
quency impulses provide a good mechanism for estimating the
linear transform as frequency magnitudes are independent of the
translation. Therefore, one can use a variant of the least squares

method on frequency magnitudes to estimate the linear transform
portion of the affine transform. If we apply an affine transform,
A(x) = Ms(x)+ t, in the spatial domain, then the frequency im-
pulses will transform with the linear transform M f =

(
MT

s
)−1.

This means that the linear transform in the frequency domain
gives us the linear transform in the spatial domain.

To see how the synchronization signal fits into a watermark-
ing system, we give an example of a detector that detects a water-
mark signal with an added synchronization signal that consists of
a collection of Fourier Domain impulses.

1. Take the DFT of the entire image or a selected region of the
image.

2. Find the synchronization signal Fourier domain impulses.
We shall elaborate on this step in this paper.

3. Find a frequency domain linear transform M f that maps the
original carrier signal peak constellation onto the observed
peaks. The linear transform in the spatial domain will be

Ms =
(

MT
f

)−1
. This step is described in more detail below.

4. Compute the phases of the synchronization signal in the im-
age block. One method of doing is to use the phase estima-
tion technique proposed in [6].

5. Use the phases of the carrier signal to compute the transla-
tion using phase correlation [12] or some equivalent tech-
nique.

6. Use the linear transform Ms and the translation offset to
align the image to its original framed position.

7. Extract the watermark.

The objective of this research is to improve the accuracy of
the linear transform estimation for a watermarking system. The
least squares estimate minimizes the squared error between the set
of observed impulse locations and coordinate locations resultant
from applying a linear transform to the original coordinates. In the
discrete Fourier domain these locations are easily measured to in-
teger pixel locations by choosing the frequencies with the largest
magnitude. However, the least squares estimate is often more ac-
curate if the impulse locations can be measured to partial pixel
accuracy. This additional accuracy will generate a more accurate
linear transform that will better predict the geometry of the water-
mark and so result in a more robust watermark extraction. In this
paper we will show how to estimate frequency impulse locations
to any desired accuracy. This additional peak location estimation
accuracy results in a more accurate linear transform estimate.

We begin the paper with a short review of 2-dimensional
least squares. There is some subtlety in how one can match the
original synchronization impulses with the peaks observed in the
frequency domain. One could use RANSAC [8], Log-Polar [11]
or some equivalent method. We used the direct least squares pro-
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posed in [12]. We shall not discuss this in detail in the current
paper.

After a short review of least squares, this paper discusses
an algorithm used to estimate the magnitude and phase of a fre-
quency impulse. In watermarking, the image is considered noise
and so we are searching for a small signal in a large amount of
background noise. Further, we only consider algorithms that have
straightforward hardware implementations. There are several al-
gorithms proposed in the literature. Our implementation is the
same as the implementation in [6]. There are other algorithms that
estimate the frequency magnitude including [9], [10], [5]. Our
method assesses the magnitude and phase for a given frequency
location.

We conclude the paper by describing how this additional
peak search accuracy fits into a watermarking system. We present
results for a test harness and for an actual watermarking system.

Least Squares
To estimate the linear portion of affine distortion we use least

squares in the frequency domain. To execute least squares you
must find the locations of the original synchronization signal im-
pulses after the geometric distortion. Assume we have original
impulse locations given by points (xi,yi) ∈ R2 with i = 1, · · ·S.
Assume we find associated locations given by the measurements
( fi,gi) which are just the location of the impulse peaks in the ac-
tual image. In the introduction we discussed some of the subtleties
of this association. We want to find the best fit linear mapping
M : R2 → R2, with components mi j, that maps (xi,yi) to ( fi,gi).
If we minimize the squared error, then we end up with a linear
regression problem that is easily solved (for details see [13]). The
squared error is,

e2 =
S
∑

i=1

∣∣∣∣[ m11 m12
m21 m22

][
xi
yi

]
−
[

fi
gi

]∣∣∣∣2 (2)

To find the matrix that minimizes this we set the partials to
zero,

∂e
∂mi j

= 0.

This yields four equations which result, after a bit of algebra, in
the following solutions,

[
m̂00
m̂01

]
= 1

det(L)L

 ∑
i

fixi

∑
i

fiyi


[

m̂10
m̂11

]
= 1

det(L)L

 ∑
i

gixi

∑
i

giyi

 (3)

where the 2×2 linear transform L is given by,

L =

 ∑
i

yiyi −∑
i

yixi

−∑
i

xiyi ∑
i

xixi

 .
The starting impulse locations (xi,yi) are known and the

( fi,gi) are found on the distorted image. The more accurately we
know the position of the impulse on the distorted image the more
accurately we can estimate the updated linear transform compo-
nents m̂i j .

Searching for impulse locations using nearest neighbor is a
reasonable way to find the impulse locations ( fi,gi). But we can
improve this by estimating the impulse locations to partial pixel.
Center of mass techniques yield better results than nearest neigh-
bor but do not use the phase of the frequency values. In subse-
quent sections we will show how to find the impulse locations
using the full complex values in the frequency plane.

Finite Sampling and Spectral Leakage
We start in 1-dimensions and define a continuous signal, f :

R→ R. The Fourier Transform of f is the function F{ f} : R→C
given by

F{ f}(µ) = F(µ) =

∞∫
−∞

f (x)exp(−2π jµx)dx

The Nyquist Sampling theorem says that if F(µ) = 0 for µ /∈
[−B,B] then f can be reconstructed from samples, if they are
taken uniformly at a frequency greater than 2B (see [7]). Let the
sampling frequency be νs ≥ 2B and define the sampling interval
∆ by

∆ =
1
νs
≤ 1

2B
.

One way to justify the Nyquist sampling theorem is to write the
function F(µ) as a Fourier series. Let Fc be the Fourier series
expansion of F ,

Fc(µ) =
∞

∑
k=−∞

akexp
(
−2π j

1/∆
µk
)
=

∞

∑
k=−∞

akexp(−2π jµk∆).

The sign of k is non-standard and is chosen for convenience. The
coefficients are

ak = 1
νs

νs∫
−νs

F(µ)exp(2π jµk∆)dµ = ∆ f (k∆),

by the inverse Fourier Transform formula. We know that Fc(µ) =
F(µ) whenever |µ| ≤ νs

2 , however, Fc is periodic, with period νs.
So, on the interval [− νs

2 ,
νs
2 ] we can express the Fourier Transform

as,

Fc(µ) = F(µ) = ∆

∞

∑
k=−∞

f [k∆]exp(−2π jµk∆).

To derive the Nyquist sampling reconstruction formula, you mul-
tiply by the indicator function on

[
− νs

2 ,
νs
2
]

and take the inverse
Fourier Transform to get the actual signal f (see [7] or [2]).

Our concern is the infinite sum, which is impossible to com-
pute in the laboratory. A real signal must be windowed by a win-
dow function h(x) which has compact support. Recall that when
we say that a function h has compact support then there is a num-
ber W such that h(x) = 0 whenever |x| > W . Now define the in-
dicator function 1A(x) = 1 if x ∈ A and 0 otherwise. If we take
the indicator function on the half-open interval [0,N∆), which we
denote by h(x) = 1[0,N∆)(x), then the windowed function h f has
compact support and has just N samples,

f (0), f (∆), · · · f ((N−1)∆).
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We exclude the point N∆, since this sample would represent the
interval [N∆,(N + 1)∆). Our windowed function has the Fourier
Transpose,

Fh(µ) = ∆

N−1

∑
k=0

f [k∆]exp(−2π jµk∆).

The Nyquist condition is that the Fourier Transform must have
compact support. If the window has compact support, then win-
dowed function h f has compact support as well. But this means
that the Fourier Transform cannot have compact support and so
cannot satisfy the basic Nyquist criteria. Another, related issue is
that the frequency peaks are blurred by the Fourier Transform of
the window function. One way to see this is to use the product
rule of Fourier Transforms,

F{h f}= F{h}∗F{ f}.

This is often called window spectral leakage. See [4] for a good
discussion of these issues. We will get an explicit expression be-
low that will help us calculate leakage due to windowing.

Divide the interval [− νs
2 ,

νs
2 ] into N equal frequency intervals

each with width given by ν0,

ν0 =
νs

N
=

1
N∆

.

We re-write Fh with frequency coordinate w, defined by wν0 = µ .
Using w, the Fourier Transform of the windowed samples has the
form,

Fh(w) = ∆

N−1

∑
k=0

f [k∆]exp
(
−2π j

N
wk
)
. (4)

If w is an integer then this is the standard DFT, but we do not as-
sume that w is an integer. However, w does satisfy |w| ≤ N

2 . Now
move to 2-dimensions and derive an explicit formula for window
spectral leakage.

Spectral Leakage in Two Dimensions
We switch to 2-dimensional blocks. Given a 2-dimensional

signal f : R2 → C which satisfies the Nyquist condition. Let ∆1
and ∆2 be the sampling intervals of the x and y directions respec-
tively. We apply a window h that has N1 non-zero samples in the
x-direction and N2 samples in the y-direction. This section com-
putes the window leakage in this 2-dimensional case.

We start with a definition of the vector space structure on the
set of sampled functions. Let L2 (ZN1 ×ZN2) be the N1N2 dimen-
sional vector space consisting of finite complex functions on the
set {0, · · · ,N1− 1}×{0, · · · ,N2− 1}. A sampled function takes
every pair of coordinates (k1,k2) to a complex number f [k1,k2].
We define an inner product and a norm,

〈 f ,g〉=
N1−1

∑
k1=1

N2−1

∑
k2=1

f [k1,k2]g[k1,k2]. (5)

‖ f‖2 = 〈 f , f 〉 (6)

Note the function (k1,k2)→ f (k1∆1,k2∆2) is in this space.

We want to write the 2-dimensional analog to Equation 4.
But we scale magnitudes so that ∆1∆2 → 1√

N1N1
and adjust the

scale domain of f so it is just an indexed object. With this, the
equivalent to Equation 4 for the signal h f is given by,

Fh(w1,w2) =
1√

N1N2

N1−1
∑

k1=0

N2−1
∑

k2=0
f [k1,k2]

exp
(
−2π j

(
w1k1
N1

+ w2k2
N2

)) (7)

When u1 and u2 are integers then Fh(u1,u2) is the DFT of the
windowed signal fh = h f ,

D{ fh}[u1,u2] = Fh(u1,u2). (8)

We choose to scale by 1
N1N2

for convenience. With this scale the
DFT Is an isometry with respect to the norm in 6, meaning, for
every f we have,

‖D{ f}‖= ‖ f‖.

Next, we find the Fourier transform of a pure frequency that
is windowed, and so has samples,

pv[k1,k2] =
1√

N1N2
exp
(

2π j
(

v1k1

N1
+

v2k2

N2

))
, (9)

where v = (v1,v2). Note that this function always has norm
‖pv‖= 1, with the norm defined in Equation 6. The frequencies,
Fh, of this signal are

Fh(w1,w2) = 1
N1N2

N1−1
∑

k1=0

N2−1
∑

k2=0

exp
(

2π j
(
(v1−w1)k1

N1
+

(v2−w2)k2
N2

))
= PN1(v1−w1)PN2(v2−w2).

where,

PN(δ ) =
1
N

N−1
∑

k=0
exp
(

2π j
(

δ

N k
))

=
1−exp(2π jδ )

N(1−exp(2π j( δ

N )))

The sin is the difference of exponentials, so we arrive at,

PN(δ ) = exp
(

π jδ
(

N−1
N

))
sin(πδ )

N sin
(

π
δ

N

) (10)

Notice that (in the limit) PN(0) = 1. Notice, also, that as N→ ∞

this function looks like a standard sinc function. Putting this all
together we get,

Fh(w1,w2) = PN1(v1−w1)PN2(v2−w2). (11)

which exhibits the Frequency content of a pure frequency impulse
that is sampled and windowed with an indicator function. It’s
worth emphasizing that PN is a direct result of using the indicator
function for a window.

If we construct an image composed from a pure sinusoid,
then it is the sum of two signals of the form of Equation 9. Again,
we do not assume that v1,v2 are integers. To simplify the notation
we will examine the complex sinusoid,

s[k1,k2] = Ae2π jθ pv[k1,k2].

If we construct the DFT we get, for integer u1,u2,

D{s}[u1,u2] = Ae2π jθ D{pv}[u1,u2]

= Ae2π jθ PN1(v1−u1)PN2(v2−u2).

In the next section we will use this to estimate A and θ .

IS&T International Symposium on Electronic Imaging 2020
Media Watermarking, Security, and Forensics 024-3



Impulse Detection
In this section we will estimate the magnitude and phase of

a frequency impulse using the standard DFT data, without assum-
ing that the frequency has integral coordinates. For a different
presentation of this same material, which is based on maximizing
signal-to-noise, see [6].

We start with a corrugation, which is a scaled pure frequency.
An image might have a cosine wave which is a sum of two com-
plex exponentials and so contains a frequency and its negative.
We will use a signal s that is a scaled version of a single frequency
impulse, as in Equation 12,

s[k1,k2] = Aexp(2π jθ) pv[k1,k2]. (12)

Here v = (v1,v2) is not assumed to have integer coordinates and
θ is the phase, normalized to lie in [−1/2,1/2]. We will assume
that the signal, at least locally, looks like the impulse of Equation
12. When we find the synchronization peaks, we will assume that
they are larger than the neighboring pixel image data.

Take the standard DFT of the signal s,

D{s}[u1,u2] = S[u1,u2] =< pu1,u1 ,s > .

This means that a pure signal, with no noise, satisfies

S[u1,u2] = Ae2π jθ < pu1,u2 , pv > . (13)

We know, from definition, that D{pv}[u1,u2] =< pu1,u2 , pv >.
With this we have,

< pu1,u2 , pv >= PN1(v1−u1)PN2(v2−u2). (14)

We want to estimate A and θ so we form the expression,

S[u1,u2] (< pu1,u2 , pv >)∗ = Ae2π jθ ‖< pu1,u2 , pv >‖2 .

Now sum up the values on all possible integer frequency locations
and we get the expression,

N1−1
∑

u1=0

N2−1
∑

u2=0
S[u1,u2] (PN1(v1−u1)PN2(v2−u2))

∗

=
N1−1

∑
u1=0

N2−1
∑

u2=0
Ae2π jθ |< pu1,u2 , pv >|2

= Ae2π jθ
N1−1

∑
u1=0

N2−1
∑

u2=0
|< pu1,u2 , pv >|2

= Ae2π jθ‖pv‖2.

where we used Parseval’s identity (which in this case is really
just the Pythagorean theorem). Recall that the collection of N1N2
functions pu1,u2 with 0 ≤ u1 < N1,0 ≤ u2 < N2 actually form an
orthonormal basis of L2 (ZN1 ×ZN2) (for more on this see [2]). We
chose the scaling of pv so that ‖pv‖2 = 1. We arrive at,

N1−1

∑
u1=0

N2−1

∑
u2=0

S[u1,u2] (< pu1,u2 , pv >)∗ = A(v)e2π jθ(v). (15)

This gives an estimate for A(v) and θ(v) based on our frequency
impulse point spread function given in Equation 14. We empha-
size that the estimates for A and θ are for the specific frequency
location v = (v1,v2). Equation 15 is the same equation derived in
[6], but it was derived through different means.

To estimate the magnitude and angle we need to take enough
terms. Exactly how many terms you need depends on the sig-
nal and the carrier. To help find the number of terms required
recall that pu1,u2 form an orthonormal basis on our vector space
L2 (ZN1 ×ZN2). This means that,

1 =
N1−1

∑
u1=0

N2−1

∑
u2=0
|< pu1,u2 , pv >|2. (16)

So, for a fixed v we choose as many coefficients as we need to so
that the remaining elements |< pu1,u2 , pv >|2 are small. This will
limit the size of the terms involving < pu1,u2 , pv >

∗. For almost
all applications a handful of terms will suffice.

We can evaluate the system when the original block has
added white Gaussian noise Ns, with standard deviation σ . The
DFT of AWGN, which we denote by N f , is AWGN on each of
the real and imaginary parts of the complex frequency. The noise
N f on the real and imaginary parts is independent and has stan-
dard deviation σ√

2
. It is straightforward to show that, < f ,N > is

Gaussian and satisfies,

E
[∣∣< f ,N f >

∣∣2]= ‖ f‖2E
[
N2

f

]
= ‖ f‖2 σ2

2
. (17)

So AWGN in the spatial domain corresponds to AWGN in the
expansion 15. Equation 17 gives one a way to characterize the
variance after the number of terms required for the application is
fixed.

Zero Padding DFT
We can take another approach to computing frequencies at

non-integer coordinates. In this section we zero pad the image and
then perform a longer DFT. This results in comparable equations.

We take our N samples and pad N zero samples to get a 2N
sample signal f . How does the DFT relate to the original DFT
and to our frequency interpolation? The 2N-DFT, F2N , is,

F2N [v] = 1√
2N

2N−1
∑

k=0
f [x]exp

(
− 2π j

2N vk
)
,

= 1√
2N

N−1
∑

x=0
f [x]exp

(
− 2π j

N
v
2 k
)
,

where v = 0, · · ·2N−1. Notice that we have,

F2N [v] =
1√
2

FN

[ v
2

]
. (18)

This is the 1-dimensional analog to Equation 7 where we allow
the frequencies to take on integral and half-integral values. The
DFT is invertible so we have,

f [k] =
1√
N

N−1

∑
u=0

FN [u]exp
(

2π j
N

uk
)
.

Use this to write F2N [u] in terms of FN [u],

F2N [v] = 1
N
√

2

N−1
∑

u=0
FN [u]

N−1
∑

x=0
exp
(

2π j
N
(
u− v

2
)

k
)

= 1√
2

N−1
∑

u=0
FN [u]PN(u− v

2 )

= 1√
2

N−1
∑

u=0
FN [u]

(
PN(

v
2 −u)

)∗
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Insert Equation 18 into this expression and we arrive at,

FN

[ v
2

]
=

N−1

∑
u=0

FN [u]
(

PN

( v
2
−u
))∗

(19)

This is a 1-dimensional version of Equation 15 when we use
14. Zero padding provides similar information but is more dif-
ficult to compute as it requires one to recompute a longer DFT
which is quite expensive. To compute values FN

[ v
2
]

for half-
integral frequencies requires a DFT of length 2N. Other values
of v require similarly expensive computations with longer DFT’s.

Partial Pixel Least Squares
To improve a linear transform estimate using least squares

we must estimate the frequency peak locations ( fi,gi). The lin-
ear transform estimate will minimize the error described in Equa-
tion 2. To start this coordinate update process, we apply the
starting linear transform to the synchronization peak coordinates.
To determine the updated synchronization signal coordinates, we
search for a peak in the neighborhood around the transformed syn-
chronization signal coordinates. Fix a collection of frequency co-
ordinates centered at the transformed coordinates,

(v1,1,v1,2),(v2,1,v2,2), · · · ,(vm,1,vm,2).

Now use Equation 15 to estimate A(vk,1,vk,2) and θ(vk,1,vk,2).
We do this for each of the m coordinates and choose the coordi-
nate k with the largest A(vk,1,vk,2). After finding the maximum
A(vk,1,vk,2) we set,

fi = vk,1
gi = vk,2.

We repeat this for every synchronization point i = 1, · · · ,S. After
estimating all the peak locations, ( fi,gi), we can evaluate a new
linear transformation using Equation 3.

Results
We constructed a test harness to evaluate the least squares

linear transform accuracy. The data for the model consists of a
synchronization signal with added noise,

im[k1,k2] =
K

∑
i=1

Ai cos
(

2π

(
v1(i)ki

N1
+

v2(i)k2

N2

))
+N[k1,k2],

where N[k1,k2] is added white Gaussian noise. We tested
the linear transform accuracy for whole and 1

8 pixel accuracy.
This means that, for the ith frequency impulse, we evaluated
A(v1(i),v2(i)) for every point on a 1

8 pixel grid near the integer
location with the maximum frequency. The result is a linear trans-
formation that is more accurate than the nearest neighbor equiva-
lent. In the results that follow we used,

• Signal amplitude = 0.29.
• Additive White Gaussian Noise with σ = 4.0.

In figure 1 we show the peak search for a single synchroniza-
tion frequency impulse. The peak location is not exact because of
the added noise.

In figure 2 we show the resulting increase in accuracy for a
collection of rotations. The improved accuracy is demonstrated
by the lower standard deviation of error,

Figure 1. Search Space for Synchronization Peak

Figure 2. Linear Transformation Accuracy

Test Harness: Standard Deviation of Error

Test Harness Error: Standard Deviation
Whole Pixel σ =0.103
1/8 Pixel σ =0.054

The actual impact on detector performance depends on the
nature of the embedded signal. The linear transformation is used
to synchronize the signal. Different watermarking modulation
techniques may have different linear transform accuracy require-
ments. The accuracy is increased by searching on a finer grid. If
less accuracy is needed, one can trade off accuracy for speed by
searching on a coarser partial pixel grid.

We incorporated partial pixel peak search into a full water-
mark detector to test the importance of the algorithm in a full sys-
tem. This particular detector is quite robust, and the partial pixel
peak search does help increase this robustness. Note that there
is a robustness gain in the perspective test as well. A perspec-
tive transform can often be approximated by an affine transform,
but the linear transform may have a large amount of differential
scale or shear and so is somewhat more difficult to detect. It is not

IS&T International Symposium on Electronic Imaging 2020
Media Watermarking, Security, and Forensics 024-5



Partial Pixel Peak Search: Detector Results

Rotation/Scale Tests Detection Rate
Whole Pixel 95%
Quarter Pixel 96%
Perspective Test Detection Rate
Whole Pixel 84%
Quarter Pixel 86%

yet clear how the extra linear transform accuracy helps in the per-
spective case. More details pertaining to perspective mitigation
are covered in the Digimarc patent [12].
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